地球科学进展 ›› 2023, Vol. 38 ›› Issue (7): 715 -728. doi: 10.11867/j.issn.1001-8166.2023.035

研究论文 上一篇    下一篇

典型工业城市兰州市大气氧气的高精度观测研究
王莉 1( ), 刘晓岳 2, 黄建平 1 , 2( )   
  1. 1.兰州大学西部生态安全省部共建协同创新中心,甘肃 兰州 730000
    2.兰州大学半干旱 气候变化教育部重点实验室,兰州大学大气科学学院,甘肃 兰州 730000
  • 收稿日期:2023-03-01 修回日期:2023-05-31 出版日期:2023-07-10
  • 通讯作者: 黄建平 E-mail:w_l@lzu.edu.cn;hjp@lzu.edu.cn
  • 基金资助:
    国家自然科学基金项目“干旱半干旱地区气候变化及其水循环效应”(41991231);甘肃省青年科技基金项目“兰州地区大气颗粒物及臭氧的时空分布特征及其重污染时段成因与模拟分析”(21JR7RA528)

High-precision Observation of Atmospheric Oxygen in a Typical Industrial City of Lanzhou

Li WANG 1( ), Xiaoyue LIU 2, Jianping HUANG 1 , 2( )   

  1. 1.Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
    2.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric and Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2023-03-01 Revised:2023-05-31 Online:2023-07-10 Published:2023-07-19
  • Contact: Jianping HUANG E-mail:w_l@lzu.edu.cn;hjp@lzu.edu.cn
  • About author:WANG Li (1989-), female, Baiyin City, Gansu Province, Laboratory technician. Research area includes atmospheric oxygen observation. E-mail: w_l@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Climate change in arid and semi-arid regions and its effects on hydrologic cycle”(41991231);Youth Science and Technology Fund Project of Gansu Province of China “Temporal and spatial distribution characteristics of atmospheric particulates and ozone in Lanzhou and the causes and simulation analysis of heavy pollution period”(21JR7RA528)

人类活动对城市区域的空气含氧量产生了显著的影响,这种改变已经对区域范围内的大气氧平衡构成了威胁。但是城市大气O2的相关研究仍然薄弱,无法对城市O2变化机制做出系统评估。因此,在城市区域进行大气O2的长期观测具有重要意义。详细介绍了兰州市在线大气氧观测平台的基本情况,该平台是国内首个大气O2原位高精度连续观测平台。平台采用气相色谱仪—热导检测器(GC-TCD)来测量大气中O2含量,并构建了一种基于XGBoost模型的数据订正方法。通过使用这种方法,成功地减小了大气O2观测数据的系统误差,使得订正后的测量结果的误差明显减小至-0.68 μmol/mol。观测结果表明,大气中O2呈现明显的季节性和日变化特征,且大气O2与城市人类活动指标(NO x )之间存在良好的对应关系。该平台能够在高背景下检测到大气O2的微变化,为城市大气O2相关研究提供关键的数据支持。由于碳氧循环紧密相关,大气O2的长期观测可为有效制定因地制宜的“双碳”现实路径提供科学依据。

Human activities have changed the air oxygen content in urban areas and threatened the regional atmospheric oxygen balance. However, studies on urban atmospheric oxygen (O2) remain limited, and a systematic assessment of the mechanisms that drive urban O2 variability is not yet possible. Therefore, the long-term observation of atmospheric O2 in urban areas is of utmost importance. This study provides an in-depth overview of the Lanzhou online atmospheric oxygen observation platform, which is the first in situ, high-precision, continuous atmospheric O2 observation platform in China. The platform uses a gas chromatography-thermal conductivity detector (GC-TCD) method to measure the atmospheric O2 content and establishes an XGBoost-based correction model for atmospheric O2 observation data. After correction, the observation system error of atmospheric O2 has significantly reduced to -0.68 μmol/mol. The observation results showed that atmospheric O2 has clear seasonal and daily variation characteristics and good correspondence with urban human activity indicators (NOx). Based on the capabilities of the atmospheric oxygen observation platform demonstrated in this study, the platform can detect microvariations in atmospheric O2 against a high background, providing crucial data to support research into urban atmospheric O2 levels. Due to the close relationship between carbon and oxygen cycles, the long-term observation of atmospheric O2 can be a scientific basis for establishing regionally appropriate “double carbon” practical paths.

中图分类号: 

图1 基于大气氧气观测平台的城市大气氧气变化的研究框架
Fig. 1 Research framework of urban atmospheric oxygen change based on atmospheric oxygen observation platform
图2 大气氧气观测站点图
Fig. 2 Map of atmospheric oxygen observation sites
图3 安捷伦7890B气相色谱仪用于大气O2/N2 值测量系统的原理图
Fig. 3 Schematic diagram of the Agilent 7890B gas chromatograph for atmospheric O2/N2 measurement system
图4 空气样本色谱图
Fig. 4 Air sample chromatogram
图5 2021121~9日氧气浓度观测平台观测数据
(a)Picarro与GC观测数据的对比;(b)气压与气温;(c)相对湿度与能见度;(d)风速与风向;12月4日14时至12月6日14时和12月9日0时至11时的GC数据因故缺测;**表示在0.01级别相关性显著
Fig. 5 Oxygen concentration observation platform observation data from December 1 to December 92021
(a) Comparison of Picarro and GC observation data; (b) Pressure and temperature; (c) Relative humidity and visibility; (d) Wind speed and wind direction. 14:00 on December 4 to 14:00 on December 6, and GC data from 00:00 to 11:00 on December 9 were not measured due to reasons;** indicating a significant correlation at the 0.01 level
图6 基于XGBoost模型建立的数据订正模型(a)和数据插补模型(b)的特征重要性
Fig. 6 Feature importance of data correction modelaand data interpolation modelbbuilt based on XGBoost model
图7 基于XGBoost模型建立的数据订正模型和数据插补模型在测试集上的效果评估
Fig. 7 Evaluation of the effect of the data revision model and interpolation model based on XGBoost model on the test set
图8 兰州市氧气浓度的变化特征
(a)2020年7月1日至2021年12月31日O 2浓度变化;(b)2020年7月1日至2021年12月31日NO x 浓度变化;(c)O 2浓度的平均日循环特征;(d)NO x 浓度的平均日循环特征;(a)和(b)中黑线表示拟合后的季节变化信号,红点表示一年中最高值、最低值出现的时间和浓度;(c)和(d)中阴影表示95%置信区间
Fig. 8 Characteristics of the variation of oxygen concentration in Lanzhou City
(a) Variation of oxygen concentration from July 1, 2020 to December 31, 2021; (b) Variation of NO x concentration from July 1, 2020 to December 31, 2021; (c) Average daily cycle characteristics of oxygen concentration; (d) Average daily cycle characteristics of NO x concentration. Black lines in (a) and (b) indicate the seasonal variation signals after fitting, red dots indicate the time and concentration of the highest and lowest values occurring in a year. The shading in (c) and (d) indicates the 95% confidence interval
图9 兰州市氧气浓度与主要气象参数的部分依赖图
(a)气温;(b)气压;(c)能见度;(d)相对湿度;(e)气温与气压二维部分依赖图;(f)气温与相对湿度二维部分依赖图;气象数据均减去一天中的最低值以反映其相对变化对氧气浓度造成的影响
Fig. 9 The partial dependence plot between oxygen concentration and meteorological parameters in Lanzhou City
(a) Temperature; (b) Air pressure; (c) Visibility; (d) Relative humidity; (e) Two-variable partial dependence plot of temperature and air pressure; (f) Two-variable partial dependence plot of temperature and relative humidity. The lowest value of the day is subtracted from the meteorological data to reflect the influence of its relative change on the oxygen concentration
图10 叶面积指数与兰州市氧气浓度的关系
(a)2020年7月至2021年12月7天平均O 2浓度与叶面积指数;(b)O 2浓度随叶面积指数的变化
Fig. 10 The relationship between LAI and O2 in Lanzhou
(a) 7-day averaged O 2 concentration (blue) and LAI (green) from July 2020 to December 2021; (b) Changes of O 2 concentration with LAI
1 HUANG Jianping, LIU Xiaoyue, HE Yongsheng, et al. The oxygen cycle and a habitable Earth [J]. Science China: Earth Sciences, 2021, 51 (4): 487-506.
黄建平, 刘晓岳, 何永胜, 等. 氧循环与宜居地球[J]. 中国科学: 地球科学, 2021, 51(4): 487-506.
2 DING Lei, HUANG Jianping, WANG Li, et al. Advances in researches of terrestrial oxygen cycle processes[J]. Advances in Earth Science, 2022, 37(2):135-148.
丁磊, 黄建平, 王莉, 等. 陆地氧循环过程研究进展[J]. 地球科学进展, 2022, 37(2):135-148.
3 PENG J, WANG A, LIU Y X, et al. Assessing the atmospheric oxygen balance in a region of rapid urbanization: a case study in the Pearl River Delta, China[J]. Sustainability, 2015, 7(10): 13 055-13 072.
4 LU H L, LIU G F. Opportunity costs of carbon emissions stemming from changes in land use[J]. Sustainability, 2015, 7(4): 3 665-3 682.
5 YANG X B, CHEN Z L, CAI H, et al. A framework for assessment of the influence of China’s urban underground space developments on the urban microclimate[J]. Sustainability, 2014, 6(12): 8 536-8 566.
6 ISHIDOYA S, SUGAWARA H, TERAO Y, et al. O2∶CO2 exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO2 emissions[J]. Atmospheric Chemistry and Physics, 2020, 20(9): 5 293-5 308.
7 LIU Y P, YU D Y, XUN B, et al. The potential effects of climate change on the distribution and productivity of Cunninghamia lanceolata in China[J]. Environmental Monitoring and Assessment, 2014, 186(1): 135-149.
8 TIAN Jing. Effects of atmospheric CO2 concentration on vegetation transpiration over China[J]. Advances in Earth Science, 2021, 36(8): 826-835.
田静. 大气CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
9 WEI Y, WU J G, HUANG J P, et al. Declining oxygen level as an emerging concern to global cities[J]. Environmental Science & Technology, 2021, 55(12): 7 808-7 817.
10 HUANG J P, HUANG J P, LIU X Y, et al. The global oxygen budget and its future projection[J]. Science Bulletin, 2018, 63(18): 1 180-1 186.
11 RADKEVICH M, SHIPILOVA K, POCHUZHEVSKYI O, et al. Assessment of oxygen concentration reduction near the highway-importance for health and quality of life[J]. International Journal for Quality Research, 2022, 16(3): 863-876.
12 KEELING R F, MANNING A C. Studies of recent changes in atmospheric O2 content [J]. Treatise on Geochemistry, 2014, 5: 385-404.
13 MANNING A C, KEELING R F, SEVERINGHAUS J P. Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer[J]. Global Biogeochemical Cycles, 1999, 13(4): 1 107-1 115.
14 STEPHENS B B, BAKWIN P S, TANS P P, et al. Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(1): 82-94.
15 BENDER M L, SOWERS T, BARNOLA J M, et al. Changes in the O2/N2 ratio of the atmosphere during recent decades reflected in the composition of air in the firn at Vostok Station, Antarctica[J]. Geophysical Research Letters, 1994, 21(3): 189-192.
16 TOHJIMA Y, MUKAI H, MACHIDA T, et al. Gas-chromatographic measurements of the atmospheric oxygen/nitrogen ratio at Hateruma Island and Cape Ochi-ishi, Japan[J]. Geophysical Research Letters, 2003, 30(12). DOI:10.1029/2003GL017282 .
17 STEINBACH J. Enhancing the usability of atmospheric oxygen measurements through emission source characterization and airborne measurements[D]. Postanschrift: Friedrich-Schiller-Universität Jena, 2010.
18 POPA M E, GLOOR M, MANNING A C, et al. Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland[J]. Atmospheric Measurement Techniques, 2010, 3(2): 407-427.
19 THOMPSON R L, MANNING A C, GLOOR E, et al. In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany[J]. Atmospheric Measurement Techniques, 2009, 2(2): 573-591.
20 van der LAAN-LUIJKX I T, NEUBERT R E M, van der LAAN S, et al. Continuous measurements of atmospheric oxygen and carbon dioxide on a North Sea gas platform[J]. Atmospheric Measurement Techniques, 2010, 3(1): 113-125.
21 FAN S, GLOOR M, MAHLMAN J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J]. Science, 1998, 282(5 388): 442-446.
22 GLOOR M, FAN S M, PACALA S, et al. Optimal sampling of the atmosphere for purpose of inverse modeling: a model study[J]. Global Biogeochemical Cycles, 2000, 14(1): 407-428.
23 LIU X Y, HUANG J P, WANG L, et al. “Urban respiration” revealed by atmospheric O2 measurements in an industrial metropolis[J]. Environmental Science & Technology, 2023, 57(6): 2 286-2 296.
24 GINZBURG A S, VINOGRADOVA A A, FEDOROVA E I, et al. Content of oxygen in the atmosphere over large cities and respiratory problems[J]. Izvestiya, Atmospheric and Oceanic Physics, 2014, 50(8): 782-792.
25 KEELING R F. Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air[J]. Journal of Atmospheric Chemistry, 1988, 7(2): 153-176.
26 LIU Xiaoyue, YU Haipeng, SHENG Xia, et al. Mechanism analysis of a rare “thunder snow” process in semi-arid area[J]. Meteorological Monthly, 2020, 46(12): 1 596-1 607.
刘晓岳, 于海鹏, 盛夏, 等. 半干旱区一次罕见 “雷打雪” 天气形成机制分析[J]. 气象, 2020, 46(12): 1 596-1 607.
27 HAN D L, HUANG J P, DING L, et al. Oxygen footprint: an indicator of the anthropogenic ecosystem changes[J]. CATENA, 2021, 206. DOI:10.1016/j.catena.2021.105501 .
28 ZHAO L, OPPENHEIMER M, ZHU Q, et al. Interactions between urban heat islands and heat waves[J]. Environmental Research Letters, 2018, 13(3). DOI:10.1088/1748-9326/aa9f73 .
29 ZONG L, LIU S H, YANG Y J, et al. Synergistic influence of local climate zones and wind speeds on the urban heat island and heat waves in the megacity of Beijing, China[J]. Frontiers in Earth Science, 2021, 9. DOI:10.3389/feart.2021.673786 .
30 HUANG J, LI Y, FU C, et al. Dryland climate change: recent progress and challenges[J]. Reviews of Geophysics, 2017, 55(3): 719-778.
31 KEELING R F, SHERTZ S R. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle[J]. Nature, 1992, 358(6 389): 723-727.
32 BERHANU T A, HOFFNAGLE J, RELLA C, et al. High-precision atmospheric oxygen measurement comparisons between a newly built CRDS analyzer and existing measurement techniques[J]. Atmospheric Measurement Techniques, 2019, 12(12): 6 803-6 826.
33 KEELING R F, MANNING A C, McEVOY E M, et al. Methods for measuring changes in atmospheric O2 concentration and their application in southern hemisphere air[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D3): 3 381-3 397.
34 JIANG X, LI Q B, LIANG M C, et al. Simulation of upper tropospheric CO2 from chemistry and transport models[J]. Global Biogeochemical Cycles, 2008, 22(4). DOI:10.1029/2007GB003049 .
35 BROHAN P, KENNEDY J J, HARRIS I, et al. Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D12). DOI:10.1029/2005JD006548 .
36 FOLLAND C K, RAYNER N A, BROWN S J, et al. Global temperature change and its uncertainties since 1861[J]. Geophysical Research Letters, 2001, 28(13): 2 621-2 624.
37 LI Qingxiang, DONG Wenjie, LI Wei, et al. Uncertainty estimation in temperature changes in China over the past century [J]. Scientific Bulletin, 2010, 55 (16): 1 544-1 554.
李庆祥, 董文杰, 李伟, 等. 近百年中国气温变化中的不确定性估计[J]. 科学通报, 2010, 55 (16): 1 544-1 554.
38 ZHANG Kai. Grid emission inventory and its spatial distribution characteristics of major air pollutants in Lanzhou, Western China[D]. Lanzhou: Lanzhou University, 2017.
张凯. 中国西部兰州地区主要大气污染物网格化排放清单及其空间分布特征[D]. 兰州: 兰州大学, 2017.
39 SHAW S, van HEYST B. Nitrogen Oxide (NO x ) emissions as an indicator for sustainability[J]. Environmental and Sustainability Indicators, 2022, 15. DOI:10.1016/j.indic.2022.100188 .
40 LIU F, BEIRLE S, ZHANG Q, et al. NO x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations[J]. Atmospheric Chemistry and Physics, 2016, 16(8): 5 283-5 298.
41 CHENG Linjun. Study on ozone pollution characteristics and zoning management methods in China[D]. Beijing: China University of Geosciences, 2018.
程麟钧. 我国臭氧污染特征及分区管理方法研究[D]. 北京: 中国地质大学(北京), 2018.
42 KEELING R F, GRAVEN H D. Insights from time series of atmospheric carbon dioxide and related tracers[J]. Annual Review of Environment and Resources, 2021, 46: 85-110.
[1] 余珊珊,辛晓洲,柳钦火. 大气下行长波辐射参数化模型的比较[J]. 地球科学进展, 2011, 26(7): 751-762.
[2] 苗爱梅,武捷,贾利冬. 1958—2008年山西气温变化的特征及趋势研究[J]. 地球科学进展, 2010, 25(3): 264-272.
[3] 贺芳芳,赵兵科. 近30年上海地区暴雨的气候变化特征[J]. 地球科学进展, 2009, 24(11): 1260-1267.
[4] 王慧,李栋梁,胡泽勇,王介民. 陆面上总体输送系数研究进展[J]. 地球科学进展, 2008, 23(12): 1249-1259.
[5] 刘桂禄. 兰州市城镇体系发展战略规划构想[J]. 地球科学进展, 2004, 19(2): 321-324.
阅读次数
全文


摘要