1 |
WEBSTER M S, HIXON M A. Mechanisms and individual consequences of intraspecific competition in a coral-reef fish[J]. Marine Ecology Progress Series, 2000, 196: 187-194.
|
2 |
STEWART B D, JONES G P. Associations between the abundance of piscivorous fishes and their prey on coral reefs: implications for prey-fish mortality[J]. Marine Biology, 2001, 138(2): 383-397.
|
3 |
COKER D J, WILSON S K, PRATCHETT M S. Importance of live coral habitat for reef fishes[J]. Reviews in Fish Biology and Fisheries, 2014, 24(1): 89-126.
|
4 |
WARE J R, SMITH S V, REAKA-KUDLA M L. Coral reefs: sources or sinks of atmospheric CO2?[J]. Coral Reefs, 1992, 11(3): 127-130.
|
5 |
REAKA-KUDLA M L. “The global biodiversity of coral reefs: a comparison with rain forests” in biodiversity II: understanding and protecting our biological resources[M]. Washington, D.C.: Joseph Henry Press, 1997: 83-108.
|
6 |
WANG Lirong, YU Kefu, ZHAO Huanting, et al. Economic valuation of the coral reefs in South China Sea[J]. Tropical Geography, 2014, 34(1): 44-49.
|
|
王丽荣, 余克服, 赵焕庭, 等. 南海珊瑚礁经济价值评估[J]. 热带地理, 2014, 34(1): 44-49.
|
7 |
WU Bin, ZHANG Zhanlu. Comprehensive management system of coastal tidal flats based on ecosystem integration[J]. China Land Science, 2017, 31(3):21-27.
|
|
吴彬, 张占录. 基于生态系统一体化的海岸滩涂综合管理体制研究[J]. 中国土地科学, 2017, 31(3):21-27.
|
8 |
YU Kefu, ZHANG Guangxue, WANG Ren. Studies on the coral reefs of the South China Sea: from global change to oil-gas exploration[J]. Advances in Earth Science, 2014, 29(11): 1287-1293.
|
|
余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探: 第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1 287-1 293.
|
9 |
OLIVER E C J, DONAT M G, BURROWS M T, et al. Longer and more frequent marine heatwaves over the past century[J]. Nature Communications, 2018, 9(1): 1-12.
|
10 |
HUGHES T P, ANDERSON K D, CONNOLLY S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6 371): 80-83.
|
11 |
HUGHES T P, KERRY J T, CONNOLLY S R, et al. Ecological memory modifies the cumulative impact of recurrent climate extremes[J]. Nature Climate Change, 2019, 9(1): 40-43.
|
12 |
van HOOIDONK R, MAYNARD J A, PLANES S. Temporary refugia for coral reefs in a warming world[J]. Nature Climate Change, 2013, 3(5): 508-511.
|
13 |
SKIRVING W J, HERON S F, MARSH B L, et al. The relentless March of mass coral bleaching: a global perspective of changing heat stress[J]. Coral Reefs, 2019, 38(4): 547-557.
|
14 |
LI X R, DONNER S D. Lengthening of warm periods increased the intensity of warm-season marine heatwaves over the past 4 decades[J]. Climate Dynamics, 2022, 59(9/10): 2 643-2 654.
|
15 |
UTHICKE S, THOMPSON A, SCHAFFELKE B. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia[J]. Coral Reefs, 2010, 29(1): 209-225.
|
16 |
WOOLDRIDGE S A, DONE T J. Improved water quality can ameliorate effects of climate change on corals[J]. Ecological Applications, 2009, 19(6): 1 492-1 499.
|
17 |
WANG L, SHANTZ A A, PAYET J P, et al. Corals and their microbiomes are differentially affected by exposure to elevated nutrients and a natural thermal anomaly[J]. Frontiers in Marine Science, 2018. DOI:10.3389/fmars.2018.00101 .
|
18 |
TODD P A, ONG X, CHOU L M. Impacts of pollution on marine life in Southeast Asia[J]. Biodiversity and Conservation, 2010, 19(4): 1 063-1 082.
|
19 |
YU Kefu. Coral reefs in the South China Sea:their response to and records on past environmental changes[J]. Science China Earth Science,2012,55:1 217-1 229.
|
|
余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学,2012,42(8):1 160-1 172.
|
20 |
HAN Tao, YU Kefu, TAO Shichen. Isotopes of carbon, nitrogen, boron in reef coral as proxies of ocean acidification[J]. Tropical Geography, 2016, 36(1): 48-54.
|
|
韩韬, 余克服, 陶士臣. 造礁珊瑚碳、氮、硼同位素的海洋酸化指示意义[J]. 热带地理, 2016, 36(1): 48-54.
|
21 |
GILLIKIN D P, LORRAIN A, JOLIVET A, et al. High-resolution nitrogen stable isotope sclerochronology of bivalve shell carbonate-bound organics[J]. Geochimica et Cosmochimica Acta, 2017, 200: 55-66.
|
22 |
YANG Guohuan, SUN Xingli, HOU Xiuqiong,et al. Applications of stable isotope methods in coral reef ecosystem studies[C]//2011 International Conference on Machine Intelligence (ICMI 2011. Manila,Philippines,2011:10.
|
|
杨国欢,孙省利,侯秀琼,等. 稳定同位素在珊瑚礁生态系统的应用研究[C]//2011国际机器智能大会(ICMI 2011. 菲律宾, 马尼拉,2011:10.
|
23 |
ZHU Wentao, QIN Chuanxin, MA Hongmei,et al. Stable isotope analysis of simple food web in coral reef ecosystem of Daya Bay[J]. Chinese Journal of Fisheries,2020,44(7):1 112- 1 123.
|
|
朱文涛,秦传新,马鸿梅,等. 大亚湾珊瑚礁生态系统简化食物网的稳定同位素[J]. 水产学报,2020,44(7):1 112-1 123.
|
24 |
INGALLS A E, LEE C, DRUFFEL E R M. Preservation of organic matter in mound-forming coral skeletons[J]. Geochimica et Cosmochimica Acta, 2003, 67(15): 2 827-2 841.
|
25 |
GOODFRIEND G A, HARE P E, DRUFFEL E R M. Aspartic acid racemization and protein diagenesis in corals over the last 350 years[J]. Geochimica et Cosmochimica Acta, 1992, 56(10): 3 847-3 850.
|
26 |
ALLEMAND D, TAMBUTTÉ É, GIRARD J P, et al. Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin[J]. Journal of Experimental Biology, 1998, 201(13): 2 001-2 009.
|
27 |
MUSCATINE L, PORTER J W, KAPLAN I R. Resource partitioning by reef corals as determined from stable isotope composition[J]. Marine Biology, 1989, 100(2): 185-193.
|
28 |
MARION G S, DUNBAR R B, MUCCIARONE D A, et al. Coral skeletal δ15N reveals isotopic traces of an agricultural revolution[J]. Marine Pollution Bulletin, 2005, 50(9): 931-944.
|
29 |
HOULBRÈQUE F, TAMBUTTÉ E, RICHARD C, et al. Importance of a micro-diet for scleractinian corals[J]. Marine Ecology Progress Series, 2004, 282: 151-160.
|
30 |
WANG X T, SIGMAN D M, COHEN A L, et al. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda[J]. Geochimica et Cosmochimica Acta, 2015, 148: 179-190.
|
31 |
MUSCATINE L, FALKOWSKI P G, DUBINSKY Z,et al. The effect of external nutrient resources on the population-dynamics of zooxanthellan in a reef coral[J]. Proceedings of the Royal Society Series B-Biological Sciences,1989,236(1 284):311-324.
|
32 |
FERRIER M D. Net uptake of dissolved free amino acids by four scleractinian corals[J]. Coral Reefs, 1991, 10(4): 183-187.
|
33 |
FURLA P, ALLEMAND D, SHICK J M, et al. The symbiotic anthozoan: a physiological Chimera between Alga and animal[J]. Integrative and Comparative Biology, 2005, 45(4): 595-604.
|
34 |
MILLS M M, LIPSCHULTZ F, SEBENS K P. Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals[J]. Coral Reefs, 2004, 23(3): 311-323.
|
35 |
PETERSON B J, FRY B. Stable isotopes in ecosystem studies[J]. Annual Review of Ecology and Systematics, 1987, 18: 293-320.
|
36 |
CAO Di. A stable isotopic evidence of nutrient sources and dynamics for nearshore coral reefs in China[D]. Xiamen: Xiamen University,2017.
|
|
曹娣. 基于稳定同位素的中国近岸珊瑚礁海区营养盐的来源及动态变化[D]. 厦门:厦门大学,2017.
|
37 |
ZHOU N, LIU S M, SONG G D, et al. Responses of nutrient biogeochemistry and nitrogen cycle to seasonal upwelling in coastal waters of the eastern Hainan Island[J]. Acta Oceanologica Sinica, 2022, 41(6): 99-113.
|
38 |
ANDERSON W T, FOURQUREAN J W. Intra- and interannual variability in seagrass carbon and nitrogen stable isotopes from south Florida, a preliminary study[J]. Organic Geochemistry, 2003, 34(2): 185-194.
|
39 |
LINDAU C W, DELAUNE R D, PATRICK W H, et al. Assessment of stable nitrogen isotopes in fingerprinting surface water inorganic nitrogen sources[J]. Water, Air, and Soil Pollution, 1989, 48(3): 489-496.
|
40 |
SAMMARCO P W, RISK M J, SCHWARCZ H P, et al. Cross-continental shelf trends in coral δ15N on the Great Barrier Reef: further consideration of the reef nutrient paradox[J]. Marine Ecology Progress Series, 1999, 180: 131-138.
|
41 |
YAMAMURO M, KAYANNE H, MINAGAWAO M. Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems[J]. Limnology and Oceanography, 1995, 40(3): 617-621.
|
42 |
HEIKOOP J M, RISK M J, LAZIER A V, et al. Nitrogen-15 signals of anthropogenic nutrient loading in reef corals[J]. Marine Pollution Bulletin, 2000, 40(7): 628-636.
|
43 |
HOEGH-GULDBERG O, MUSCATINE L, GOIRAN C, et al. Nutrient-induced perturbations to δ13C and δ15N in symbiotic dinoflagellates and their coral hosts[J]. Marine Ecology Progress Series, 2004, 280: 105-114.
|
44 |
UCHIDA A, NISHIZAWA M, SHIRAI K, et al. High sensitivity measurements of nitrogen isotopic ratios in coral skeletons from Palau, western Pacific: temporal resolution and seasonal variation of nitrogen sources[J]. Geochemical Journal, 2008, 42(3): 255-262.
|
45 |
WU D, ZHANG F F, ZHANG X D, et al. Stable isotopes (δ13C and δ15N) in black coral as new proxies for environmental record[J]. Marine Pollution Bulletin, 2021, 164. DOI:10.1016/j.marpolbul.2021.112007 .
|
46 |
WALL C B, KALUHIOKALANI M, POPP B N, et al. Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient[J]. The ISME Journal, 2020, 14(4): 945-958.
|
47 |
REYNAUD S, MARTINEZ P, HOULBRÈQUE F, et al. Effect of light and feeding on the nitrogen isotopic composition of a zooxanthellate coral: role of nitrogen recycling[J]. Marine Ecology Progress Series, 2009, 392: 103-110.
|
48 |
SWART P K, SAIED A, LAMB K. Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract[J]. Limnology and Oceanography, 2005, 50(4): 1 049-1 058.
|
49 |
OWENS N J P. Natural variations in 15N in the marine environment[J]. Advances in Marine Biology, 1988, 24: 389-451.
|
50 |
HEIKOOP J M, DUNN J J, RISK M J, et al. Relationship between light and the δ15N of coral tissue: examples from Jamaica and Zanzibar[J]. Limnology and Oceanography, 1998, 43(5): 909-920.
|
51 |
MINAGAWA M, WADA E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 1 135-1 140.
|
52 |
VANDERKLIFT M A, PONSARD S. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis[J]. Oecologia, 2003, 136(2): 169-182.
|
53 |
HEIKOOP J. Environmental signals in coral tissue and skeleton: examples from the Caribbean and indo-Pacific[D]. Canada, Hamilton: McMaster University, 1997.
|
54 |
MIES M, GÜTH A Z, TENÓRIO A A, et al. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers[J]. Coral Reefs, 2018, 37(3): 677-689.
|
55 |
MUSCATINE L, D'ELIA C F. The uptake, retention, and release of ammonium by reef corals[J]. Limnology and Oceanography, 1978, 23(4): 725-734.
|
56 |
ERLER D V, WANG X T, SIGMAN D M, et al. Controls on the nitrogen isotopic composition of shallow water corals across a tropical reef flat transect[J]. Coral Reefs, 2015, 34(1): 329-338.
|
57 |
MUSCATINE L, GOIRAN C, LAND L, et al. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(5): 1 525-1 530.
|
58 |
REN H J, SIGMAN D M, THUNELL R C, et al. Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments[J]. Limnology and Oceanography, 2012, 57(4): 1 011-1 024.
|
59 |
LESSER M P, FALCÓN L I, RODRÍGUEZ-ROMÁN A, et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa [J]. Marine Ecology Progress Series, 2007, 346: 143-152.
|
60 |
PINIAK G A, LIPSCHULTZ F, McCLELLAND J. Assimilation and partitioning of prey nitrogen within two anthozoans and their endosymbiotic zooxanthellae[J]. Marine Ecology Progress Series, 2003, 262: 125-136.
|
61 |
GROVER R, MAGUER J F, REYNAUD-VAGANAY S, et al. Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations[J]. Limnology and Oceanography, 2002, 47(3): 782-790.
|
62 |
DUPREY N N, WANG T X, KIM T, et al. Megacity development and the demise of coastal coral communities: evidence from coral skeleton δ15N records in the Pearl River Estuary[J]. Global Change Biology, 2020, 26(3): 1 338-1 353.
|
63 |
YAMAZAKI A, WATANABE T, TSUNOGAI U, et al. The coral δ15N record of terrestrial nitrate loading varies with river catchment land use[J]. Coral Reefs, 2015, 34(1): 353-362.
|
64 |
DUPREY N N, WANG X T, THOMPSON P D, et al. Life and death of a sewage treatment plant recorded in a coral skeleton δ15N record[J]. Marine Pollution Bulletin, 2017, 120 (1/2): 109-116.
|
65 |
ERLER D V, SHEPHERD B O, LINSLEY B K, et al. Coral skeletons record increasing agriculture-related groundwater nitrogen inputs to a South Pacific reef over the past century[J]. Geophysical Research Letters, 2018, 45(16): 8 370-8 378.
|
66 |
ERLER D V, WANG X T, SIGMAN D M, et al. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: implications for coastal nutrient cycling in the Great Barrier Reef Lagoon[J]. Earth and Planetary Science Letters, 2016, 434: 161-170.
|
67 |
YAMAZAKI A, WATANABE T, TSUNOGAI U, et al. A 150-year variation of the Kuroshio transport inferred from coral nitrogen isotope signature[J]. Paleoceanography, 2016, 31(6): 838-846.
|
68 |
ERLER D V, FARID H T, GLAZE T D, et al. Coral skeletons reveal the history of nitrogen cycling in the coastal Great Barrier reef[J]. Nature Communications, 2020, 11. DOI:10.1038/S41467-020-15278-w .
|
69 |
REN H, CHEN Y C, WANG X, et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef[J]. Science, 2017, 356: 749-752.
|
70 |
HEATON T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review[J]. Chemical Geology: Isotope Geoscience Section, 1986, 59: 87-102.
|
71 |
KENDALL C. Tracing nitrogen sources and cycling in catchments[M]// Isotope tracers in catchment hydrology. Amsterdam: Elsevier, 1998: 519-576.
|
72 |
UDY J W, DENNISON W C, lee LONG W J, et al. Responses of seagrass to nutrients in the great barrier reef, Australia[J]. Marine Ecology Progress Series, 1999, 185: 257-271.
|
73 |
JORDAN M J, NADELHOFFER K J, FRY B. Nitrogen cycling in forest and grass ecosystems irrigated with 15N-enriched wastewater[J]. Ecological Applications, 1997, 7(3): 864-881.
|
74 |
MURRAY J, PROUTY N G, PEEK S, et al. Coral skeleton δ15N as a tracer of historic nutrient loading to a coral reef in Maui, Hawaii[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/S41598-019-42013-3 .
|
75 |
CASCIOTTI K L, TRULL T W, GLOVER D M, et al. Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55(14/15): 1 661-1 672.
|
76 |
GALBRAITH E D, KIENAST M. The acceleration of oceanic denitrification during deglacial warming[J]. Nature Geoscience, 2013, 6(7): 579-584.
|
77 |
LIANG J Y, YU K F, WANG Y H, et al. Diazotroph diversity associated with scleractinian corals and its relationships with environmental variables in the South China Sea[J]. Frontiers in Physiology, 2020, 11: 615.
|
78 |
LU Shan. Environmental geochemistry records in black corals of the South China Sea[D]. Shanghai: East China Normal University,2016.
|
|
卢珊. 南海黑角珊瑚近百年来环境地球化学记录初探[D]. 上海:华东师范大学,2016.
|
79 |
MCCLOSKEY L R, MUSCATINE L, WILKERSON F P. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.)[J]. Marine Biology, 1994, 119(1): 13-22.
|
80 |
WANG X T, SIGMAN D M, COHEN A L, et al. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals[J]. Earth and Planetary Science Letters, 2016, 441: 125-132.
|
81 |
YAMAZAKI A, WATANABE T, TSUNOGAI U. Nitrogen isotopes of organic nitrogen in reef coral skeletons as a proxy of tropical nutrient dynamics[J]. Geophysical Research Letters, 2011, 38(19). DOI:10.1029/2011GL049053 .
|
82 |
YAMAZAKI A, WATANABE T, TAKAHATA N, et al. Nitrogen isotopes in intra-crystal coralline aragonites[J]. Chemical Geology, 2013, 351: 276-280.
|
83 |
CUIF J P, DAUPHIN Y. Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some Recent scleractinian corals[J]. Paläontologische Zeitschrift, 1998, 72(3): 257-269.
|
84 |
REN H, SIGMAN D M, MECKLER A N, et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean[J]. Science, 2009, 323(5 911): 244-248.
|
85 |
XIAO H W, XIE L H, LONG A M, et al. Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea[J]. Atmospheric Environment, 2015, 109: 70-78.
|
86 |
YE F, NI Z X, XIE L H, et al. Isotopic evidence for the turnover of biological reactive nitrogen in the Pearl River Estuary, South China[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(4): 661-672.
|
87 |
DAI S H, XIE L H, PENG L, et al. Determination of nitrogen and oxygen isotopes in nitrates: a minireview[J]. Analytical Letters, 2017, 50(13): 2 045-2 057.
|
88 |
ALTABET M A, WASSENAAR L I, DOUENCE C, et al. A Ti(III) reduction method for one-step conversion of seawater and freshwater nitrate into N2O for stable isotopic analysis of 15N/14N, 18O/16O and 17O/16O[J]. Rapid Communications in Mass Spectrometry, 2019, 33(15): 1 227-1 239.
|
89 |
RISK M J, LAPOINTE B E, SHERWOOD O A, et al. The use of δ15N in assessing sewage stress on coral reefs[J]. Marine Pollution Bulletin, 2009, 58(6): 793-802.
|