地球科学进展 ›› 2023, Vol. 38 ›› Issue (2): 192 -211. doi: 10.11867/j.issn.1001-8166.2022.094

研究论文 上一篇    下一篇

南海典型海底滑坡的触发机制及其潜在海啸灾害评估
潘晓仪 1( ), 李琳琳 1 , 2( ), 王大伟 2 , 3, 施华斌 2 , 4   
  1. 1.中山大学地球科学与工程学院,广东省地球动力作用与地质灾害重点实验室,广东 广州 510275
    2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
    3.中国科学院深海科学与工程 研究所,海南 三亚 572000
    4.澳门大学科技学院土木及环境工程系,澳门 999078
  • 收稿日期:2022-07-14 修回日期:2022-11-11 出版日期:2023-02-10
  • 通讯作者: 李琳琳 E-mail:panxy35@mail2.sysu.edu.cn;lilinlin3@mail.sysu.edu.cn
  • 基金资助:
    海南省重点研发项目“南海海底滑坡—海啸灾害预测及评估技术开发”(ZDYF2020209);国家自然科学基金项目“南海概率性地震与滑坡海啸灾害评估系统的建立及应用”(41976197)

Triggering Mechanism and Tsunamigenic Potential of Typical Submarine Landslides in South China Sea

Xiaoyi PAN 1( ), Linlin LI 1 , 2( ), Dawei WANG 2 , 3, Huabin SHI 2 , 4   

  1. 1.Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun YetSen University, Guangzhou 510275, China
    2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Guangdong 519082, China
    3.Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya Hainan 572000, China
    4.Faculty of Science and Technology, University of Macau, Macau 999078, China
  • Received:2022-07-14 Revised:2022-11-11 Online:2023-02-10 Published:2023-03-02
  • Contact: Linlin LI E-mail:panxy35@mail2.sysu.edu.cn;lilinlin3@mail.sysu.edu.cn
  • About author:PAN Xiaoyi (1996-), female, Wuzhou City, Guangxi Zhuang Autonomous Region, Master student. Research areas include numerical simulation of submarine landslide tsunami. E-mail: panxy35@mail2.sysu.edu.cn
  • Supported by:
    Key R & D Project of Hainan Province “Development of prediction and assessment technology for submarine landslide-tsunami disaster in the South China Sea”(ZDYF2020209);The National Natural Science Foundation of China “Application of probabilistic earthquake and landslide tsunami disaster assessment system in South China Sea”(41976197)

综合调查数据揭示南海域内发育大量海底滑坡,尤其是大陆坡区域。由海底滑坡触发的碎屑流、浊流和海啸等链生灾害,严重威胁深海基础设施及沿海地区人民生命财产安全,亟待进行研究。选取南海域内4处典型海底滑坡,研究其潜在的海啸灾害。在总结各滑坡构造背景和触发因素差异的基础上,提取各滑坡体的特征参数;使用NHWAVE与FUNWAVE-TVD模型组合模拟了滑坡体动态过程及海啸波的产生和传播过程。模拟结果显示,初始水深和坡度差异导致体积相近的白云滑坡和曾母暗沙滑坡触发海啸能力差异巨大。白云滑坡在源区可产生最高约12 m的海啸波,潜在灾害主要危及南海北部区域,尤其是华南沿海;位于较浅初始水深的曾母暗沙滑坡可产生高达约38 m的海啸波,危及整个南海中南部;中建南滑坡可产生近10 m的海啸波,影响范围主要局限于南海西部越南沿岸;西沙海槽北部陆坡滑坡产生的海啸波波高相对较小,约0.9 m。通过分析比较最大波高分布和海啸波传播特点等,发现海底滑坡触发海啸能力受到滑坡几何参数与运动学特性控制,复杂海底地形和海岸线改变了海啸波的能量分布,增加了沿岸海啸灾害评估难度。在南海开展典型滑坡—海啸模拟,建立滑坡—海啸数据库具有重要的研究意义,将有助于推进我国海洋地质灾害评价与预测水平。

High-resolution geophysical data indicate that there are numerous submarine landslides in the China Sea region at various scales, particularly on continental slopes. Potentially devastating tsunami hazards generated by submarine landslides pose a great threat to the populous coastal region, fisheries, and oil and gas exploitation in the deep sea. Thus, hazard assessment is necessary. This study investigates the potential tsunami hazards generated by four representative submarine landslides in the South China Sea (SCS). The geological background and triggers of these submarine landslides are summarized. The key parameters of each landslide were constrained by currently available geological and geophysical data. A combined modeling approach, NHWAVE and FUNWAVE-TVD, was used to model the dynamic process of landslide movement and the generation and propagation of landslide tsunamis. The simulation results show that the tsunamigenic capacities of the Baiyun and Zengmu Ansha Slides differ significantly, although they have comparable volumes. This large difference was attributed to the discrepancy in the initial water depth and slope gradient. Tsunami waves generated by the Baiyun Slide rose up to approximately 12 m in the source area and mainly affected the northern region of the SCS, particularly the southern mainland Chinese coast. The Zengmu Ansha Slide generated 38 m tsunami waves that assailed the majority of the coastline of the southern SCS. The Zhongjiannan Slide generated highly localized tsunami waves about 10 m near the source region on the west SCS coast. The North Xisha trough slide produced a minor tsunami impact with tsunami waves that were approximately 0.9 m high in the source region. The distribution of the maximum surface elevation and the propagation characteristics of tsunami waves suggest that the tsunamigenic potential of submarine landslides is controlled by geometric and kinematic parameters. Meanwhile, complex bathymetry and coastlines change the energy distribution of tsunami waves, increasing the difficulty of tsunami hazard assessment. Conducting landslide-tsunami simulations for typical landslides in the SCS and establishing a landslide-tsunami database is of great research significance and will assist in improving the prediction of marine geo-hazards in China.

中图分类号: 

图1 南海主要构造和本研究涉及到的海底滑坡分布(红色填充多边形)
黑色虚线为盆地边界;红色线为构造线;黄色圆点为南海沿岸主要城市;RRAF:红河—哀牢山断层;PRMB:珠江口盆地;QDNB:琼东南盆地;XTB:西沙海槽盆地;ZJNB:中建南盆地; BBB:Baram-Balabac盆地;PT:巴拉望海槽;XSI:西沙群岛;ZSI:中沙群岛;NSI:南沙群岛;RB:礼乐滩
Fig. 1 The main geological structures in South China Sea and the mentioned distribution of submarine landslides in this studyred polygon
Black dashed line: geologic structural boundary; Red line: structure line; Yellow dots: major coastal cities; RRAF: Red River-Ailao Fault; PRMB: Pearl-river Mouth Basin; QDNB: Qiong Dong Nan Basin; XTB: Xisha Trough Basin; ZJNB: Zhong Jian Nan Basin; BBB: Baram-Balabac Basin; PT: Palawan Trough; XSI: Xisha Islands; ZSI: Zhongsha Islands; NSI: Nansha Islands; RB: Reed Bank
图2 白云滑坡的位置分布和2.4 Ma以来珠江口盆地海平面变化曲线 31 4期滑坡对应的时间点 19 (红色点)
Fig. 2 The distribution of Baiyun slide and the sea-level change of PRMB from 2.4 Ma 31 and the corresponding time of 4 MTDs 19 red dots
图3 曾母暗沙滑坡的位置分布及其剖面(剖面引自参考文献[ 25 ])
Fig. 3 The distributions of Zengmu Ansha slide and its profilecited from the reference 25 ])
图4 西沙海槽北部陆坡海底滑坡MTD1~3分布图以及地震剖面中MTDBSR的分布(据参考文献[ 54 ]修改)
滑坡头部发育在BSR上方,MTD下方为一系列密集的断裂;蓝色虚线表示BSR(似海底反射层)
Fig. 4 The location of north Xisha trough slide MTD1~3 and the location of MTD and BSRmodified after reference 54 ])
The headwall scarps of MTDs occurred above BSRs and a series of closely spaced faults beneath MTDs. The blue dotted line indicates a BSR (Bottom Simulating Reflector)
图5 南海西部部分地震目录与主要地质构造和文中涉及4处代表性滑坡地震剖面(据参考文献[ 66 ]修改)
(a)南海西部主要地质构造及地震目录;(b)~(e)中建南滑坡4处代表性滑坡
Fig. 5 Portion earthquake catalogues in the western South China Sea and the seismic profiles of four representative landslidemodified after reference 66 ])
(a) The major tectonic structures and the earthquakes catalogs in western SCS;(b)~(e) The profiles of four representative landslides of Zhongjiannan slide
表1 南海典型海底滑坡的海底稳定性影响因素
Table 1 The affected factors of typical submarine landslides in South China Sea
滑坡名称 白云滑坡 曾母暗沙滑坡 西沙海槽北部陆坡滑坡 中建南滑坡
地理位置 114.4°~116.0°E,18.9°~19.8°N 113.2°~113.9°E,5.0°~6.2°N 112.8°~113.1°E,18.3°~18.5°N 约109.8°E,11.9°~13.4°N
构造位置 南海北部被动大陆边缘、 珠江口盆地白云凹陷 南海南部主动大陆边缘、南沙海槽盆地 南海北部被动大陆边缘、西沙海槽北部陆坡 南海西部走滑型边界、 南海西部陆坡
形成时间 1.59 Ma、0.79 Ma、0.54 Ma、0.19 Ma 2.00~7.00 ka 2.58 Ma 10.00~12.00 ka
滑坡体积/km3 1 024.56 1 200.00 63.48 14.00
海底稳定性影响因素 构造活动 白云凹陷沉降 40 ,发育 正断层 41 南沙地块向婆罗洲俯冲,不断隆升的背斜 26 海槽 58 ,发育大量细小断裂 56 陡峭陆坡 68 70
沉积作用 早更新世(约1.8 Ma)沉积速率达到350 m/Ma 23 晚第四纪(约11.7 ka)沉积速率459 Mt/a 37 第四纪(约2.58 Ma)沉积速率高达约370 m/Ma 73 - 74 全新世早期(约11.7 ka)沉积速率为60~120 g/(cm2·ka) 71
流体活动 发育大量气体通道 40 ;岩浆侵入形成裂缝,并伴随强烈流体活动 23 40 75 存在BSR 25 ;大量流体向浅部不断聚集 26 ;存在水合物分解证据 76 - 77 存在BSR 53 ;岩浆活动使地层隆起,导致坡度增大 53 流体沿着高角度断层 运移 70
地震活动 大型活跃正断层具有地震 活动性 41 最大震级可达M 6.1 72
海平面变化 珠江口盆地经历反复的海侵和海退 78 ,第四纪以来经历3次上升和2次下降,其中MTDa和MTDb发生在海平面上升时期,MTDc和MTDd发生在海平面下降期 19 31 第四纪期间,三级海平面变化与全球海平面变化基本一致,有2次低位和1次高位,变化幅度最大约100 m 79 - 80 第四纪期间海平面变化周期约为0.3 Ma,变化幅度在100 m左右 64 - 65 6~13 ka BP期间,南海 西部近海区域海平面从 -80 m上升到-20 m 71
触发因素 推测MTDa和MTDb是断层活动及伴随流体活动成因;MTDc和MTDd由天然气 水合物分解引发 19 流体运移导致背斜构造 坍塌 26 ;天然气水合物 分解 25 削峭作用和流体活动 53 地震活动 72
表2 南海 4处代表性滑坡体的几何参数
Table 2 The parameters of four typical submarine landslides in South China Sea
图6 白云滑坡在不同时刻的厚度分布
白色箭头的方向和长度代表该点滑坡物质的运动方向和速度
Fig. 6 The thickness distribution of the Baiyun slide at different times
The direction and length of the white arrows indicate the main directions of slide motion and their velocities
图7 曾母暗沙滑坡在不同时刻的厚度分布
白色箭头的方向和长度代表该点滑坡物质的主要运动方向和速度
Fig. 7 The thickness distribution of the Zengmu Ansha slide at different times
The direction and length of the white arrows indicate the main directions of slide motion and their velocities
图8 白云滑坡和曾母暗沙滑坡分别在不同时间后海啸波传播图[(a)和(c)]和剖面图[(b)和(d)]
Fig. 8 The propagation of tsunami generated by the Baiyun slide and the Zengmu Ansha slide at different times [(aandc)] after failure and their profiles [(bandd)]
图9 白云滑坡与曾母暗沙滑坡的空间分布以及沿I-I'Ⅱ-Ⅱ'的剖面图(据参考文献[ 21 ]修改)
(a)白云滑坡体厚度分布;(b)曾母暗沙滑坡体厚度分布;(c)白云滑坡峡谷坡度剖面;(d)曾母暗沙滑坡峡谷坡度剖面
Fig. 9 The distribution of the Baiyun slide and the Zengmu Ansha slide and the profiles along I-I'Ⅱ-Ⅱ'the distribution of slide thicknessmodified after reference 21 ])
The distribution of slide thickness of: (a) The Baiyun slide; (b) The Zengmu Ansha slide. And the slope profiles: (c) The Baiyun slide; (d) The Zengmu Ansha slide
图10 滑坡海啸的最大波高分布图及走时
Fig. 10 The distribution of maximum wave generated by submarine landslides and their travel time
图11 滑坡产生的海啸在南海北部的最大波高分布
红色柱:对应站点位置的最大波高
Fig. 11 The distribution of maximum wave generated by submarine landslides in north South China Sea
Red columns: the maximum wave height in the specified tide gauges
图12 在滑坡发生5 min后的最大波高分布图
(a)白云滑坡;(b)曾母暗沙滑坡;(c)西沙海槽北部陆坡滑坡;(d)中建南滑坡
Fig. 12 The distribution of maximum wave generated by submarine landslides at t=5 min after slope failure
(a) The Baiyun slide; (b) The Zengmu Ansha slide; (c) North Xisha Trough slide; (d) The Zhongjiannan slide
表3 4处海底滑坡各项参数
Table 3 The parameters of four typical submarine landslides in South China Sea
1 Tsunami Information Center. Historical tsunami [DS/OL]. [2022-05-14]. .
2 LØVHOLT F, GLIMSDAL S, HARBITZ C B. On the landslide tsunami uncertainty and hazard[J]. Landslides, 2020, 17(10): 2 301-2 315.
3 TAPPIN D R, GRILLI S T. The continuing underestimated tsunami hazard from submarine landslides[M]// Understanding and reducing landslide disaster risk. Cham: Springer International Publishing, 2020: 343-350.
4 LIU P L F, HIGUERA P, HUSRIN S, et al. Coastal landslides in palu bay during 2018 Sulawesi earthquake and tsunami[J]. Landslides, 2020, 17(9): 2 085-2 098.
5 NAKATA K, KATSUMATA A, MUHARI A. Submarine landslide source models consistent with multiple tsunami records of the 2018 Palu tsunami, Sulawesi, Indonesia[J]. Earth, Planets and Space, 2020, 72(1): 1-16.
6 GATTER R, CLARE M A, KUHLMANN J, et al. Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation[J]. Earth-Science Reviews, 2021, 223. DOI: 10.1016/j.earscirev.2021.103845 .
7 SCHAMBACH L, GRILLI S T, TAPPIN D R. New high-resolution modeling of the 2018 Palu tsunami, based on supershear earthquake mechanisms and mapped coastal landslides, supports a dual source[J]. Frontiers in Earth Science, 2021, 8. DOI: 10.3389/feart.2020.598839 .
8 GRILLI S T, TAPPIN D R, CAREY S, et al. Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-48327-6 .
9 HUNT J E, TAPPIN D R, WATT S F L, et al. Submarine landslide megablocks show half of Anak Krakatau Island failed on December 22nd, 2018[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-22610-5 .
10 YE L L, KANAMORI H, RIVERA L, et al. The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption[J]. Science Advances, 2020, 6(3). DOI: 10.1126/sciadv.aaz1377 .
11 GRILLI S T, ZHANG C, KIRBY J T, et al. Modeling of the Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: comparison with observed tsunami impact[J]. Marine Geology, 2021, 440. DOI:10.1016/j.margeo.2021.106566 .
12 RAMÍREZ-HERRERA M T, COCA O, VARGAS-ESPINOSA V. Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha’apai volcano eruption, Tonga[J]. Pure and Applied Geophysics, 2022, 179(4): 1 117-1 137.
13 KATAOKA R, WINN S D, TOUBER E. Meteotsunamis in Japan associated with the Tonga Eruption in January 2022[J]. Scientific Online Letters on the Atmosphere, 2022. DOI:10.2151/sola.2022-019 .
14 TAPPIN D R, WATTS P, GRILLI S T. The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event[J]. Natural Hazards and Earth System Sciences, 2008, 8(2): 243-266.
15 ASSIER-RZADKIEAICZ S, HEINRICH P, SABATIER P C, et al. Numerical modelling of a landslide-generated tsunami: the 1979 Nice event[J]. Pure and Applied Geophysics, 2000, 157(10): 1 707-1 727.
16 HAUGEN K B, LØVHOLT F, HARBITZ C B. Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries[J]. Marine and Petroleum Geology, 2005, 22(1/2): 209-217.
17 HARBITZ C B, LØVHOLT F, BUNGUM H. Submarine landslide tsunamis: how extreme and how likely?[J]. Natural Hazards, 2014, 72(3): 1 341-1 374.
18 SUN Q, ALVES T M, LU X, et al. True volumes of slope failure estimated from a quaternary mass-transport deposit in the northern South China Sea[J]. Geophysical Research Letters, 2018, 45(6): 2 642-2 651.
19 SUN Q, CARTWRIGHT J, XIE X, et al. Reconstruction of repeated Quaternary slope failures in the northern South China Sea[J]. Marine Geology, 2018, 401: 17-35.
20 LI L, SHI F, MA G, et al. Tsunamigenic potential of the Baiyun Slide Complex in the South China Sea[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 7 680-7 698.
21 LI Linlin, QIU Qiang, LI Zhigang, et al. Tsunami hazard assessment in the South China Sea: a review of recent progress and research gaps [J]. Scientia Sinica (Terrae), 2022, 52(5): 803-831.
李琳琳, 邱强, 李志刚, 等. 南海海啸灾害研究进展及展望[J]. 中国科学: 地球科学, 2022, 52(5): 803-831.
22 SUN Q, XIE X, WU S. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives[J]. Earth Science Frontiers, 2021, 28(2): 258-270.
23 LI W, WU S, VÖLKER D, et al. Morphology, seismic characterization and sediment dynamics of the Baiyun slide complex on the northern South China Sea margin[J]. Journal of the Geological Society, 2014, 171(6): 865-877.
24 SUN Lining, YU Fujiang, WANG Peitao. Numerical simulation and risk analysis of landslide tsunami in the northern South China Sea[J]. Marine Forecasts, 2020, 37(6): 9-19.
孙立宁, 于福江, 王培涛. 南海北部滑坡海啸数值模拟与危险性分析[J]. 海洋预报, 2020, 37(6): 9-19.
25 GEE M J R, UY H S, WARREN J, et al. The Brunei slide: a giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data[J]. Marine Geology, 2007, 246(1): 9-23.
26 REN J, SUN M, HAN B. A giant submarine landslide and its triggering mechanisms on the Nansha Trough Margin, South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2021, 46(3): 1 058-1 071.
27 CHAI M F, LAU T L, MAJID T A. RETRACTED: potential impacts of the Brunei slide tsunami over East Malaysia and Brunei Darussalam[J]. Ocean Engineering, 2014, 81: 69-76.
28 TAN W K, TEH S Y, KOH H L. Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure[J]. Environmental Science and Pollution Research, 2017, 24(19): 15 976-15 994.
29 TEHRANIRAD B, KIRBY J T, MA G, et al. Tsunami benchmark results for non-hydrostatic wave model NHWAVE version 1.1[R]. Research Report, CACR-12, 2012.
30 SHI F, KIRBY J T, HARRIS J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43/44: 36-51.
31 PANG Xiong, CHEN Changmin, SHI Hesheng, et al. Response between relative sea-level change and the Pearl River deep-water fan system in the South China Sea[J]. Earth Science Frontiers, 2005, 12(3): 167-177.
庞雄, 陈长民, 施和生, 等. 相对海平面变化与南海珠江深水扇系统的响应[J]. 地学前缘, 2005, 12(3): 167-177.
32 SUN Yunbao, WU Shiguo, WANG Zhijun, et al. The geometry and deformation characteristic of Baiyun submarine landslide [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77.
孙运宝, 吴时国, 王志君, 等. 南海北部白云大型海底滑坡的几何形态与变形特征[J].海洋地质与第四纪地质, 2008, 28(6): 69-77.
33 SUN Zhen, PANG Xiong, ZHONG Zhihong, et al. Dynamics of tertiary tectonic evolution of Baiyun Sag in the Prarl River Mouth Basin[J]. Earth Science Frontiers, 2005, 12(4): 489-498.
孙珍, 庞雄, 钟志洪, 等. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘, 2005, 12(4): 489-498.
34 DONG D, ZHANG G, ZHONG K, et al. Tectonic evolution and dynamics of deepwater area of Pearl River Mouth Basin, northern South China Sea[J]. Journal of Earth Science, 2009, 20(1): 147-159.
35 XIE Hui, ZHOU Di, SHI Hongcai, et al. Comparative study on the Cenozoic tectonic and sedimentary evolution in the deep water areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin[J]. Haiyang Xuebao,2021, 43(3):48-61.
谢辉, 周蒂, 石红才, 等. 珠江口盆地—琼东南盆地深水区新生代构造沉积演化对比分析[J]. 海洋学报, 2021, 43(3): 48-61.
36 XIE H, ZHOU D, PANG X, et al. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4): 159-173.
37 LIU Z, ZHAO Y, COLIN C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273.
38 PANG Xiong, CHEN Changmin, PENG Dajun, et al. Sequence stratigraphy of Pearl River Deep-water Fan System in the South China Sea [J]. Earth Science Frontiers, 2007, 14(1): 220-229.
庞雄, 陈长民, 彭大钧, 等. 南海珠江深水扇系统的层序地层学研究[J]. 地学前缘, 2007, 14(1): 220-229.
39 ZHOU D, SUN Z, LIAO J, et al. Filling history and post-breakup acceleration of sedimentation in Baiyun Sag, deepwater northern South China Sea[J]. Journal of Earth Science, 2009, 20(1): 160-171.
40 WANG L, WU S G, LI Q P, et al. Architecture and development of a multi-stage Baiyun submarine slide complex in the Pearl River Canyon, northern South China Sea[J]. Geo-Marine Letters, 2014, 34(4): 327-343.
41 DING Y Z. The active faults and the seismic activity in the Pearl River Mouth Basin and its vicinity areas[J]. Earthquake Research in China, 1994,10(4):307-319..
42 VOIGHT B, ELSWORTH D. Failure of volcano slopes[J]. Geotechnique, 1997, 47(1): 1-31.
43 CULLEN A B. Transverse segmentation of the Baram-Balabac Basin, NW Borneo: refining the model of Borneo’s tectonic evolution[J]. Petroleum Geoscience, 2010, 16(1): 3-29.
44 LEI Chao, REN Jianye, ZHANG Jing. Tectonic province divisions in the South China Sea: implications for basin geodynamics[J]. Earth Science, 2015, 40(4): 744-762.
雷超, 任建业, 张静. 南海构造变形分区及成盆过程[J]. 地球科学, 2015, 40(4): 744-762.
45 HUTCHISON C S. The ‘Rajang accretionary prism’and ‘Lupar Line’ problem of Borneo[J]. Geological Society, London, Special Publications, 1996, 106(1): 247-261.
46 LONGLEY I M. The tectonostratigraphic evolution of SE Asia[J]. Geological Society Special Publication, 1997, 126: 311-339.
47 MOSS S J. Embaluh Group turbidites in Kalimantan: evolution of a remnant oceanic basin in Borneo during the late Cretaceous to Palaeogene[J]. Journal of the Geological Society, 1998, 155(3): 509-524.
48 MORLEY C K. Interaction between critical wedge geometry and sediment supply in a deep-water fold belt[J]. Geology, 2007, 35(2): 139.
49 MORLEY C K. Growth of folds in a deep-water setting[J]. Geosphere, 2009, 5(2): 59-89.
50 WU Shiguo, CHEN Shanshan, WANG Zhijun, et al. Submarine landslide and risk evaluation on its instability in the deepwater continental margin[J]. Geoscience, 2008, 22(3): 430-437.
吴时国, 陈珊珊, 王志君, 等. 大陆边缘深水区海底滑坡及其不稳定性风险评估[J]. 现代地质, 2008, 22(3): 430-437.
51 SUN Q, ALVES T, XIE X, et al. Free gas accumulations in basal shear zones of mass-transport deposits (Pearl River Mouth Basin, South China Sea): an important geohazard on continental slope basins[J]. Marine and Petroleum Geology, 2017, 81: 17-32.
52 REN Ziqiang, SHI Xiaobin, WANG Xiaofang, et al. Deep thermal state in the Nansha Trough of South China Sea and its tectonic implications[J]. Journal of Tropical Oceanography, 2021, 40(4): 98-109.
任自强, 施小斌, 王晓芳, 等. 南海南沙海槽深部热状态及其构造意义[J]. 热带海洋学报, 2021, 40(4): 98-109.
53 QIN Z L, WU S G, WANG D W, et al. Mass transport deposits and processes in the north slope of the Xisha Trough, northern South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(9): 117-125.
54 HE Yunlong, XIE Xinong, LI Junliang, et al. Depositional characteristics and controlling factors of continental slope system in the Qiongdongnan Basin[J]. Geological Science and Technology Information, 2010, 29(2): 118-122.
何云龙, 解习农, 李俊良, 等. 琼东南盆地陆坡体系发育特征及其控制因素[J]. 地质科技情报, 2010, 29(2): 118-122.
55 XIE X, MÜLLER R D, REN J, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3/4): 129-144.
56 WU X M, LIANG Q Y, MA Y, et al. Submarine landslides and their distribution in the gas hydrate area on the north slope of the South China Sea[J]. Energies, 2018, 11(12): 3481.
57 YUAN Y S, YANG S C, HU S B, et al. Tectonic subsidence of Qiongdongnan Basin and its main control factors[J]. Chinese Journal of Geophysics, 2008, 51(2): 248-255.
58 HUHN K, ARROYO M, CATTANEO A, et al. Modern submarine landslide complexes: a short review[M]// Submarine landslides: subaqueous mass transport deposits from outcrops to seismic profiles. 2019: 181-200.
59 WANG X J, WU S G, XU N, et al. Estimation of gas hydrate saturation using constrained sparse spike inversion: case study from the northern South China Sea[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4). DOI:10.3319/TAO.2006.17.4.799(GH ).
60 WANG Shuhong, YAN Wen, SONG Haibin. Change of gas hydrate reservoir and its effect on the environment in Xisha Trough since the last Glacial maximum[J]. Journal of Earth Science, 2007, 18(1): 39-48.
61 LIU F, WU S G, SUN Y B. A quantitative analysis for submarine slope instability of the northern South China Sea due to gas hydrate dissociation[J]. Acta Geophysica Sinica, 2010, 53(4): 946-953.
62 CHEN H J, HUANG L, PNEG X C. Discussion of characteristics and formation of landslide zones in the gas hydrate survey area of northwest continental slope, the South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(5): 18-25.
63 YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the northern South China Sea since the late Younger Dryas[J]. Earth Science, 2013, 38(6): 1 299-1 308.
叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学, 2013, 38(6): 1 299-1 308.
64 CHENG C, JIANG T, KUANG Z G, et al. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 129. DOI: 10.1016/j.marpetgeo.2021.105118 .
65 ZHAO Z X, SUN Z, SUN L T, et al. Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea[J]. Basin Research, 2016, 30: 269-288.
66 PAN X Y, LI L L, NGUYỄN H P, et al. Submarine landslides in the west continental slope of the South China Sea and their tsunamigenic potential[J]. Frontiers in Earth Science, 2022, 10. DOI: 10.3389/feart.2022.843173 .
67 NGUYỄN HỒNG PHƯƠNG V V P. Possibility of near-field tsunami generation in the southern central coast of vietnam[C]// Ioc Unesco meeting on South China Sea. Vietnam, Hanoi, 2017.
68 FYHN M B W, NIELSEN L H, BOLDREEL L O, et al. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam[J]. Marine and Petroleum Geology, 2009, 26(1): 1-24.
69 AN Huiting, LI Sanzhong, SUO Yanhui, et al. Basin-controlling faults and formation mechanism of the Cenozoic Basin groups in the western South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 95-111.
安慧婷, 李三忠, 索艳慧, 等. 南海西部新生代控盆断裂及盆地群成因[J]. 海洋地质与第四纪地质, 2012, 32(6): 95-111.
70 TAN M T, DUNG L V, BACH L D, et al. Pliocene-Quaternary evolution of the continental shelf of central Vietnam based on high resolution seismic data[J]. Journal of Asian Earth Sciences, 2014, 79: 529-539.
71 SCHIMANSKI A, STATTEGGER K. Deglacial and Holocene evolution of the Vietnam shelf: stratigraphy, sediments and sea-level change[J]. Marine Geology, 2005, 214(4): 365-387.
72 NGUYEN P H, BUI Q C, NGUYEN X D. Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast[J]. Natural Hazards, 2012, 64(1): 311-327.
73 WANG D W, WU S G, QIN Z L, et al. Seismic characteristics of the Huaguang mass transport deposits in the Qiongdongnan Basin, South China Sea: implications for regional tectonic activity[J]. Marine Geology, 2013, 346: 165-182.
74 ZHAO Z X, SUN Z, WANG Z F, et al. The high resolution sedimentary filling in Qiongdongnan Basin, northern South China Sea[J]. Marine Geology, 2015, 361: 11-24.
75 SUN Q L, WU S G, CARTWRIGH T J, et al. Neogene igneous intrusions in the northern South China Sea: evidence from high-resolution three dimensional seismic data[J]. Marine and Petroleum Geology, 2014, 54: 83-95.
76 ZHANG Bingkun, LI Sanzhong, XIA Zhen, et al. Time sequence of submarine landslides and gas hydrates in the northern South China Sea[J]. Geotectonica et Metallogenia, 2014, 38(2): 434-440.
张丙坤, 李三忠, 夏真, 等. 南海北部海底滑坡与天然气水合物形成与分解的时序性[J]. 大地构造与成矿学, 2014, 38(2): 434-440.
77 HUANG Yi, WANG Shuhong, YAN Wen, et al. Gas hydrate dissociation event and its relationship with submarine slide in Dongsha area of northern South China Sea[J]. Journal of Tropical Oceanography, 2018, 37(4): 61-69.
黄怡, 王淑红, 颜文, 等. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系[J]. 热带海洋学报, 2018, 37(4): 61-69.
78 QIN Guoquan. Late Cenozoic sequence stratigraphy and sea-level changes in Pearl River Mouth Basin, South China Sea[J]. China Offshore Oil and Gas, 2002, 14(1): 1-10, 18.
秦国权. 珠江口盆地新生代晚期层序地层划分和海平面变化[J]. 中国海上油气地质, 2002, 14(1): 1-10, 18.
79 HAQ B, HARDENBOL J, VAIL P. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1 156-1 167.
80 MAT-ZIN I C, TUCKER M E. An alternative stratigraphic scheme for the Sarawak Basin[J]. Journal of Asian Earth Sciences, 1999, 17(1/2): 215-232.
81 POSAMENTIER H W, SUMMERHAYES C P, HAQ B U, et al. Sequence stratigraphy and facies associations[M]. The International Association of Sedimentologists, 1993.
82 DUGAN B, SHEAHAN T C. Offshore sediment overpressures of passive margins: mechanisms, measurement, and models[J]. Reviews of Geophysics, 2012, 50(3): 1-20.
83 KUHLMANN J, HUHN K, IKARI M J. Do embedded volcanoclastic layers serve as potential glide planes? An integrated analysis from the Gela Basin offshore southern sicily[J]. Advances in Natural and Technological Hazards Research, 2016, 41: 273-280.
84 LOCAT J, LEE H J. Submarine landslides: advances and challenges[J]. Canadian Geotechnical Journal, 2002, 39: 193-212.
85 URGELES R, CAMERLENGHI A. Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2 600-2 618.
86 FYHN M B W, BOLDREEL L O, NIELSEN L H. Geological development of the Central and South Vietnamese margin: implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism[J]. Tectonophysics, 2009, 478(3/4): 184-214.
87 ENET F, GRILLI S T. Experimental study of tsunami generation by three-dimensional rigid underwater landslides[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(6): 442-454.
88 GRILLI S T, VOGELMANN S, WATTS P. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides[J]. Engineering Analysis with Boundary Elements, 2002, 26(4): 301-313.
89 WANG X, WANG Y, HE M, et al. Genesis and evolution of the mass transport deposits in the middle segment of the Pearl River canyon, South China Sea: insights from 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 555-574.
90 CHEN Mei, ZHANG Li, SHI Xiaobin, et al. The Cenozoic evolution of sedimentary environment of Xisha Trough Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 15-24.
陈梅, 张莉, 施小斌, 等. 西沙海槽盆地新生代沉积环境演化[J]. 海洋地质与第四纪地质, 2019, 39(1): 15-24.
91 STRAUB K M, MOHRIG D, PIRMEZ C. Architecture of an aggradational tributary submarine-channel network on the continental slope offshore Brunei Darussalam[J]. Thrombosis Research, 2012, 46(3): 457-471.
92 ZHANG C, KIRBY J T, SHI F, et al. A two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 2. numerical discretization and model validation[J]. Ocean Modelling, 2021, 160. DOI: 10.1016/j.ocemod.2021.101769 .
93 ZHANG C, KIRBY J T, SHI F, et al. A two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 1. theoretical basis[J]. Ocean Modelling, 2021, 159. DOI:10.1016/J.OCEMOD.2020.101749 .
94 MA G, SHI F, KIRBY J T. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes[J]. Ocean Modelling, 2012, 43/44: 22-35.
95 LI L, SWITZER A D, WANG Y, et al. What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast?[J]. Geophysical Research Letters, 2015, 42(20): 8 498-8 506.
96 GRILLI S T, SHELBY M, KIMMOUN O, et al. Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast[J]. Natural Hazards, 2017, 86(1): 353-391.
97 SCHAMBACH L, GRILLI S T, TAPPIN D R, et al. New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source[J]. Marine Geology, 2020, 421. DOI: 10.1016/j.margeo.2019.106093 .
98 TEHRANIRAD B, SHI F, KIRBY J T, et al. Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0[R]. Center for Applied Coastal Research, University of Delaware, 2011.
99 KIRBY J T, SHI F Y, NICOLSKY D, et al. The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: a comparison of modeling approaches[J]. Landslides, 2016, 13(6): 1 421-1 434.
100 CHIOCCI F L, ROMAGNOLI C, TOMMASI P, et al. The Stromboli 2002 tsunamigenic submarine slide: characteristics and possible failure mechanisms[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B10). DOI: 10.1029/2007JB005172 .
101 TAPPIN D R, GRILLI S T, HARRIS J C, et al. Did a submarine landslide contribute to the 2011 Tohoku tsunami?[J]. Marine Geology, 2014, 357: 344-361.
102 HSU S K, KUO J, LO C L, et al. Turbidity Currents, submarine landslides and the 2006 pingtung earthquake off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(6): 767-772.
103 SU C C, TSENG J Y, HSU H H, et al. Records of submarine natural hazards off SW Taiwan[J]. Geological Society, London, Special Publications, 2012, 361(1): 41-60.
104 LØVHOLT F, BONDEVIK S, LABERG J S, et al. Some giant submarine landslides do not produce large tsunamis[J]. Geophysical Research Letters, 2017, 44(16): 8 463-8 472.
105 KIM J, LØVHOLT F, ISSLER D, et al. Landslide material control on tsunami genesis—the Storegga slide and tsunami (8, 100 Years BP)[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3 607-3 627.
106 POPE E L, TALLING P J, CARTER L. Which earthquakes trigger damaging submarine mass movements: insights from a global record of submarine cable breaks?[J]. Marine Geology, 2017, 384: 131-146.
107 WANG F W, DAI Z L, NAKAHARA Y, et al. Experimental study on impact behavior of submarine landslides on undersea communication cables[J]. Ocean Engineering, 2018, 148: 530-537.
108 NAJAFI-JILANI A, ATAIE-ASHTIANI B. Estimation of near-field characteristics of tsunami generation by submarine landslide[J]. Ocean Engineering, 2008, 35(5/6): 545-557.
109 LØVHOLT F, HARBITZ C B, HAUGEN K B. A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway[J]. Marine and Petroleum Geology, 2005, 22(1/2): 219-231.
110 GRILLI S, WATTS P. Tsunami generation by submarine mass failure. I: modeling, experimental validation, and sensitivity analyses[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2005, 131: 283-297.
111 WARD S N. Landslide tsunami[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B6): 11 201-11 215.
112 TINTI S, BORTOLUCCI E, CHIAVETTIERI C. Tsunami excitation by submarine slides in shallow-water approximation[J]. Pure and Applied Geophysics, 2001, 158(4): 759-797.
113 HARBITZ C B, LØVHOLT F, PEDERSEN G, et al. Mechanisms of tsunami generation by submarine landslides: a short review[C]. Norsk Geologisk Tidsskrift: 86, 2006: 255-264.
114 WARD S N, DAY S. Cumbre Vieja volcano—potential collapse and tsunami at La Palma, Canary Islands[J]. Geophysical Research Letters, 2001, 28(17): 3 397-3 400.
[1] 胡庆, 栾锡武, 冉伟民, 魏新元, 王嘉, 叶传红, 韦明盟, 龚梁轩, 刘泽璇. 北伊里安盆地北缘海底滑坡特征及成因研究[J]. 地球科学进展, 2022, 37(3): 303-315.
[2] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[3] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[4] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[5] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[6] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[7] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[8] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[9] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[10] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[11] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[12] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[13] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[14] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[15] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
阅读次数
全文


摘要