地球科学进展 ›› 2023, Vol. 38 ›› Issue (7): 703 -714. doi: 10.11867/j.issn.1001-8166.2023.036

综述与评述 上一篇    下一篇

造礁珊瑚骨骼氮同位素研究进展
王银 1 , 2 , 3( ), 谢露华 1 , 2( )   
  1. 1.中国科学院广州地球化学研究所,同位素地球化学国家重点实验室,广东 广州 510640
    2.中国 科学院深地科学卓越创新中心,广东 广州 510640
    3.中国科学院大学,北京 100049
  • 收稿日期:2023-04-06 修回日期:2023-05-31 出版日期:2023-07-10
  • 通讯作者: 谢露华 E-mail:wangyin@gig.ac.cn;lhxie@gig.ac.cn
  • 基金资助:
    广州市科技计划项目“流溪河上游至珠江广州段河水硫酸盐和硝酸盐源汇的多种同位素示踪”(201804010344);国家自然科学基金项目“硫酸根三氧同位素激光氟化—质谱仪在线测试技术及应用于珠江河水硫酸根示踪研究”(41673009);“滨珊瑚年分辨率地球化学指标的古气候意义评估”(41203067)

Research Progress on Nitrogen Isotope Study in Reef-building Coral Skeleton

Yin WANG 1 , 2 , 3( ), Luhua XIE 1 , 2( )   

  1. 1.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    2.CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-04-06 Revised:2023-05-31 Online:2023-07-10 Published:2023-07-19
  • Contact: Luhua XIE E-mail:wangyin@gig.ac.cn;lhxie@gig.ac.cn
  • About author:WANG Yin (1999-), female, Wuhan City, Hubei Province, Master student. Research area includes isotope geochemistry. E-mail: wangyin@gig.ac.cn
  • Supported by:
    the Guangzhou Science and Technology “Multi-isotopes trace the sources and sinks of river sulfate and nitrate from upstream of Liuxi River to the station of Guangzhou”(201804010344);The National Natural Science Foundation of China “Sulfate triple oxygen isotopes online analysis on laser fluorination coupled with IRMS and applications in tracing sulfate in river water of Pearl River”(41673009);“Evaluate the meaning of yearly resolution geochemical proxies reconstructing paleoclimate by Porities coral”(41203067)

造礁珊瑚这一生物碳酸岩作为珊瑚礁生态系统的主体,具有对环境变化十分敏感、文石骨骼年际生长纹层清晰、年生长率高、易于精准定年、能够可靠记录其生长环境变化等特点,是研究环境变化的重要载体之一。由于人类对沿海的过度开发,近几十年来,全球范围内的珊瑚在不断退化。氮作为营养元素之一,能够用作了解珊瑚生命生长活动的指标,氮同位素(δ15N)能很好地反映氮源变化和氮的生物地球化学循环,如记录近岸氮排放和氮循环等。国内外已经发表了较多关于珊瑚骨骼δ15N的研究,但尚缺少综述性文章。从氮源示踪、氮循环和骨骼δ15N测试手段综述造礁珊瑚骨骼δ15N的研究现状,认为目前多数研究集中在珊瑚记录氮源变化历史方面,且主要关注人为因素对珊瑚生态系统的影响。未来应该发挥珊瑚骨骼δ15N示踪的能力,开展更多不同海域和不同时间尺度的珊瑚骨骼δ15N研究,探索建立新的测试技术,结合其他地球化学指标以区分生理信号和环境信号的重叠。这对利用珊瑚骨骼δ15N重建古海洋环境和研究现今的环境污染问题都有着重要意义。

Reef-building coral, as a biological carbonate and the main body of coral reef ecosystems, is sensitive to environmental changes, has a clear annual growth layer of aragonite skeleton, a large annual growth rate, is easy to date accurately, and can record changes in their growth environment reliably; hence, it is considered an essential carrier for studying environmental changes. Coral has been degraded worldwide in recent decades due to human overexploitation of the coast. Nitrogen is one of the major nutritional elements used to understand coral growth. Nitrogen isotopes can reflect variations in nitrogen sources and biogeochemical cycles, such as recording nearshore nitrogen loading and nitrogen cycles. Many studies on nitrogen isotopes in coral skeletons have been published worldwide; however, relevant reviews are still lacking. In this study, we focused on coral nitrogen source tracing, the nitrogen cycle, and nitrogen isotope analysis. Currently, most studies have been conducted on the history of variations in coral nitrogen sources and have mainly focused on the impact of human activities on coral ecosystems. In the future, coral skeleton δ15N should be utilized to conduct more research on coral skeleton δ15N in different seas and at different time scales and to explore new analytical techniques to distinguish the overlap of physiological and environmental signals in combination with other geochemical indicators, which is of great significance for the reconstruction of the paleoceanographic environment and research on current environmental pollution problems.

中图分类号: 

表1 珊瑚样品信息和 δ15N数据统计
Table 1 Coral sample information and δ 15N data statistics
图1 珊瑚研究区域
Fig. 1 The location of coral research
图2 近岸珊瑚骨骼δ15N年代变化
黑色虚线代表显著人为活动的开始时间
Fig. 2 Interannual variation of near-shore coral skeletal δ15N
The black dotted line represents the start time of the intensive human activities
图3 近海珊瑚骨骼δ15N年代变化
黑色虚线指示变化趋势
Fig. 3 Interannual variation of offshore coral skeletal δ15N
The black dotted line indicates the trend of change
图4 发表的长序列珊瑚骨骼δ15N的统计图
Fig. 4 Statistical figure of published long-serial coral skeletal δ15N
图5 珊瑚骨骼δ15N分析流程图
Fig. 5 Analysis flow chart of coral skeletal δ15N
表2 珊瑚骨骼 δ15N分析方法对比
Table 2 Comparison of analysis methods for coral skeleton δ 15N
1 WEBSTER M S, HIXON M A. Mechanisms and individual consequences of intraspecific competition in a coral-reef fish[J]. Marine Ecology Progress Series, 2000, 196: 187-194.
2 STEWART B D, JONES G P. Associations between the abundance of piscivorous fishes and their prey on coral reefs: implications for prey-fish mortality[J]. Marine Biology, 2001, 138(2): 383-397.
3 COKER D J, WILSON S K, PRATCHETT M S. Importance of live coral habitat for reef fishes[J]. Reviews in Fish Biology and Fisheries, 2014, 24(1): 89-126.
4 WARE J R, SMITH S V, REAKA-KUDLA M L. Coral reefs: sources or sinks of atmospheric CO2?[J]. Coral Reefs, 1992, 11(3): 127-130.
5 REAKA-KUDLA M L. “The global biodiversity of coral reefs: a comparison with rain forests” in biodiversity II: understanding and protecting our biological resources[M]. Washington, D.C.: Joseph Henry Press, 1997: 83-108.
6 WANG Lirong, YU Kefu, ZHAO Huanting, et al. Economic valuation of the coral reefs in South China Sea[J]. Tropical Geography, 2014, 34(1): 44-49.
王丽荣, 余克服, 赵焕庭, 等. 南海珊瑚礁经济价值评估[J]. 热带地理, 2014, 34(1): 44-49.
7 WU Bin, ZHANG Zhanlu. Comprehensive management system of coastal tidal flats based on ecosystem integration[J]. China Land Science, 2017, 31(3):21-27.
吴彬, 张占录. 基于生态系统一体化的海岸滩涂综合管理体制研究[J]. 中国土地科学, 2017, 31(3):21-27.
8 YU Kefu, ZHANG Guangxue, WANG Ren. Studies on the coral reefs of the South China Sea: from global change to oil-gas exploration[J]. Advances in Earth Science, 2014, 29(11): 1287-1293.
余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探: 第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1 287-1 293.
9 OLIVER E C J, DONAT M G, BURROWS M T, et al. Longer and more frequent marine heatwaves over the past century[J]. Nature Communications, 2018, 9(1): 1-12.
10 HUGHES T P, ANDERSON K D, CONNOLLY S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6 371): 80-83.
11 HUGHES T P, KERRY J T, CONNOLLY S R, et al. Ecological memory modifies the cumulative impact of recurrent climate extremes[J]. Nature Climate Change, 2019, 9(1): 40-43.
12 van HOOIDONK R, MAYNARD J A, PLANES S. Temporary refugia for coral reefs in a warming world[J]. Nature Climate Change, 2013, 3(5): 508-511.
13 SKIRVING W J, HERON S F, MARSH B L, et al. The relentless March of mass coral bleaching: a global perspective of changing heat stress[J]. Coral Reefs, 2019, 38(4): 547-557.
14 LI X R, DONNER S D. Lengthening of warm periods increased the intensity of warm-season marine heatwaves over the past 4 decades[J]. Climate Dynamics, 2022, 59(9/10): 2 643-2 654.
15 UTHICKE S, THOMPSON A, SCHAFFELKE B. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia[J]. Coral Reefs, 2010, 29(1): 209-225.
16 WOOLDRIDGE S A, DONE T J. Improved water quality can ameliorate effects of climate change on corals[J]. Ecological Applications, 2009, 19(6): 1 492-1 499.
17 WANG L, SHANTZ A A, PAYET J P, et al. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly[J]. Frontiers in Marine Science, 2018. DOI:10.3389/fmars.2018.00101 .
18 TODD P A, ONG X, CHOU L M. Impacts of pollution on marine life in Southeast Asia[J]. Biodiversity and Conservation, 2010, 19(4): 1 063-1 082.
19 YU Kefu. Coral reefs in the South China Sea:their response to and records on past environmental changes[J]. Science China Earth Science,2012,55:1 217-1 229.
余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学,2012,42(8):1 160-1 172.
20 HAN Tao, YU Kefu, TAO Shichen. Isotopes of carbon, nitrogen, boron in reef coral as proxies of ocean acidification[J]. Tropical Geography, 2016, 36(1): 48-54.
韩韬, 余克服, 陶士臣. 造礁珊瑚碳、氮、硼同位素的海洋酸化指示意义[J]. 热带地理, 2016, 36(1): 48-54.
21 GILLIKIN D P, LORRAIN A, JOLIVET A, et al. High-resolution nitrogen stable isotope sclerochronology of bivalve shell carbonate-bound organics[J]. Geochimica et Cosmochimica Acta, 2017, 200: 55-66.
22 YANG Guohuan, SUN Xingli, HOU Xiuqiong,et al. Applications of stable isotope methods in coral reef ecosystem studies[C]//2011 International Conference on Machine Intelligence (ICMI 2011. Manila,Philippines,2011:10.
杨国欢,孙省利,侯秀琼,等. 稳定同位素在珊瑚礁生态系统的应用研究[C]//2011国际机器智能大会(ICMI 2011. 菲律宾, 马尼拉,2011:10.
23 ZHU Wentao, QIN Chuanxin, MA Hongmei,et al. Stable isotope analysis of simple food web in coral reef ecosystem of Daya Bay[J]. Chinese Journal of Fisheries,2020,44(7):1 112- 1 123.
朱文涛,秦传新,马鸿梅,等. 大亚湾珊瑚礁生态系统简化食物网的稳定同位素[J]. 水产学报,2020,44(7):1 112-1 123.
24 INGALLS A E, LEE C, DRUFFEL E R M. Preservation of organic matter in mound-forming coral skeletons[J]. Geochimica et Cosmochimica Acta, 2003, 67(15): 2 827-2 841.
25 GOODFRIEND G A, HARE P E, DRUFFEL E R M. Aspartic acid racemization and protein diagenesis in corals over the last 350 years[J]. Geochimica et Cosmochimica Acta, 1992, 56(10): 3 847-3 850.
26 ALLEMAND D, TAMBUTTÉ É, GIRARD J P, et al. Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin[J]. Journal of Experimental Biology, 1998, 201(13): 2 001-2 009.
27 MUSCATINE L, PORTER J W, KAPLAN I R. Resource partitioning by reef corals as determined from stable isotope composition[J]. Marine Biology, 1989, 100(2): 185-193.
28 MARION G S, DUNBAR R B, MUCCIARONE D A, et al. Coral skeletal δ15N reveals isotopic traces of an agricultural revolution[J]. Marine Pollution Bulletin, 2005, 50(9): 931-944.
29 HOULBRÈQUE F, TAMBUTTÉ E, RICHARD C, et al. Importance of a micro-diet for scleractinian corals[J]. Marine Ecology Progress Series, 2004, 282: 151-160.
30 WANG X T, SIGMAN D M, COHEN A L, et al. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda[J]. Geochimica et Cosmochimica Acta, 2015, 148: 179-190.
31 MUSCATINE L, FALKOWSKI P G, DUBINSKY Z,et al. The effect of external nutrient resources on the population-dynamics of zooxanthellan in a reef coral[J]. Proceedings of the Royal Society Series B-Biological Sciences,1989,236(1 284):311-324.
32 FERRIER M D. Net uptake of dissolved free amino acids by four scleractinian corals[J]. Coral Reefs, 1991, 10(4): 183-187.
33 FURLA P, ALLEMAND D, SHICK J M, et al. The symbiotic anthozoan: a physiological Chimera between Alga and animal[J]. Integrative and Comparative Biology, 2005, 45(4): 595-604.
34 MILLS M M, LIPSCHULTZ F, SEBENS K P. Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals[J]. Coral Reefs, 2004, 23(3): 311-323.
35 PETERSON B J, FRY B. Stable isotopes in ecosystem studies[J]. Annual Review of Ecology and Systematics, 1987, 18: 293-320.
36 CAO Di. A stable isotopic evidence of nutrient sources and dynamics for nearshore coral reefs in China[D]. Xiamen: Xiamen University,2017.
曹娣. 基于稳定同位素的中国近岸珊瑚礁海区营养盐的来源及动态变化[D]. 厦门:厦门大学,2017.
37 ZHOU N, LIU S M, SONG G D, et al. Responses of nutrient biogeochemistry and nitrogen cycle to seasonal upwelling in coastal waters of the eastern Hainan Island[J]. Acta Oceanologica Sinica, 2022, 41(6): 99-113.
38 ANDERSON W T, FOURQUREAN J W. Intra- and interannual variability in seagrass carbon and nitrogen stable isotopes from south Florida, a preliminary study[J]. Organic Geochemistry, 2003, 34(2): 185-194.
39 LINDAU C W, DELAUNE R D, PATRICK W H, et al. Assessment of stable nitrogen isotopes in fingerprinting surface water inorganic nitrogen sources[J]. Water, Air, and Soil Pollution, 1989, 48(3): 489-496.
40 SAMMARCO P W, RISK M J, SCHWARCZ H P, et al. Cross-continental shelf trends in coral δ15N on the Great Barrier Reef: further consideration of the reef nutrient paradox[J]. Marine Ecology Progress Series, 1999, 180: 131-138.
41 YAMAMURO M, KAYANNE H, MINAGAWAO M. Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems[J]. Limnology and Oceanography, 1995, 40(3): 617-621.
42 HEIKOOP J M, RISK M J, LAZIER A V, et al. Nitrogen-15 signals of anthropogenic nutrient loading in reef corals[J]. Marine Pollution Bulletin, 2000, 40(7): 628-636.
43 HOEGH-GULDBERG O, MUSCATINE L, GOIRAN C, et al. Nutrient-induced perturbations to δ13C and δ15N in symbiotic dinoflagellates and their coral hosts[J]. Marine Ecology Progress Series, 2004, 280: 105-114.
44 UCHIDA A, NISHIZAWA M, SHIRAI K, et al. High sensitivity measurements of nitrogen isotopic ratios in coral skeletons from Palau, western Pacific: temporal resolution and seasonal variation of nitrogen sources[J]. Geochemical Journal, 2008, 42(3): 255-262.
45 WU D, ZHANG F F, ZHANG X D, et al. Stable isotopes (δ13C and δ15N) in black coral as new proxies for environmental record[J]. Marine Pollution Bulletin, 2021, 164. DOI:10.1016/j.marpolbul.2021.112007 .
46 WALL C B, KALUHIOKALANI M, POPP B N, et al. Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient[J]. The ISME Journal, 2020, 14(4): 945-958.
47 REYNAUD S, MARTINEZ P, HOULBRÈQUE F, et al. Effect of light and feeding on the nitrogen isotopic composition of a zooxanthellate coral: role of nitrogen recycling[J]. Marine Ecology Progress Series, 2009, 392: 103-110.
48 SWART P K, SAIED A, LAMB K. Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract[J]. Limnology and Oceanography, 2005, 50(4): 1 049-1 058.
49 OWENS N J P. Natural variations in 15N in the marine environment[J]. Advances in Marine Biology, 1988, 24: 389-451.
50 HEIKOOP J M, DUNN J J, RISK M J, et al. Relationship between light and the δ15N of coral tissue: examples from Jamaica and Zanzibar[J]. Limnology and Oceanography, 1998, 43(5): 909-920.
51 MINAGAWA M, WADA E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 1 135-1 140.
52 VANDERKLIFT M A, PONSARD S. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis[J]. Oecologia, 2003, 136(2): 169-182.
53 HEIKOOP J. Environmental signals in coral tissue and skeleton: examples from the Caribbean and indo-Pacific[D]. Canada, Hamilton: McMaster University, 1997.
54 MIES M, GÜTH A Z, TENÓRIO A A, et al. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers[J]. Coral Reefs, 2018, 37(3): 677-689.
55 MUSCATINE L, D'ELIA C F. The uptake, retention, and release of ammonium by reef corals[J]. Limnology and Oceanography, 1978, 23(4): 725-734.
56 ERLER D V, WANG X T, SIGMAN D M, et al. Controls on the nitrogen isotopic composition of shallow water corals across a tropical reef flat transect[J]. Coral Reefs, 2015, 34(1): 329-338.
57 MUSCATINE L, GOIRAN C, LAND L, et al. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(5): 1 525-1 530.
58 REN H J, SIGMAN D M, THUNELL R C, et al. Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments[J]. Limnology and Oceanography, 2012, 57(4): 1 011-1 024.
59 LESSER M P, FALCÓN L I, RODRÍGUEZ-ROMÁN A, et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa [J]. Marine Ecology Progress Series, 2007, 346: 143-152.
60 PINIAK G A, LIPSCHULTZ F, McCLELLAND J. Assimilation and partitioning of prey nitrogen within two anthozoans and their endosymbiotic zooxanthellae[J]. Marine Ecology Progress Series, 2003, 262: 125-136.
61 GROVER R, MAGUER J F, REYNAUD-VAGANAY S, et al. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations[J]. Limnology and Oceanography, 2002, 47(3): 782-790.
62 DUPREY N N, WANG T X, KIM T, et al. Megacity development and the demise of coastal coral communities: evidence from coral skeleton δ15N records in the Pearl River Estuary[J]. Global Change Biology, 2020, 26(3): 1 338-1 353.
63 YAMAZAKI A, WATANABE T, TSUNOGAI U, et al. The coral δ15N record of terrestrial nitrate loading varies with river catchment land use[J]. Coral Reefs, 2015, 34(1): 353-362.
64 DUPREY N N, WANG X T, THOMPSON P D, et al. Life and death of a sewage treatment plant recorded in a coral skeleton δ15N record[J]. Marine Pollution Bulletin, 2017, 120 (1/2): 109-116.
65 ERLER D V, SHEPHERD B O, LINSLEY B K, et al. Coral skeletons record increasing agriculture-related groundwater nitrogen inputs to a South Pacific reef over the past century[J]. Geophysical Research Letters, 2018, 45(16): 8 370-8 378.
66 ERLER D V, WANG X T, SIGMAN D M, et al. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: implications for coastal nutrient cycling in the Great Barrier Reef Lagoon[J]. Earth and Planetary Science Letters, 2016, 434: 161-170.
67 YAMAZAKI A, WATANABE T, TSUNOGAI U, et al. A 150-year variation of the Kuroshio transport inferred from coral nitrogen isotope signature[J]. Paleoceanography, 2016, 31(6): 838-846.
68 ERLER D V, FARID H T, GLAZE T D, et al. Coral skeletons reveal the history of nitrogen cycling in the coastal Great Barrier reef[J]. Nature Communications, 2020, 11. DOI:10.1038/S41467-020-15278-w .
69 REN H, CHEN Y C, WANG X, et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef[J]. Science, 2017, 356: 749-752.
70 HEATON T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review[J]. Chemical Geology: Isotope Geoscience Section, 1986, 59: 87-102.
71 KENDALL C. Tracing nitrogen sources and cycling in catchments[M]// Isotope tracers in catchment hydrology. Amsterdam: Elsevier, 1998: 519-576.
72 UDY J W, DENNISON W C, lee LONG W J, et al. Responses of seagrass to nutrients in the great barrier reef, Australia[J]. Marine Ecology Progress Series, 1999, 185: 257-271.
73 JORDAN M J, NADELHOFFER K J, FRY B. Nitrogen cycling in forest and grass ecosystems irrigated with 15N-enriched wastewater[J]. Ecological Applications, 1997, 7(3): 864-881.
74 MURRAY J, PROUTY N G, PEEK S, et al. Coral skeleton δ15N as a tracer of historic nutrient loading to a coral reef in Maui, Hawaii[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/S41598-019-42013-3 .
75 CASCIOTTI K L, TRULL T W, GLOVER D M, et al. Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55(14/15): 1 661-1 672.
76 GALBRAITH E D, KIENAST M. The acceleration of oceanic denitrification during deglacial warming[J]. Nature Geoscience, 2013, 6(7): 579-584.
77 LIANG J Y, YU K F, WANG Y H, et al. Diazotroph diversity associated with scleractinian corals and its relationships with environmental variables in the South China Sea[J]. Frontiers in Physiology, 2020, 11: 615.
78 LU Shan. Environmental geochemistry records in black corals of the South China Sea[D]. Shanghai: East China Normal University,2016.
卢珊. 南海黑角珊瑚近百年来环境地球化学记录初探[D]. 上海:华东师范大学,2016.
79 MCCLOSKEY L R, MUSCATINE L, WILKERSON F P. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.)[J]. Marine Biology, 1994, 119(1): 13-22.
80 WANG X T, SIGMAN D M, COHEN A L, et al. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals[J]. Earth and Planetary Science Letters, 2016, 441: 125-132.
81 YAMAZAKI A, WATANABE T, TSUNOGAI U. Nitrogen isotopes of organic nitrogen in reef coral skeletons as a proxy of tropical nutrient dynamics[J]. Geophysical Research Letters, 2011, 38(19). DOI:10.1029/2011GL049053 .
82 YAMAZAKI A, WATANABE T, TAKAHATA N, et al. Nitrogen isotopes in intra-crystal coralline aragonites[J]. Chemical Geology, 2013, 351: 276-280.
83 CUIF J P, DAUPHIN Y. Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some Recent scleractinian corals[J]. Paläontologische Zeitschrift, 1998, 72(3): 257-269.
84 REN H, SIGMAN D M, MECKLER A N, et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean[J]. Science, 2009, 323(5 911): 244-248.
85 XIAO H W, XIE L H, LONG A M, et al. Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea[J]. Atmospheric Environment, 2015, 109: 70-78.
86 YE F, NI Z X, XIE L H, et al. Isotopic evidence for the turnover of biological reactive nitrogen in the Pearl River Estuary, South China[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(4): 661-672.
87 DAI S H, XIE L H, PENG L, et al. Determination of nitrogen and oxygen isotopes in nitrates: a minireview[J]. Analytical Letters, 2017, 50(13): 2 045-2 057.
88 ALTABET M A, WASSENAAR L I, DOUENCE C, et al. A Ti(III) reduction method for one-step conversion of seawater and freshwater nitrate into N2O for stable isotopic analysis of 15N/14N, 18O/16O and 17O/16O[J]. Rapid Communications in Mass Spectrometry, 2019, 33(15): 1 227-1 239.
89 RISK M J, LAPOINTE B E, SHERWOOD O A, et al. The use of δ15N in assessing sewage stress on coral reefs[J]. Marine Pollution Bulletin, 2009, 58(6): 793-802.
[1] 童森炜, 杨进宇, 万显会, 牛晴晴, 高树基. 海洋氮循环中间体羟胺的研究进展[J]. 地球科学进展, 2023, 38(7): 688-702.
[2] 张雨欣, 左昕昕. 植硅体碳与陆地生态系统碳循环:机遇和挑战[J]. 地球科学进展, 2023, 38(2): 212-220.
[3] 胡扬, 汪子微, 蒋洪毛, 陈有超, 刘巧, 段宝利, 鲁旭阳. 山地冰川生态系统微生物研究现状与展望[J]. 地球科学进展, 2022, 37(9): 899-914.
[4] 冯起, 常宗强, 席海洋, 苏永红, 温小虎, 朱猛, 张举涛, 张成琦. 基于碳氮循环的中蒙荒漠生态脆弱区生态系统对全球变化响应研究[J]. 地球科学进展, 2022, 37(11): 1101-1114.
[5] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[6] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[7] 陈阳军, 陈敏. 亚硝酸盐氮、氧同位素技术及其在海洋氮循环中的应用[J]. 地球科学进展, 2021, 36(12): 1224-1234.
[8] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[9] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[10] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[11] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[12] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[13] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[14] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[15] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
阅读次数
全文


摘要