地球科学进展 ›› 2023, Vol. 38 ›› Issue (7): 729 -744. doi: 10.11867/j.issn.1001-8166.2023.038

研究论文 上一篇    下一篇

中国西部新生代陆内前陆盆地迁移过程及其构造指示意义
李超 1( ), 陈国辉 1, 何智远 2, 王平 3, 薛飞 1, 施一凡 1   
  1. 1.河海大学 地球科学与工程学院, 江苏 南京 211100
    2.根特大学 地质系, 根特 281S8, 比利时
    3.南京师范大学 地理科学学院, 江苏 南京 210023
  • 收稿日期:2023-04-27 修回日期:2023-06-02 出版日期:2023-07-10
  • 基金资助:
    国家自然科学基金项目“塔北和准南前陆盆地演化对天山深部结构的揭示”(42102250);“库车前陆盆地多尺度地质过程的热效应研究”(42072153)

Migration Processes of the Cenozoic Intracontinental Foreland Basins in Western China and Their Tectonics Implications

Chao LI 1( ), Guohui CHEN 1, Zhiyuan HE 2, Ping WANG 3, Fei XUE 1, Yifan SHI 1   

  1. 1.School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
    2.Department of Geology, Ghent University, Ghent 281S8, Belgium
    3.School of Geography, Nanjing Normal University, Nanjing 210023, China
  • Received:2023-04-27 Revised:2023-06-02 Online:2023-07-10 Published:2023-07-19
  • About author:LI Chao (1989-), male, Huaian City, Anhui Province, Lecturer. Research areas include tectonics, sedimentology and basin analysis. E-mail: lichao2019@hhu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Deep structures of the Tian Shan unraveled by the evolution of the bilateral foreland basins”(42102250);“Quantifying the thermal effects of multi-scale geological processes within the Kuqa foreland basin”(42072153)

中国西部新生代陆内前陆盆地的迁移过程反映了与其耦合的造山带的缩短隆升历史。通过综述恢复前陆盆地迁移过程的研究方法及其与地壳缩短过程的定量关系,阐明了前陆盆地迁移过程的构造指示意义。横跨前陆盆地的地震反射剖面可显示盆地内的地层上超或砾岩—砂岩过渡带迁移,反映盆地迁移过程;结合磁性地层学约束的地层年龄,可获得迁移速率;该速率的变化对应前陆盆地基底相对造山带的俯冲速率变化,反映造山带吸收的地壳水平缩短速率变化。通过对比分析西昆仑山北侧及天山南、北侧的陆内再生前陆盆地的迁移过程,发现约30 Ma以来西昆仑山和天山的地壳缩短速率变化趋势和变形模式均不相同,可能反映二者造山的动力学机制差异。该方法未来还有望应用于青藏高原东北缘以恢复高原生长过程。

The migration processes of the Cenozoic intracontinental foreland basins in western China provide valuable insights into the shortening and uplifting histories of coupled orogenic belts. A comprehensive review of the research methodologies used to reconstruct foreland basin migration and its quantitative relationship with crustal shortening enables us to uncover the structural implications of this process. Seismic reflection profiles crossing the foreland basins image the stratal onlaps and conglomerate-sandstone transitions in the basins. Based on the interpretations of seismic profiles, the migration rate of foreland basins can be determined by integrating stratigraphic age constraints derived from magnetostratigraphy. The variations in the rates correspond to the variations in the underthrusting rates of the foreland basin basement relative to the orogenic belts, revealing changes in the horizontal crustal shortening rates absorbed by the orogenic belts. Through a comparative analysis of the migration processes of the rejuvenated intracontinental foreland basins on the northern side of the West Kunlun Mountains and the southern and northern sides of the Tianshan Mountains, these two mountains contrast markedly in terms of crustal shortening rates and deformation patterns since approximately 30 Ma. The contrast between these mountains indicates differences in their dynamic mechanisms. Furthermore, this method holds great potential for future applications in unraveling the growth process of the northeastern margin of the Qinghai-Tibet Plateau.

中图分类号: 

图1 塔西南、库车和准南前陆盆地系统在印度—欧亚大陆碰撞系统内的位置图
(a)塔西南、库车和准南前陆盆地的位置;(b)一条横跨青藏高原西缘和天山的地形条带剖面;(c)青藏高原—塔里木—天山地区岩石圈的综合结构剖面;岩石圈结构从天然地震数据和深反射剖面获得 1 - 7
Fig. 1 The southwestern TarimKuqa and southern Junggar foreland basin systems in the India-Asia collisional system
(a) Locations of the southwestern Tarim, Kuqa and southern Junggar foreland basins;(b) A topographic swath profile across the Tibet Plateau and the Tianshan Mountains;(c) Integrated schematic cross-section in the western Tibet-Tarim-Tianshan Mountains region. The lithospheric structure derived from the seismic data and deep reflection profiling 1 - 7
图2 前陆盆地—造山楔系统示意图(据参考文献[ 31 ]修改)
(a)前渊沉积带内的地层上超点和砾岩—砂岩过渡带;(b)前陆沉积层内地层上超速率 VO 记录盆地前隆的迁移速率 VFFa :汇入造山楔的物质通量, Fe :被剥蚀的物质通量;(c)前陆沉积层的地层年代学示意图
Fig. 2 Schematic diagram of foreland basin-thrust wedge systemsmodified after reference 31 ])
(a) Stratal onlap points and conglomerate-sandstone transitions in the foredeep depozone; (b) The migration rate of forebulge ( VF ) is recorded by the stratal onlap rate of foreland sedimentary layer ( VO ); Fa : The influx of material into the topographic wedge, Fe : Erosional flux;(c) Chronostratigraphy of the foreland sedimentary layer in foreland basins
图3 横跨塔西南前陆盆地的地震反射剖面AA’显示的盆地内地层上超点(据参考文献[ 33 ]修改)
(a)未解释的地震剖面,剖面位置见图1,为方便展示,原始剖面被垂直放大约6倍;(b)地震剖面解释结果与新生代前陆沉积层中的反射面的追索线,蓝色圆点代表反射面终结点;(c)剖面配套钻井K的地层剖面与柯克亚剖面 42 和阿尔塔什剖面 43 的对应关系;(d)塔西南前陆盆地内AA’剖面显示的上超点相对造山带的位置与上超点对应地层年龄统计图(据参考文献[ 33 ]修改)
Fig. 3 The seismic reflection profile AA’ crossing the southwestern Tarim foreland basin images the stratal onlap points in the basinmodified after reference 33 ])
(a) Uninterpreted seismic reflection profile. See location in Fig. 1. For display purposes, the original profile has been vertically exaggerated by approximately six times. (b) Interpretation of the seismic reflection profile and seismic reflectors tracing lines in the Cenozoic foreland layer. Blue solid circles represent seismic reflector terminations. (c) Correlation between the stratigraphic column of borehole K, the Kekeya 42 and Aertashi 43 magnetostratigraphic sections. (d) Plot of distances from the range versus the onlap points and their correlating ages through time imaged by profile AA’ in the southwestern Tarim foreland basin (modified after reference [ 33 ])
图4 横跨准南前陆盆地的反射地震剖面CC’显示的前陆沉积地层内砾岩—砂岩过渡带(CSTs)向前陆方向迁移(据参考文献[ 35 ]修改)
(a)解释的地震剖面;(b)砾岩—砂岩过渡带的迁移轨迹,地层边界年龄据参考文献[ 50 - 51 ]确定;(c)地震剖面位置见图1准南前陆盆地内剖面CC’显示的新生代前陆沉积层序内砾岩—砂岩过渡带相对天山的位置与对应地层年龄统计图
Fig. 4 Interpreted seismic profiles CCacross the southern Junggar foreland basin shows the forelandward migration of the Conglomerate-Sandstone TransitionsCSTsin the foreland sedimentary layermodified after reference 35 ])
(a) Interpreted seismic profile; (b) The trace line of the Conglomerate-Sandstone Transitions. The ages of the boundaries of the formations are determined by references [50-51]. See location of the seismic profile in Fig. 1 (c) plot of the distances from the Tianshan Mountains range versus the conglomerate-sandstone transitions and their correlating ages through time imaged by profile CC’ in the southern Junggar foreland basin
图5 造山带—前陆盆地系统内地层上超与造山楔地壳缩短的关系示意图
(a)前陆盆地前隆迁移速率与造山带缩短变形相关速率的关系(据参考文献[ 28 ]修改), VC :俯冲板块与造山带水平汇聚速率, VS :造山带吸收的地壳缩短速率, VU :俯冲板块相对造山带楔顶点的俯冲速率, VF :前隆迁移速率, VP :造山楔的扩展速率;(b)前陆沉积地层上超速率( VO )、前陆沉积地层内砾岩—砂岩过渡带迁移速率( V CST)与前隆迁移速率( VF )的关系
Fig. 5 The scheme defining the relationship between the stratal onlap and the crustal shortening in orogenic belt-foreland basin systems
(a) The relation between the migration rate of the forebulge in foreland basins ( VF ) and various rates in continental orogenic wedges (modified after reference [ 28 ]), VC : convergence rate between the underthrusting plate and the orogenic belt; VS : crustal shortening rate absorbed by the orogenic belt; VU : underthrusting rate of the underthrusting plate relative to the wedge top of the orogenic belt; VP : propagation rate of the orogenic wedge. (b) The relation between the stratal onlap rate in the foreland sedimentary layer ( VO ), the migration rate of the conglomerate-sandstone transition ( V CST) and the forebulge ( VF
图6 穿过库车前陆盆地的地震剖面BB’ 显示的前陆沉积层序上超点(据参考文献 [ 34 ]修改)
(a)已解释的地震剖面,为方便展示,原始剖面被垂直放大约6倍,剖面位置见图1;(b)前陆沉积层内地震波反射面追索结果,及其与磁性地层学年龄的对应关系,箭头指示反射面的终结点,蓝色虚线标注向前陆方向的上超点的底部包络面,磁性地层柱的年龄来自参考文献[ 72 - 73 ];(c)剖面BB’内上超点相对天山的位置与上超点对应地层年龄统计图
Fig. 6 The forelandward onlap points imaged by the profile BBacross the Kuqa foreland basinmodified after reference 34 ])
(a) Interpreted seismic profiles are shown, the original profiles have been vertically exaggerated by approximately six times for better visualization, see Fig. 1 for location of the profile; (b) Tracing lines of seismic reflectors in the foreland sedimentary layer and correlation between the magnetostratigraphic ages and seismic reflectors, the arrows indicate reflector terminations, the magnetostratigraphic column is from references [72-73]; (c) Plot of distances from the Tianshan Mountains range versus the onlap points and their correlating ages through time imaged by profile BB’
图7 印度—欧亚大陆汇聚速率与前陆盆地迁移速率反映渐新世以来西昆仑山和天山缩短速率的理论最大值
橙色和蓝色实线分别代表西昆仑山和天山吸收的地壳缩短速率上限,数据来自参考文献[ 33 - 35 ];橙色和蓝色虚线分别代表西昆仑山前和田褶皱冲断带和天山山前库车褶皱冲断带吸收的缩短速率,数据来自参考文献[ 76 87 ]。黑色虚线和实线均代表印度—欧亚大陆汇聚速率,数据来自参考文献[ 88 - 89
Fig. 7 Convergence rate of India-Eurasia and the theoretical maximum shortening rates of the western Kunlun and Tianshan Mountains orogens since the Oligocene revealed by the migration rates of the foreland basins
The orange and blue solid lines indicate the maximum crustal shortening rate accommodated by the West Kunlun mountains and the Tianshan mountains respectively, with data from references [33-35]; The orange and blue dashed lines represent the average shortening rate of the Hetian and Kuqa fold-and-thrust belts respectively, with data from references [76, 87]. The black solid and dashed lines both represent the convergence rate for the India-Eurasia collision, with data from references [88-89]
15 张培震, 王伟涛, 甘卫军, 等. 青藏高原的现今构造变形与地球动力过程[J]. 地质学报, 2022, 96(10): 3 297-3 313.
16 MOLNAR P, LYON-CAENT H. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal International, 1989, 99(1): 123-153.
17 XU Xiwei, Cheng Jia, XU Chong, et al. Discussion on block kinematic model and future themed areas for earthquake occurrence in the Tibetan plateau: inspiration from the Ludian and Jinggu earthquakes[J]. Seismology and Geology, 2014, 36(4):1 116-1 134.
徐锡伟,程佳,许冲,等. 青藏高原块体运动模型与地震活动主体地区讨论:鲁甸和景谷地震的启示[J]. 地震地质, 2014, 36(4): 1 116-1 134.
18 GUILLOT S, GARZANTI E, BARATOUX D, et al. Reconstructing the total shortening history of the NW Himalaya[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(7). DOI:10.1029/2002GC000484 .
19 COPLEY A, AVOUAC J P, ROYER J Y. India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions[J]. Journal of Geophysical Research, 2010, 115(B3). DOI:10.1029/2009JB006634 .
20 MEYER B, TAPPONNIER P, BOURJOT L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47.
21 LU Huafu, HOWELL D G, JIA Dong, et al. Rejuvenation of the kuqa foreland basin, northern flank of the Tarim Basin, northwest China[J]. International Geology Review, 1994, 36(12): 1 151-1 158.
22 LI Desheng, LIANG Digang, JIA Chengzao. Hydrocarbon accumulations in the Tarim Basin, China[J]. AAPG Bulletin, 1996, 80: 1 587-1 603.
23 LI Chuanxin, GUO Zhaojie. Quantitative analyses of Late Cenozoic tectonic deformation across the northern Tianshan forland[J]. Chinese Journal of Geology, 2011, 46(3): 709-722.
李传新, 郭召杰. 晚新生代天山北缘构造变形定量研究[J]. 地质科学, 2011, 46(3): 709-722.
24 QI Jiafu, LI Yong, WU Chao, et al. The interpretation models and discussion on the contractive structure deformation of Kuqa Depression, Tarim Basin[J]. Geology in China, 2013, 40(1): 106-120.
漆家福, 李勇, 吴超, 等. 塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论[J]. 中国地质, 2013, 40(1): 106-120.
25 LIU Hefu, WANG Zecheng, XIONG Baoxian, et al. Coupling analysis of Mesozoic-Cenozoic foreland basin and mountain system in central and Western China[J]. Earth Science Frontiers, 2000, 7(3): 55-72.
刘和甫, 汪泽成, 熊保贤, 等. 中国中西部中、新生代前陆盆地与挤压造山带耦合分析[J]. 地学前缘, 2000, 7(3): 55-72.
26 DING Xiaozhong, LIN Changsong, LIU Jingyan, et al. The sequence stratigraphic response to the basin-orogene coupling process of Cretaceous-Neogene in Tarim Basin, China[J]. Earth Science Frontiers, 2011, 18(4): 144-157.
丁孝忠, 林畅松, 刘景彦, 等. 塔里木盆地白垩纪—新近纪盆山耦合过程的层序地层响应[J]. 地学前缘, 2011, 18(4): 144-157.
27 JOHNSON D D, BEAUMONT C. Preliminary results from a planform kinematic model of orogen evolution, surface processes and the development of clastic foreland basin stratigraphy[M]//Stratigraphic evolution of foreland basins. SEPM (Society for Sedimentary Geology), 1995: 3-24.
28 DeCELLES P G, DECELLES P C. Rates of shortening, propagation, underthrusting, and flexural wave migration in continental orogenic systems[J]. Geology, 2001, 29(2): 135-138.
29 DeCELLES P G, GILES K A. Foreland basin systems[J]. Basin Research, 1996, 8(2): 105-123.
30 NAYLOR M, SINCLAIR H D. Pro- vs. retro-foreland basins[J]. Basin Research, 2008, 20(3): 285-303.
31 SINCLAIR H D, NAYLOR M. Foreland Basin subsidence driven by topographic growth versus plate subduction[J]. Geological Society of America Bulletin, 2012, 124(3/4): 368-379.
32 WANG Shengli, CHEN Yan, CHARREAU J, et al. Tectono-stratigraphic history of the southern Junggar Basin: seismic profiling evidences[J]. Terra Nova, 2013, 25(6): 490-495.
1 KAO H, GAO R, RAU R J, et al. Seismic image of the Tarim Basin and its collision with Tibet[J]. Geology, 2001, 29(7): 575-578.
2 HUANGFU Pengpeng, LI Zhonghai, ZHANG Kaijun. India-Tarim lithospheric mantle collision beneath western Tibet controls the Cenozoic building of Tian Shan[J]. Geophysical Research Letters, 2021, 48. DOI:10.1029/2021GL094561 .
3 GAO Rui, HUANG Dongding, LU Deyuan, et al. Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains[J]. Chinese Science Bulletin, 2000, 45(24): 2 281-2 286.
4 RAI S S, PRIESTLEY K, GAUR V K, et al. Configuration of the Indian Moho beneath the NW Himalaya and Ladakh[J]. Geophysical Research Letters, 2006, 33(15). DOI:10.1029/2006GL026076 .
5 WITTLINGER G, VERGNE J, TAPPONNIER P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth and Planetary Science Letters, 2004, 221(1/2/3/4): 117-130.
6 ZHAO Junmeng, LIU Guodong, LU Zaoxun, et al. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar Basin[J]. Tectonophysics, 2003, 376(3):199-239.
7 ZHAO Junmeng, YUAN Xiaohui, LIU Hongbing, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences, 2010, 107(25): 11 229-11 233.
8 MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189: 419-426.
9 ROYDEN L H, BURCHFIEL B C, van der HILST R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5 892): 1 054-1 058.
10 Honghua LÜ, LI Youli. Development of tectonic geomorphology study promoted by new methods in China: a viewpoint from reviewing the Tian Shan researches[J]. Advances in Earth Science, 2020, 35(6): 594-606.
吕红华, 李有利. 不断融入新元素的我国构造地貌学研究: 以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
11 LU Xueyun, JI Jianqing, WANG Lining,et al. Research advances and prospects of climate-tectonic-erosion interactions[J]. Advances in Earth Science,2023,38(3):270-285.
鲁学云,季建清,王丽宁,等. 气候—构造—剥蚀相互作用研究进展与展望[J]. 地球科学进展,2023,38(3):270-285.
12 YIN An. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21 745-21 759.
13 TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
14 WANG Min, SHEN Zhengkang. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2). DOI:10.1029/2019JB018774 .
15 ZHANG Peizhen, WANG Weitao, GAN Weijun, et al. Present-day deformation and geodynamic processes of the Tibetan Plateau[J]. Acta Geologica Sinica, 2022, 96(10): 3 297-3 313.
33 WANG Shengli, CHEN Yan, CHARREAU J, et al. Underthrusting of the Tarim lithosphere beneath the western Kunlun range, insights from seismic profiling evidence[J]. Tectonics, 2021, 40(2). DOI:10.1029/2019TC005932 .
34 LI Chao, WANG Shengli, WANG Liangshu. Tectonostratigraphic history of the southern Tian Shan, Western China, from seismic reflection profiling[J]. Journal of Asian Earth Sciences, 2019, 172: 101-114.
35 LI Chao, WANG Shengli, LI Yongxiang, et al. Growth of the Tian Shan drives migration of the conglomerate-sandstone transition in the southern Junggar foreland basin[J]. Geophysical Research Letters, 2022, 49(4). DOI:10.1029/2021GL097545 .
36 LI C, WANG S L, WANG Y J, et al. Modern southern Junggar foreland basin system adjacent to the northern Tian Shan, northwestern China[J]. Lithosphere, 2022(1). DOI:10.2113/2022/7872549 .
37 LYON-CAEN H, MOLNAR P. Gravity anomalies, flexure of the Indian Plate, and the structure, support and evolution of the Himalaya and Ganga Basin[J]. Tectonics, 1985, 4(6): 513-538.
38 SIMOES M, AVOUAC J P. Investigating the kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and western foothills[J]. Journal of Geophysical Research, 2006, 111. DOI:10.1029/2005JB004209 .
39 ALLEN P A, ALLEN J R. Basin analysis: principles and application to petroleum play assessment[M]. Wiley-Blackwell Publishing, 2013.
40 FLEMINGS P B, JORDAN T E. A synthetic stratigraphic model of foreland basin development[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 3 851-3 866.
41 SINCLAIR H D, COAKLEY B J, ALLEN P A, et al. Simulation of Foreland Basin Stratigraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland[J]. Tectonics, 1991, 10(3): 599-620.
42 ZHENG Hongbo, WEI Xiaochun, TADA R, et al. Late Oligocene-early Miocene birth of the Taklimakan Desert[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7 662-7 667.
43 BOSBOOM R, DUPONT-NIVET G, GROTHE A, et al. Linking Tarim Basin Sea retreat (west China) and Asian aridification in the late Eocene[J]. Basin Research, 2014, 26(5): 621-640.
44 BURBANK D W, BECK R A, RAYNOLDS R G H, et al. Thrusting and gravel progradation in foreland basins: a test of post-thrusting gravel dispersal[J]. Geology, 1988, 16(12): 1 143-1 146.
45 ALLEN P A, ARMITAGE J J, CARTER A, et al. The Qs problem: sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130.
46 SMITH G S, FERGUSON R I. The gravel sand transition along river channels[J]. Journal of Sedimentary Research, 1995, 65(2): 423-430.
47 DINGLE E H, SINCLAIR H D, VENDITTI J G, et al. Sediment dynamics across gravel-sand transitions: implications for river stability and floodplain recycling[J]. Geology, 2020, 48(5): 468-472.
48 DINGLE E H, SINCLAIR H D, ATTAL M, et al. Subsidence control on river morphology and grain size in the ganga plain[J]. American Journal of Science, 2016, 316: 778-812.
49 DUBILLE M, LAVÉ J. Rapid grain size coarsening at sandstone/conglomerate transition: similar expression in Himalayan modern rivers and Pliocene molasse deposits[J]. Basin Research, 2015, 27(1): 26-42.
50 CHARREAU J, CHEN Y, GILDER S, et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China)[J]. Tectonics, 2009, 28(2). DOI:10.1029/2007TC002137 .
51 LU H H, BURBANK D W, LI Y L, et al. Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland[J]. Basin Research, 2010, 22(3): 249-269.
52 DAVIS D, SUPPE J, DAHLEN F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research, 1983, 88(B2): 1 153-1 172.
53 DENG Wanming, YIN Jixiang, GUO Zhongping. Basic-ultramafic and volcanic rocks in Changbu-Shuanghu area of northern Xizang (Tibet) [J]. Science China Serie D: Earth Sciences, 1996, 26(4): 296-301.
邓万明,尹集祥,呙中平. 羌塘茶布—双湖地区基性超基性岩和火山岩研究[J]. 中国科学D辑:地球科学, 1996,26(4): 296-301.
54 XIAO Wenjiao, HAN Fanglin, WINDLEY B F, et al. Multiple accretionary orogenies and episodic growth of continents: insights from the western Kunlun Range, central Asia[J]. International Geology Review, 2003, 45: 303-328.
55 LU Renqi, XU Xiwei, HE Dengfa, et al. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau[J]. Tectonics, 2016, 35(4): 956-964.
56 GUILBAUD C, SIMOES M, BARRIER L, et al. Kinematics of active deformation across the western Kunlun Mountain range (Xinjiang, China) and potential seismic hazards within the southern Tarim Basin[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10 398-10 426.
57 ZHANG Shiben, HUANG Zhibin, ZHU Huaicheng. Phanerozoic strata in the Tarim Basin[M]. Beijing: Petroleum Industry Press, 2004.
张师本, 黄智斌, 朱怀诚. 塔里木盆地覆盖区显生宙地层[M]. 北京: 石油工业出版社, 2004.
58 JIANG Xiaodian, LI Zhengxiang. Seismic reflection data support episodic and simultaneous growth of the Tibetan Plateau since 25 Myr[J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms6453 .
59 WANG Wei, QIAO Xuejun, YANG Shaomin, et al. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements[J]. Geophysical Journal International, 2017, 208(2): 1 088-1 102.
60 LABORDE A, BARRIER L, SIMOES M, et al. Cenozoic deformation of the Tarim Basin and surrounding ranges (Xinjiang, China): a regional overview[J]. Earth-Science Reviews, 2019, 197. DOI:10.1016/j.earscirev.2019.102891 .
61 BANDE A, SOBEL E R, MIKOLAICHUK A, et al. Talas-Fergana Fault Cenozoic timing of deformation and its relation to Pamir indentation[J]. Geological Society, London, Special Publications, 2017, 427(1): 295-311.
62 XU Xiwei, TAN Xibin, WU Guodong, et al. Surface rupture features of the 2008 Yutian MS 7.3 earthquake and its tectonic nature[J]. Seismology and Geology, 2011, 33(2): 462-471.
徐锡伟, 谭锡斌, 吴国栋, 等. 2008年于田MS 7.3地震地表破裂带特征及其构造属性讨论[J]. 地震地质, 2011, 33(2): 462-471.
63 XIAO Wenjiao, WINDLEY B F, ALLEN M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23(4): 1 316-1 341.
64 HENDRIX M S, GRAHAM S A, CARROLL A R, et al. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic strata of the North Tarim, South Junggar, and Turpan Basins, northwest China[J]. Geological Society of America Bulletin, 1992, 104(1): 53-79.
65 DUMITRU T A, ZHOU D, CHANG E Z, et al. Uplift, exhumation, and deformation in the Chinese Tian Shan[M]// HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Geological Society of America Memoir, 2001, 194: 71-99.
66 DUMITRU T A, ZHOU Da, CHANG E Z, et al. Uplift, exhumation, and deformation in the Chinese Tian Shan[M]// HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation. Geological Society of America Memoir, 2001, 194: 71-99.
67 DENG Qidong, FENG Xianyue, ZHANG Peizhen, et al. Reverse fault and fold zone in the Urumqi range-front depression of the northern Tianshan and its genetic mechanism[J]. Earth Science Frontiers, 1999, 6(4): 191-201.
邓起东, 冯先岳, 张培震, 等. 乌鲁木齐山前坳陷逆断裂—褶皱带及其形成机制[J]. 地学前缘, 1999, 6(4): 191-201.
68 HUBERT-FERRARI A, SUPPE J, GONZALEZ-MIERES R, et al. Mechanisms of active folding of the landscape (southern Tian Shan, China)[J]. Journal of Geophysical Research, 2007, 112(B3). DOI:10.1029/2006JB004362 .
69 GILLIGAN A, ROECKER S W, PRIESTLEY K F, et al. Shear velocity model for the Kyrgyz Tien Shan from joint inversion of receiver function and surface wave data[J]. Geophysical Journal International, 2014, 199(1): 480-498.
70 SUN Weijia, AO Songjian, TANG Qingya, et al. Forced Cenozoic continental subduction of Tarim craton-like lithosphere below the Tianshan revealed by ambient noise tomography[J]. Geology, 2022, 50(12): 1 393-1 397.
71 YANG Youqing, LIU Mian. Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan[J]. Tectonics, 2002, 21(6): 9-1-9-17.
72 CHARREAU J, GILDER S, CHEN Y, et al. Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan Mountains[J]. Geology, 2006, 34(3): 181-184.
73 HUANG B, PIPER J, PENG S, et al. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China[J]. Earth and Planetary Science Letters, 2006, 251(3/4): 346-364.
74 WU C Y, ZHANG P Z, ZHANG Z Q, et al. Slip partitioning and crustal deformation patterns in the Tianshan orogenic belt derived from GPS measurements and their tectonic implications[J]. Earth-Science Reviews, 2023, 238. DOI:10.1016/j.earscirev.2023.104362 .
75 CHARREAU J, BLARD P H, LAVÉ J, et al. Unsteady topography in the eastern Tianshan due to imbalance between denudation and crustal thickening[J]. Tectonophysics, 2023, 848. DOI:10.1016/j.tecto.2022.229702 .
76 WANG Xin, SUPPE J, GUAN Shuwei, et al. Cenozoic structure and tectonic evolution of the Kuqa fold belt, southern Tianshan, China[J]. American Association of Petroleum Geologists Memoir, 2011, 94: 215-243.
77 CHARREAU J, SAINT-CARLIER D, DOMINGUEZ S, et al. Denudation outpaced by crustal thickening in the eastern Tianshan[J]. Earth and Planetary Science Letters, 2017, 479: 179-191.
78 CHARREAU J, CHEN Y, GILDER S, et al. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshan Mountains[J]. Earth and Planetary Science Letters, 2005, 230(1/2): 177-192.
79 LU Honghua, LI Bingjing, WU Dengyun, et al. Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland[J]. Earth-Science Reviews, 2019, 194: 19-37.
80 CAO K, WANG G C, BERNET M, et al. Exhumation history of the West Kunlun Mountains, northwestern Tibet: evidence for a long-lived, rejuvenated orogen[J]. Earth and Planetary Science Letters, 2015, 432: 391-403.
81 YU S, CHEN W, EVANS N J, et al. Cenozoic uplift, exhumation and deformation in the North Kuqa Depression, China as constrained by (U-Th)/He thermochronometry[J]. Tectonophysics, 2014, 630: 166-182.
82 CHANG Jian, TIAN Yuntao, QIU Nansheng. Mid-Late Miocene deformation of the northern Kuqa fold-and-thrust belt (southern Chinese Tian Shan): an apatite (U-Th-Sm)/He study[J]. Tectonophysics, 2017, 694: 101-113.
83 WANG Yannan, ZHANG Jin, HUANG Xiao. Cenozoic exhumation of the Tianshan as constrained by regional low-temperature thermochronology[J]. Earth-Science Reviews, 2023, 237. DOI:10.1016/j.earscirev.2023.104325 .
84 NEIL E A, HOUSEMAN G A. Geodynamics of the Tarim Basin and the Tian Shan in central Asia[J]. Tectonics, 1997, 16(4): 571-584.
85 DAYEM K E, MOLNAR P, CLARK M K, et al. Far-field lithospheric deformation in Tibet during continental collision[J]. Tectonics, 2009, 28. DOI:10.1029/2008TC002344 .
86 LIU Fangbin, NIE Junsheng, ZHENG Dewen,et al. The Cenozoic exhumation history and forcing mechanism of SE Tibetan Plateau: a case study of the Lincang granite area[J]. Advances in Earth Science,2021,36(4):421-441.
刘方斌,聂军胜,郑德文,等. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展,2021,36(4):421-441.
87 BABY G, SIMOES M, BARRIER L, et al. Kinematics of Cenozoic shortening of the Hotan anticline along the northwestern margin of the Tibetan Plateau (western Kunlun, China)[J]. Tectonics, 2022, 41(5). DOI:10.1029/2021TC006928 .
88 van HINSBERGEN D J J, KAPP P, DUPONT-NIVET G, et al. Restoration of Cenozoic deformation in Asia and the size of greater India[J]. Tectonics, 2011, 30(5). DOI:10.1029/2011TC002908 .
89 LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1/2/3/4): 85-138.
90 SUN Chuang, LI Zhigang, ZUZA A V, et al. Controls of mantle subduction on crustal-level architecture of intraplate orogens, insights from sandbox modeling[J]. Earth and Planetary Science Letters, 2022, 584. DOI:10.1016/j.epsl.2022.117476 .
91 LI Qiong, WANG Jiaojiao, PAN Baotian. Numerical simulation of the influence of tectonics and precipitation on the evolution of alluvial fans at the northern foot of Qilian Mountains[J]. Advances in Earth Science, 2020, 35(6): 607-617.
李琼, 王姣姣, 潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
92 JI Junliang, ZHANG Kexin, CLIFT P D, et al. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: implications for the growth of the Northeastern Tibetan Plateau[J]. Gondwana Research, 2017, 46: 141-155.
93 WANG Weitao, ZHENG Wenjun, ZHANG Peizheng, et al. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms15887 .
[1] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[2] 吕红华, 周祖翼. 前陆盆地陆源沉积序列的特征与成因机制[J]. 地球科学进展, 2010, 25(7): 706-714.
[3] 戴朝成,郑荣才,朱如凯,翟文亮,高红灿. 四川类前陆盆地须家河组震积岩的发现及其研究意义[J]. 地球科学进展, 2009, 24(2): 172-180.
[4] 张仲培;王清晨. 断层滑动分析与古应力恢复研究综述[J]. 地球科学进展, 2004, 19(4): 605-613.
[5] 董云鹏,张国伟. 造山带与前陆盆地结构构造及动力学研究思路和进展[J]. 地球科学进展, 1997, 12(1): 1-6.
[6] 刘少峰. 前陆盆地的形成机制和充填演化[J]. 地球科学进展, 1993, 8(4): 30-37.
阅读次数
全文


摘要