地球科学进展 ›› 2023, Vol. 38 ›› Issue (2): 212 -220. doi: 10.11867/j.issn.1001-8166.2022.102

生态学研究 上一篇    

植硅体碳与陆地生态系统碳循环:机遇和挑战
张雨欣 1( ), 左昕昕 2( )   
  1. 1.华东师范大学 地理科学学院,上海 200241
    2.福建师范大学 地理科学学院,福建 福州 350007
  • 收稿日期:2021-06-07 修回日期:2022-08-04 出版日期:2023-02-10
  • 通讯作者: 左昕昕 E-mail:Zhang_Yuxin0226@163.com;zuoxinxin@live.cn
  • 基金资助:
    国家自然科学基金项目“末次冰消期东海陆架植硅体记录的水稻起源及其环境背景研究”(41771241)

Phytolith-Occluded Carbon and Terrestrial Ecosystem Carbon Cycle: Opportunities and Challenges

Yuxin ZHANG 1( ), Xinxin ZUO 2( )   

  1. 1.School of Geographical Sciences, East China Normal University, Shanghai 200241, China
    2.School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
  • Received:2021-06-07 Revised:2022-08-04 Online:2023-02-10 Published:2023-03-02
  • Contact: Xinxin ZUO E-mail:Zhang_Yuxin0226@163.com;zuoxinxin@live.cn
  • About author:ZHANG Yuxin (2000-), female, Yunxiao County, Fujian Province, Master student. Research area includes physical geography. E-mail: Zhang_Yuxin0226@163.com
  • Supported by:
    the National Natural Science Foundation of China “Phytolith evidence of rice origin and environmental changes in the East China Sea Shelf during the last deglacial”(41771241)

植硅体在形成过程中能够包裹植物有机碳,是已被证明的一种非常有潜力的大气CO2封存方式,对于增加陆地生态系统碳汇和延缓温室气体效应带来的全球变暖具有重要意义,因此受到了学术界的广泛关注。简要回顾了植硅体碳的研究历史和现状,并着重从植硅体碳长期变化入手,探讨了植硅体碳与陆地生态系统碳汇存在的问题与挑战,以及近来有关植硅体碳存在被严重高估的论点。同时指出为了更加准确地估算植硅体碳汇,应充分考虑植硅体包裹碳能力的差异、植硅体碳来源、植硅体稳定性、土壤中植硅体碳含量衰减速率以及植硅体提取方法等在植硅体碳的长期变化中的作用,进一步提高植硅体碳在陆地碳汇研究中的地位与重要性。

A small amount of organic carbon, referred to as phytolith-occluded carbon (PhytOC), is occluded during phytolith formation. This carbon fraction has been demonstrated to be an important form of carbon sequestration. Thus, it has drawn particular attention from many researchers in the study of the terrestrial carbon cycle because it is of great significance for increasing terrestrial ecosystem carbon sinks and delaying global warming caused by the greenhouse gas effect. First, we briefly reviewed the research history and current status of PhytOC. Then, focusing on the long-term changes in PhytOC, we discussed the questions and challenges of PhytOC and terrestrial ecosystem carbon sinks as well as the recent argument that carbon sequestration by PhytOC in terrestrial ecosystems was highly overestimated. However, to more accurately estimate the phytolith carbon sink, some factors should be considered regarding long-term changes in PhytOC, such as different carbon-occluded abilities, carbon source, and stability of phytolith, decay rate of PhytOC in soil, and the impact of different phytolith extraction methods on PhytOC. As a result, the status and importance of PhytOC in studying terrestrial carbon sinks would be enhanced.

中图分类号: 

图1 20002021年有关植硅体碳的中文期刊发文数量
Fig. 1 Number of Chinese papers that include the keyword “phytolith occluded carbon” from 2000 to 2021
图2 20002021年有关植硅体碳的英文期刊发文数量
Fig. 2 Number of English papers that include the keyword “phytolith occluded carbon” from 2000 to 2021
图3 20002021年以植硅体碳为主题的硕博士论文数量
Fig. 3 Number of master’s and doctoral theses that include the keyword “phytolith occluded carbon” from 2000 to 2021
1 ROVNER I. Plant opal phytolith analysis: major advances in archaeobotanical research[M]// Advances in archaeological method and theory. Amsterdam: Elsevier, 1983: 225-266.
2 PIPERNO D R. Phytoliths: a comprehensive guide for archaeologists and paleoecologists[M]. Lanham MD: Altamira Press, 2006.
3 PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths[J]. Soil Biology and Biochemistry, 2005, 37(1): 117-124.
4 STRÖMBERG C A E. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the Great Plains of North America during the late Eocene to early Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207(3/4): 239-275.
5 PRASAD V, STRÖMBERG C A E, ALIMOHAMMADIAN H, et al. Dinosaur coprolites and the early evolution of grasses and grazers[J]. Science, 2005, 310(5 751): 1 177-1 180.
6 WILDING L P, BROWN R E, HOLOWAYCHUK N. Accessibility and properties of occluded carbon in biogenetic opal[J]. Soil Science, 1967, 103(1): 56-61.
7 MULHOLLAND S C, PRIOR C A. AMS radiocarbon dating of phytoliths[J]. MASCA Research Papers in Science and Archaeology, 1993, 10: 21-23.
8 SMITH F A, ANDERSON K B. Characterization of organic compounds in phytoliths: improving the resolving power of phytolith δ 13C as a tool for paleoecological reconstruction of C3 and C4 grasses[M]// Phytoliths: applications in Earth sciences & human history. Netherlands: A.A. Balkema, 2001.
9 ZUO X X, LÜ H Y. Carbon sequestration within millet phytoliths from dry-farming of crops in China[J]. Chinese Science Bulletin, 2011, 56(32): 3 451-3 456.
10 ZUO X X, LÜ H Y, GU Z Y. Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica-carbon cycles[J]. Plant and Soil, 2014, 374(1/2): 223-232.
11 LI Rencheng, XIE Shucheng, GU Yansheng. Advances in the biogeochemical study of phytolity stable isotope[J]. Advances in Earth Science, 2010, 25(8): 812-819.
李仁成, 谢树成, 顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
12 CARTER J A. Atmospheric carbon isotope signatures in phytolith-occluded carbon[J]. Quaternary International, 2009, 193(1/2): 20-29.
13 FANG Jingyun, GUO Zhaodi, PIAO Shilong, et al. Estimation of terrestrial vegetation carbon sink in China from 1981 to 2000[J]. Science in China (Series D Earth Sciences), 2007, 37(6): 804-812.
方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学D辑: 地球科学, 2007, 37(6): 804-812.
14 PARR J, SULLIVAN L, CHEN B H, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biology, 2010, 16(10): 2 661-2 667.
15 SONG Z L, KIM M G, WANG H L. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems[J]. Earth-Science Reviews, 2016, 158: 19-30.
16 PAN Wenjie, YANG Xiaomin, ZHANG Xiaodong, et al. Advances in study of phytolith carbon sequestration in terrestrial ecosystems of China[J]. Advances in Earth Science, 2017, 32(8): 859-866.
潘文杰, 杨孝民, 张晓东, 等. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
17 LI Z M, SONG Z L, PARR J F, et al. Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration[J]. Plant and Soil, 2013, 370(1/2): 615-623.
18 SUN X, LIU Q, ZHAO G M, et al. Comparison of phytolith-occluded carbon in 51 main cultivated rice (Oryzasativa) cultivars of China[J]. RSC Advances, 2017, 7(86): 54 726-54 733.
19 PARR J F, SULLIVAN L A. Phytolith occluded carbon and silica variability in wheat cultivars[J]. Plant and Soil, 2011, 342(1/2): 165-171.
20 XIANG T T, YING Y Q, TENG J N, et al. Sympodial bamboo species differ in carbon bio-sequestration and stocks within phytoliths of leaf litters and living leaves[J]. Environmental Science and Pollution Research, 2016, 23(19): 19 257-19 265.
21 FENG Xiuzhi. The evolution characteristics of soil silicon and carbon of Phyllostachys pubescens forest under different planting years[D]. Hangzhou: Zhejiang A & F University, 2018.
冯秀智. 不同种植年限毛竹林土壤硅碳演变特征[D]. 杭州: 浙江农林大学, 2018.
22 SONG Z L, LIU H Y, SI Y, et al. The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2 [J]. Global Change Biology, 2012, 18(12): 3 647-3 653.
23 RU N, YANG X M, SONG Z L, et al. Phytoliths and phytolith carbon occlusion in aboveground vegetation of sandy grasslands in eastern Inner Mongolia, China[J]. Science of the Total Environment, 2018, 625: 1 283-1 289.
24 GUO Ying. Study on the relationship between the phytolith-occulded carbon accummulation in dominant plants and environmental factors in the typical steppe of Inner Mongolia[D]. Hohhot: Inner Mongolia University, 2019.
郭颖. 内蒙古典型草原优势植物植硅体碳积累与环境关系的研究[D]. 呼和浩特: 内蒙古大学, 2019.
25 SONG Z L, LIU H Y, LI B L, et al. The production of phytolith-occluded carbon in China’s forests: implications to biogeochemical carbon sequestration[J]. Global Change Biology, 2013, 19(9): 2 907-2 915.
26 SONG Z L, LIU H Y, CAROLINE A E, et al. Contribution of forests to the carbon sink via biologically-mediated silicate weathering: a case study of China[J]. Science of the Total Environment, 2018, 615: 1-8.
27 WANG Xia. Research on phytolith carbon sequestration of Quercus acutissima forest ecosystem in Jurong City, Jiangsu Province[D]. Nanjing: Nanjing Forestry University, 2018.
王霞. 江苏句容市麻栎林生态系统植硅体碳储量研究[D]. 南京: 南京林业大学, 2018.
28 LI Z M, SONG Z L, JIANG P K. Biogeochemical sequestration of carbon within phytoliths of wetland plants: a case study of Xixi wetland, China[J]. Chinese Science Bulletin, 2013, 58(20): 2 480-2 487.
29 MI Huishan. Distribution characteristics of SiO2 and the potential of phytolith sequestration carbon in typical plant communities and ecotones in the Min River Estuary[D]. Fuzhou: Fujian Normal University, 2019.
米慧珊. 闽江河口湿地典型植物群落与交错带SiO2分布特征及植硅体固碳潜力研究[D]. 福州: 福建师范大学, 2019.
30 SONG Z L. Phytolith carbon sequestration in China’s croplands[J]. European Journal of Agronomy, 2014, 53: 10-15.
31 YUAN Faying, WANG Linjiao, SHENG Maoyin. The application of crop phytoliths for reviewing occluded organic carbon[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1 932- 1 940.
袁发英, 王霖娇, 盛茂银. 作物植硅体形态的应用及其封存有机碳研究进展[J]. 中国生态农业学报, 2020, 28(12): 1 932-1 940.
32 ZHANG Jian, GUO Wen, QI Lianghua, et al. A study of phytolith carbon of bamboo plants in China[J]. World Forestry Research, 2019, 32(4): 46-50.
张建, 郭雯, 漆良华, 等. 中国竹类植物植硅体碳研究[J]. 世界林业研究, 2019, 32(4): 46-50.
33 CHEN Chen. Study on phytolith-occluded carbon sink of belowground rhizome and trunk in key monopodial bamboo species across China[D]. Hangzhou: Zhejiang A & F University, 2019.
陈晨. 中国重要散生竹地下鞭根系统植硅体碳汇研究[D]. 杭州: 浙江农林大学, 2019.
34 LI B, SONG Z, WANG H, et al. Lithological control on phytolith carbon sequestration in moso bamboo forests[J]. Scientific Reports, 2014, 4. DOI:10.1038/srep05262 .
35 LIU Junxia, HUANG Zhangting, JIANG Peikun, et al. Effects of parent rock and bamboo age on silicon and phytolith-occluded carbon in the leaves of Moso bamboo[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2 917-2 922.
刘俊霞, 黄张婷, 姜培坤, 等. 母岩与竹龄对毛竹竹叶中硅和植硅体碳含量的影响[J]. 应用生态学报, 2017, 28(9): 2 917-2 922.
36 YANG X M, SONG Z L, SULLIVAN L, et al. Topographic control on phytolith carbon sequestration in moso bamboo (Phyllostachys pubescens) ecosystems[J]. Carbon Management, 2016, 7(1/2): 105-112.
37 JI Limin. Carbon sequestration potential and different land use impacts of phytolith-occluded carbon production in the steppe[D]. Hohhot: Inner Mongolia University, 2019.
奇立敏. 草原植硅体封存碳潜力及其对不同利用方式的响应[D]. 呼和浩特: 内蒙古大学, 2019.
38 ZHANG Nan. The effect of rice genotype and fertilization strategies on phytolith carbon sink[D]. Hangzhou: Zhejiang University, 2018.
张楠. 水稻基因型与施肥对水稻和小麦植硅体碳汇的影响[D]. 杭州: 浙江大学, 2018.
39 CHEN Niankang, Dongmei JIE, LI Dehui, et al. The relationship between phytolith carbon sequestration and phytolith types in typical plant communities of the Songnen grassland[J]. Acta Micropalaeontologica Sinica, 2019, 36(4): 412-422.
陈念康, 介冬梅, 李德晖, 等. 松嫩草原典型群落植硅体固碳与植硅体类型关系研究[J]. 微体古生物学报, 2019, 36(4): 412-422.
40 WANG Xia, HU Haibo, CHENG Can, et al. Soil PhytOC sequestration in Quercus acutissima forest in northern subtropics[J]. Journal of Zhejiang A & F University, 2021, 38(1): 1-9.
王霞, 胡海波, 程璨, 等. 北亚热带麻栎林土壤植硅体碳储量研究[J]. 浙江农林大学学报, 2021, 38(1): 1-9.
41 SUN Kai, WU Jiasen, SHENG Weixing, et al. Potential of phytolith-occluded organic carbon sequestration in masson pine stands at different ages in subtropical China[J]. Scientia Silvae Sinicae, 2020, 56(12): 10-18.
孙凯, 吴家森, 盛卫星, 等. 亚热带不同林龄马尾松林地上器官植硅体碳封存潜力[J]. 林业科学, 2020, 56(12): 10-18.
42 HODSON M J. The relative importance of cell wall and lumen phytoliths in carbon sequestration in soil: a hypothesis[J]. Frontiers in Earth Science, 2019, 7. DOI:10.3389/feart.2019.00167 .
43 LIU L N, SONG Z L, YU C X, et al. Silicon effects on biomass carbon and phytolith-occluded carbon in grasslands under high-salinity conditions[J]. Frontiers in Plant Science, 2020, 11. DOI:10.3389/fpls.2020.00657 .
44 GUO F S, SONG Z L, SULLIVAN L, et al. Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment[J]. Science Bulletin, 2015, 60(6): 591-597.
45 LÜ W J, ZHOU G M, CHEN G S, et al. Effects of different management practices on the increase in phytolith-occluded carbon in moso bamboo forests[J]. Frontiers in Plant Science, 2020, 11. DOI: 10.3389/fpls.2020.591852 .
46 ZHAO Y Y, SONG Z L, XU X T, et al. Nitrogen application increases phytolith carbon sequestration in degraded grasslands of North China[J]. Ecological Research, 2016, 31(1): 117-123.
47 XU Lin. Effect of biochar and silicon fertilizer on soil greenhouse gas emissions and ecosystems carbon sequestration capacity in moso bamboo forest[D]. Hangzhou: Zhejiang A & F University, 2019.
徐林. 生物质炭和硅肥对毛竹林土壤温室气体排放及生态系统碳汇能力影响研究[D]. 杭州: 浙江农林大学, 2019.
48 LU Chang. Effects of land uses on soil PhytOC and organic carbon of soil aggregates[D]. Chongqing: Southwest University, 2018.
陆畅. 土地利用方式对土壤植硅体碳和团聚体有机碳的影响[D]. 重庆: 西南大学, 2018.
49 HUANG C P, LI Y C, WU J S, et al. Intensive management increases phytolith-occluded carbon sequestration in moso bamboo plantations in subtropical China[J]. Forests, 2019, 10(10). DOI:10.3390/f10100883 .
50 SONG Z L, LIU H Y, CAROLINE A E, et al. Phytolith carbon sequestration in global terrestrial biomes[J]. Science of the Total Environment, 2017, 603/604: 502-509.
51 RU N, SONG Z L, LIU H Y, et al. Phytolith carbon sequestration in shrublands of North China[J]. Silicon, 2018, 10(2): 455-464.
52 LI B L, SONG Z L, LI Z M, et al. Phylogenetic variation of phytolith carbon sequestration in bamboos[J]. Scientific Reports, 2014, 4. DOI:10.1038/srep04710 .
53 YANG Jie, WU Jiasen, JIANG Peikun, et al. Study on phytolith-occluded organic carbon and silicon in a Pleioblastus amarus forest[J]. Journal of Natural Resources, 2016, 31(2): 299-309.
杨杰, 吴家森, 姜培坤, 等. 苦竹林植硅体碳与硅的研究[J]. 自然资源学报, 2016, 31(2): 299-309.
54 REYERSON P E, ALEXANDRE A, HARUTYUNYAN A, et al. Unambiguous evidence of old soil carbon in grass biosilica particles[J]. Biogeosciences, 2016, 13(4): 1 269-1 286.
55 HODSON M J. The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology[J]. Journal of Archaeological Science, 2016, 68: 62-69.
56 ZUO Xinxin, WU Naiqin. Phytolith radiocarbon dating: past, present and future[J]. Quaternary Sciences, 2019,39(1): 59-66.
左昕昕, 吴乃琴. 植硅体14C测年研究: 过去、现在与未来[J]. 第四纪研究, 2019,39(1): 59-66.
57 SANTOS G M, ALEXANDRE A, PRIOR C A. From radiocarbon analysis to interpretation: a comment on “Phytolith radiocarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern neotropical plants and a review of the previous dating evidence”, Journal of Archaeological Science (2015), doi:10.1016/j.jas.2015.06.002.” by Dolores R. Piperno[J]. Journal of Archaeological Science, 2016, 71: 51-58.
58 SANTOS G, SOUTHON J, ALEXANDRE A, et al. Interactive comment on “Comment on: “Possible source of ancient carbon in phytolith concentrates from harvested grasses” by G.M. Santoset al. (2012)” by L.A. Sullivan and J.F. Parr[J]. Biogeosciences Discussions, 2012, 9: 6 114-6 124.
59 SANTOS G M, ALEXANDRE A, SOUTHON J R, et al. Possible source of ancient carbon in phytolith concentrates from harvested grasses[J]. Biogeosciences, 2012, 9(5): 1 873-1 884.
60 ZUO X X, LU H Y, JIANG L P, et al. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(25): 6 486-6 491.
61 SULLIVAN L, PARR J, SMITH A, et al. Bomb pulse dating of phytolith-occluded carbon for quantification of carbon sequestration in perennial vegetation[R].Progress Report No. AINGRA08061, AINSE-Australian Institute of Nuclear Science and Engineering, 2008.
62 PIPERNO D R. Phytolith radiocarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence[J]. Journal of Archaeological Science, 2016, 68: 54-61.
63 ALEXANDRE A, BALESDENT J, CAZEVIEILLE P, et al. Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence[J]. Biogeosciences, 2016, 13(5): 1 693-1 703.
64 WILDING L P. Radiocarbon dating of biogenetic opal[J]. Science, 1967, 156(3 771): 66-67.
65 XU Zijuan, ZUO Xinxin, FAN Bailing, et al. Advances in geochemical study of phytolith occluded carbon[J]. Advances in Earth Science, 2017, 32(2): 151-159.
许子娟, 左昕昕, 范百龄, 等. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
66 NGOC N M, DULTZ S, GUGGENBERGER G. Effects of pretreatment and solution chemistry on solubility of rice-straw phytoliths[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(3): 349-359.
67 CABANES D, SHAHACK-GROSS R. Understanding fossil phytolith preservation: the role of partial dissolution in paleoecology and archaeology[J]. PLoS ONE, 2015, 10(5). DOI:10.1371/journal.pone.0125532 .
68 ZHANG X D, SONG Z L, ZHAO Z Q, et al. Impact of climate and lithology on soil phytolith-occluded carbon accumulation in Eastern China[J]. Journal of Soils and Sediments, 2017, 17(2): 481-490.
69 HUANG Chengpeng. Phytolith occluded carbon pools and stability and their regulation mechanism in typical bamboo plantations[D]. Hangzhou: Zhejiang A & F University, 2020.
黄程鹏. 典型竹林植硅体碳库与稳定性特征及其调控机制[D]. 杭州: 浙江农林大学, 2020.
70 FRAYSSE F. Surface chemistry and reactivity of plant phytoliths in aqueous solutions[J]. Chemical Geology, 2009, 258(3/4): 197-206.
71 BLECKER S W, MCCULLEY R L, CHADWICK O A, et al. Biologic cycling of silica across a grassland bioclimosequence[J]. Global Biogeochemical Cycles, 2006, 20(3). DOI:10.1029/2006GB002690 .
72 LIU Xingchen. Study on phytolith-vegetation community evolution analysis and reconstruction of modern climate in Nanjishan wetland[D]. Nanchang: Nanchang Institute of Technology, 2020.
刘星辰. 南矶山湿地植硅体—植被群落演变分析与近代气候重建研究[D]. 南昌: 南昌工程学院, 2020.
73 LUO Donghai, WANG Zifang, LU Chang, et al. Content of soil phytolith-occluded organic carbon in different land use patterns at Jinyun Mountain[J]. Environmental Science, 2019, 40(9): 4 270-4 277.
罗东海, 王子芳, 陆畅, 等. 缙云山不同土地利用方式下土壤植硅体碳的含量特征[J]. 环境科学, 2019, 40(9): 4 270-4 277.
74 XIANG Tingting. Research of phytolith-occluded carbon sequestration of important sympodial bamboo ecosystem in China[D]. Hangzhou: Zhejiang A & F University, 2015.
项婷婷. 中国重要丛生竹生态系统植硅体碳汇研究[D]. 杭州: 浙江农林大学, 2015.
75 LIN Weilei. Study on phytolith-occluded carbon in soil under important forest kinds[D]. Hangzhou: Zhejiang A & F University, 2015.
林维雷. 亚热带重要森林类型土壤植硅体碳的研究[D]. 杭州: 浙江农林大学, 2015.
76 ZHANG Jinlin, FU Weijun, ZHOU Xiufeng, et al. Spatial variability of phytolith-occluded organic carbon in soil under typical Dendrocalamus latiflorus Munro groves[J]. Acta Pedologica Sinica, 2017, 54(5): 1 147-1 156.
张金林, 傅伟军, 周秀峰, 等. 典型麻竹林土壤植硅体碳的空间异质性特征[J]. 土壤学报, 2017, 54(5): 1 147-1 156.
77 ZHANG Jian, GUO Wen, QI Lianghua, et al. A study of phytolith carbon of bamboo plants in China[J]. World Forestry Research, 2019, 32(4): 46-50.
张建, 郭雯, 漆良华, 等. 中国竹类植物植硅体碳研究[J]. 世界林业研究, 2019, 32(4): 46-50.
78 LI Z M, SONG Z L, CORNELIS J T. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon[J]. Frontiers in Plant Science, 2014, 5. DOI:10.3389/fpls.2014.00529 .
79 HE Shanqiong, HUANG Zhangting, WU Jiasen, et al. Evolution pattern of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics, China[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 697-704.
何珊琼, 黄张婷, 吴家森, 等. 热带、亚热带典型森林—土壤系统植硅体碳演变规律[J]. 应用生态学报, 2016, 27(3): 697-704.
80 ZHANG Xiaodong. Research on phytolith accumulation and noncrystalline silicon distribution of forest soils in east China[D]. Hangzhou: Zhejiang A & F University, 2016.
张晓东. 中国东部森林土壤中植硅体积累和硅形态分布研究[D]. 杭州: 浙江农林大学, 2016.
81 FENG Shengfei, HUANG Zhangting, YANG Jie, et al. Comparison of phytOC sink for three different ecotypes of bamboos[J]. Journal of Natural Resources, 2017, 32(1): 152-162.
冯晟斐, 黄张婷, 杨杰, 等. 三种不同生态型竹种植硅体碳汇比较研究[J]. 自然资源学报, 2017, 32(1): 152-162.
82 LI Zimin, SONG Zhaoliang, LI Beilei. Generation and accumulation of phytoliths in Baiyangdian reed wetland ecosystems[J]. Acta Pedologica Sinica, 2013, 50(3): 632-636.
李自民, 宋照亮, 李蓓蕾. 白洋淀芦苇湿地生态系统中植硅体的产生和积累研究[J]. 土壤学报, 2013, 50(3): 632-636.
83 LI Zimin, SONG Zhaoliang, JIANG Peikun. The production and accumulation of phytoliths in rice ecosystems: a case study to Jiaxing Paddy field[J]. Acta Ecologica Sinica, 2013, 33(22): 7 197-7 203.
李自民, 宋照亮, 姜培坤. 稻田生态系统中植硅体的产生与积累: 以嘉兴稻田为例[J]. 生态学报, 2013, 33(22): 7 197-7 203.
84 CORBINEAU R, REYERSON P E, ALEXANDRE A,et al. Towards producing pure phytolith concentrates from plants that are suitable for carbon isotopic analysis[J]. Review of Palaeobotany and Palynology, 2013, 197: 179-185.
85 ZUO X X, LÜ H Y, HUAN X J, et al. Influence of different extraction methods on prehistoric phytolith radiocarbon dating[J]. Quaternary International, 2019, 528: 4-8.
86 PARR J F, SULLIVAN L A. Comparison of two methods for the isolation of phytolith occluded carbon from plant material[J]. Plant and Soil, 2014, 374(1/2): 45-53.
87 SONG Z L. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems[J]. Earth-Science Reviews, 2016, 158: 19-30.
88 STREET-PERROTT F A, BARKER P A. Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon[J]. Earth Surface Processes and Landforms, 2008, 33(9): 1 436-1 457.
89 CAREY J C, FULWEILER R W. The terrestrial silica pump[J]. PLoS ONE, 2012, 7(12). DOI: 10.1371/journal.pone.0052932 .
[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[3] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[4] 王训明, 周娜, 郎丽丽, 花婷, 焦琳琳, 马文勇. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635.
[5] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[6] 冉祥滨,于志刚,臧家业,刘大海,车宏,郑莉莉. 地表过程与人类活动对硅产出影响的研究进展[J]. 地球科学进展, 2013, 28(5): 577-587.
[7] 李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12): 1287-1295.
[8] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[9] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[10] 李仁成,谢树成,顾延生. 植硅体稳定同位素生物地球化学研究进展[J]. 地球科学进展, 2010, 25(8): 812-819.
[11] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
[12] 牛栋,李正泉,于贵瑞. 陆地生态系统与全球变化的联网观测研究进展[J]. 地球科学进展, 2006, 21(11): 1199-1206.
[13] 傅伯杰;牛栋;赵士洞. 全球变化与陆地生态系统研究:回顾与展望[J]. 地球科学进展, 2005, 20(5): 556-560.
[14] 何勇;董文杰;季劲均;丹利. 基于AVIM的中国陆地生态系统净初级生产力模拟[J]. 地球科学进展, 2005, 20(3): 345-349.
[15] 于贵瑞;王秋凤;于振良. 陆地生态系统水—碳耦合循环与过程管理研究[J]. 地球科学进展, 2004, 19(5): 831-839.
阅读次数
全文


摘要