1 |
Tsunami Information Center. Historical tsunami [DS/OL]. [2022-05-14]. .
|
2 |
LØVHOLT F, GLIMSDAL S, HARBITZ C B. On the landslide tsunami uncertainty and hazard[J]. Landslides, 2020, 17(10): 2 301-2 315.
|
3 |
TAPPIN D R, GRILLI S T. The continuing underestimated tsunami hazard from submarine landslides[M]// Understanding and reducing landslide disaster risk. Cham: Springer International Publishing, 2020: 343-350.
|
4 |
LIU P L F, HIGUERA P, HUSRIN S, et al. Coastal landslides in palu bay during 2018 Sulawesi earthquake and tsunami[J]. Landslides, 2020, 17(9): 2 085-2 098.
|
5 |
NAKATA K, KATSUMATA A, MUHARI A. Submarine landslide source models consistent with multiple tsunami records of the 2018 Palu tsunami, Sulawesi, Indonesia[J]. Earth, Planets and Space, 2020, 72(1): 1-16.
|
6 |
GATTER R, CLARE M A, KUHLMANN J, et al. Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation[J]. Earth-Science Reviews, 2021, 223. DOI: 10.1016/j.earscirev.2021.103845 .
|
7 |
SCHAMBACH L, GRILLI S T, TAPPIN D R. New high-resolution modeling of the 2018 Palu tsunami, based on supershear earthquake mechanisms and mapped coastal landslides, supports a dual source[J]. Frontiers in Earth Science, 2021, 8. DOI: 10.3389/feart.2020.598839 .
|
8 |
GRILLI S T, TAPPIN D R, CAREY S, et al. Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-48327-6 .
|
9 |
HUNT J E, TAPPIN D R, WATT S F L, et al. Submarine landslide megablocks show half of Anak Krakatau Island failed on December 22nd, 2018[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-22610-5 .
|
10 |
YE L L, KANAMORI H, RIVERA L, et al. The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption[J]. Science Advances, 2020, 6(3). DOI: 10.1126/sciadv.aaz1377 .
|
11 |
GRILLI S T, ZHANG C, KIRBY J T, et al. Modeling of the Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: comparison with observed tsunami impact[J]. Marine Geology, 2021, 440. DOI:10.1016/j.margeo.2021.106566 .
|
12 |
RAMÍREZ-HERRERA M T, COCA O, VARGAS-ESPINOSA V. Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha’apai volcano eruption, Tonga[J]. Pure and Applied Geophysics, 2022, 179(4): 1 117-1 137.
|
13 |
KATAOKA R, WINN S D, TOUBER E. Meteotsunamis in Japan associated with the Tonga Eruption in January 2022[J]. Scientific Online Letters on the Atmosphere, 2022. DOI:10.2151/sola.2022-019 .
|
14 |
TAPPIN D R, WATTS P, GRILLI S T. The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event[J]. Natural Hazards and Earth System Sciences, 2008, 8(2): 243-266.
|
15 |
ASSIER-RZADKIEAICZ S, HEINRICH P, SABATIER P C, et al. Numerical modelling of a landslide-generated tsunami: the 1979 Nice event[J]. Pure and Applied Geophysics, 2000, 157(10): 1 707-1 727.
|
16 |
HAUGEN K B, LØVHOLT F, HARBITZ C B. Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries[J]. Marine and Petroleum Geology, 2005, 22(1/2): 209-217.
|
17 |
HARBITZ C B, LØVHOLT F, BUNGUM H. Submarine landslide tsunamis: how extreme and how likely?[J]. Natural Hazards, 2014, 72(3): 1 341-1 374.
|
18 |
SUN Q, ALVES T M, LU X, et al. True volumes of slope failure estimated from a quaternary mass-transport deposit in the northern South China Sea[J]. Geophysical Research Letters, 2018, 45(6): 2 642-2 651.
|
19 |
SUN Q, CARTWRIGHT J, XIE X, et al. Reconstruction of repeated Quaternary slope failures in the northern South China Sea[J]. Marine Geology, 2018, 401: 17-35.
|
20 |
LI L, SHI F, MA G, et al. Tsunamigenic potential of the Baiyun Slide Complex in the South China Sea[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 7 680-7 698.
|
21 |
LI Linlin, QIU Qiang, LI Zhigang, et al. Tsunami hazard assessment in the South China Sea: a review of recent progress and research gaps [J]. Scientia Sinica (Terrae), 2022, 52(5): 803-831.
|
|
李琳琳, 邱强, 李志刚, 等. 南海海啸灾害研究进展及展望[J]. 中国科学: 地球科学, 2022, 52(5): 803-831.
|
22 |
SUN Q, XIE X, WU S. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives[J]. Earth Science Frontiers, 2021, 28(2): 258-270.
|
23 |
LI W, WU S, VÖLKER D, et al. Morphology, seismic characterization and sediment dynamics of the Baiyun slide complex on the northern South China Sea margin[J]. Journal of the Geological Society, 2014, 171(6): 865-877.
|
24 |
SUN Lining, YU Fujiang, WANG Peitao. Numerical simulation and risk analysis of landslide tsunami in the northern South China Sea[J]. Marine Forecasts, 2020, 37(6): 9-19.
|
|
孙立宁, 于福江, 王培涛. 南海北部滑坡海啸数值模拟与危险性分析[J]. 海洋预报, 2020, 37(6): 9-19.
|
25 |
GEE M J R, UY H S, WARREN J, et al. The Brunei slide: a giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data[J]. Marine Geology, 2007, 246(1): 9-23.
|
26 |
REN J, SUN M, HAN B. A giant submarine landslide and its triggering mechanisms on the Nansha Trough Margin, South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2021, 46(3): 1 058-1 071.
|
27 |
CHAI M F, LAU T L, MAJID T A. RETRACTED: potential impacts of the Brunei slide tsunami over East Malaysia and Brunei Darussalam[J]. Ocean Engineering, 2014, 81: 69-76.
|
28 |
TAN W K, TEH S Y, KOH H L. Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure[J]. Environmental Science and Pollution Research, 2017, 24(19): 15 976-15 994.
|
29 |
TEHRANIRAD B, KIRBY J T, MA G, et al. Tsunami benchmark results for non-hydrostatic wave model NHWAVE version 1.1[R]. Research Report, CACR-12, 2012.
|
30 |
SHI F, KIRBY J T, HARRIS J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43/44: 36-51.
|
31 |
PANG Xiong, CHEN Changmin, SHI Hesheng, et al. Response between relative sea-level change and the Pearl River deep-water fan system in the South China Sea[J]. Earth Science Frontiers, 2005, 12(3): 167-177.
|
|
庞雄, 陈长民, 施和生, 等. 相对海平面变化与南海珠江深水扇系统的响应[J]. 地学前缘, 2005, 12(3): 167-177.
|
32 |
SUN Yunbao, WU Shiguo, WANG Zhijun, et al. The geometry and deformation characteristic of Baiyun submarine landslide [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77.
|
|
孙运宝, 吴时国, 王志君, 等. 南海北部白云大型海底滑坡的几何形态与变形特征[J].海洋地质与第四纪地质, 2008, 28(6): 69-77.
|
33 |
SUN Zhen, PANG Xiong, ZHONG Zhihong, et al. Dynamics of tertiary tectonic evolution of Baiyun Sag in the Prarl River Mouth Basin[J]. Earth Science Frontiers, 2005, 12(4): 489-498.
|
|
孙珍, 庞雄, 钟志洪, 等. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘, 2005, 12(4): 489-498.
|
34 |
DONG D, ZHANG G, ZHONG K, et al. Tectonic evolution and dynamics of deepwater area of Pearl River Mouth Basin, northern South China Sea[J]. Journal of Earth Science, 2009, 20(1): 147-159.
|
35 |
XIE Hui, ZHOU Di, SHI Hongcai, et al. Comparative study on the Cenozoic tectonic and sedimentary evolution in the deep water areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin[J]. Haiyang Xuebao,2021, 43(3):48-61.
|
|
谢辉, 周蒂, 石红才, 等. 珠江口盆地—琼东南盆地深水区新生代构造沉积演化对比分析[J]. 海洋学报, 2021, 43(3): 48-61.
|
36 |
XIE H, ZHOU D, PANG X, et al. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4): 159-173.
|
37 |
LIU Z, ZHAO Y, COLIN C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273.
|
38 |
PANG Xiong, CHEN Changmin, PENG Dajun, et al. Sequence stratigraphy of Pearl River Deep-water Fan System in the South China Sea [J]. Earth Science Frontiers, 2007, 14(1): 220-229.
|
|
庞雄, 陈长民, 彭大钧, 等. 南海珠江深水扇系统的层序地层学研究[J]. 地学前缘, 2007, 14(1): 220-229.
|
39 |
ZHOU D, SUN Z, LIAO J, et al. Filling history and post-breakup acceleration of sedimentation in Baiyun Sag, deepwater northern South China Sea[J]. Journal of Earth Science, 2009, 20(1): 160-171.
|
40 |
WANG L, WU S G, LI Q P, et al. Architecture and development of a multi-stage Baiyun submarine slide complex in the Pearl River Canyon, northern South China Sea[J]. Geo-Marine Letters, 2014, 34(4): 327-343.
|
41 |
DING Y Z. The active faults and the seismic activity in the Pearl River Mouth Basin and its vicinity areas[J]. Earthquake Research in China, 1994,10(4):307-319..
|
42 |
VOIGHT B, ELSWORTH D. Failure of volcano slopes[J]. Geotechnique, 1997, 47(1): 1-31.
|
43 |
CULLEN A B. Transverse segmentation of the Baram-Balabac Basin, NW Borneo: refining the model of Borneo’s tectonic evolution[J]. Petroleum Geoscience, 2010, 16(1): 3-29.
|
44 |
LEI Chao, REN Jianye, ZHANG Jing. Tectonic province divisions in the South China Sea: implications for basin geodynamics[J]. Earth Science, 2015, 40(4): 744-762.
|
|
雷超, 任建业, 张静. 南海构造变形分区及成盆过程[J]. 地球科学, 2015, 40(4): 744-762.
|
45 |
HUTCHISON C S. The ‘Rajang accretionary prism’and ‘Lupar Line’ problem of Borneo[J]. Geological Society, London, Special Publications, 1996, 106(1): 247-261.
|
46 |
LONGLEY I M. The tectonostratigraphic evolution of SE Asia[J]. Geological Society Special Publication, 1997, 126: 311-339.
|
47 |
MOSS S J. Embaluh Group turbidites in Kalimantan: evolution of a remnant oceanic basin in Borneo during the late Cretaceous to Palaeogene[J]. Journal of the Geological Society, 1998, 155(3): 509-524.
|
48 |
MORLEY C K. Interaction between critical wedge geometry and sediment supply in a deep-water fold belt[J]. Geology, 2007, 35(2): 139.
|
49 |
MORLEY C K. Growth of folds in a deep-water setting[J]. Geosphere, 2009, 5(2): 59-89.
|
50 |
WU Shiguo, CHEN Shanshan, WANG Zhijun, et al. Submarine landslide and risk evaluation on its instability in the deepwater continental margin[J]. Geoscience, 2008, 22(3): 430-437.
|
|
吴时国, 陈珊珊, 王志君, 等. 大陆边缘深水区海底滑坡及其不稳定性风险评估[J]. 现代地质, 2008, 22(3): 430-437.
|
51 |
SUN Q, ALVES T, XIE X, et al. Free gas accumulations in basal shear zones of mass-transport deposits (Pearl River Mouth Basin, South China Sea): an important geohazard on continental slope basins[J]. Marine and Petroleum Geology, 2017, 81: 17-32.
|
52 |
REN Ziqiang, SHI Xiaobin, WANG Xiaofang, et al. Deep thermal state in the Nansha Trough of South China Sea and its tectonic implications[J]. Journal of Tropical Oceanography, 2021, 40(4): 98-109.
|
|
任自强, 施小斌, 王晓芳, 等. 南海南沙海槽深部热状态及其构造意义[J]. 热带海洋学报, 2021, 40(4): 98-109.
|
53 |
QIN Z L, WU S G, WANG D W, et al. Mass transport deposits and processes in the north slope of the Xisha Trough, northern South China Sea[J]. Acta Oceanologica Sinica, 2015, 34(9): 117-125.
|
54 |
HE Yunlong, XIE Xinong, LI Junliang, et al. Depositional characteristics and controlling factors of continental slope system in the Qiongdongnan Basin[J]. Geological Science and Technology Information, 2010, 29(2): 118-122.
|
|
何云龙, 解习农, 李俊良, 等. 琼东南盆地陆坡体系发育特征及其控制因素[J]. 地质科技情报, 2010, 29(2): 118-122.
|
55 |
XIE X, MÜLLER R D, REN J, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3/4): 129-144.
|
56 |
WU X M, LIANG Q Y, MA Y, et al. Submarine landslides and their distribution in the gas hydrate area on the north slope of the South China Sea[J]. Energies, 2018, 11(12): 3481.
|
57 |
YUAN Y S, YANG S C, HU S B, et al. Tectonic subsidence of Qiongdongnan Basin and its main control factors[J]. Chinese Journal of Geophysics, 2008, 51(2): 248-255.
|
58 |
HUHN K, ARROYO M, CATTANEO A, et al. Modern submarine landslide complexes: a short review[M]// Submarine landslides: subaqueous mass transport deposits from outcrops to seismic profiles. 2019: 181-200.
|
59 |
WANG X J, WU S G, XU N, et al. Estimation of gas hydrate saturation using constrained sparse spike inversion: case study from the northern South China Sea[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4). DOI:10.3319/TAO.2006.17.4.799(GH ).
|
60 |
WANG Shuhong, YAN Wen, SONG Haibin. Change of gas hydrate reservoir and its effect on the environment in Xisha Trough since the last Glacial maximum[J]. Journal of Earth Science, 2007, 18(1): 39-48.
|
61 |
LIU F, WU S G, SUN Y B. A quantitative analysis for submarine slope instability of the northern South China Sea due to gas hydrate dissociation[J]. Acta Geophysica Sinica, 2010, 53(4): 946-953.
|
62 |
CHEN H J, HUANG L, PNEG X C. Discussion of characteristics and formation of landslide zones in the gas hydrate survey area of northwest continental slope, the South China Sea[J]. Journal of Tropical Oceanography, 2012, 31(5): 18-25.
|
63 |
YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the northern South China Sea since the late Younger Dryas[J]. Earth Science, 2013, 38(6): 1 299-1 308.
|
|
叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学, 2013, 38(6): 1 299-1 308.
|
64 |
CHENG C, JIANG T, KUANG Z G, et al. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 129. DOI: 10.1016/j.marpetgeo.2021.105118 .
|
65 |
ZHAO Z X, SUN Z, SUN L T, et al. Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea[J]. Basin Research, 2016, 30: 269-288.
|
66 |
PAN X Y, LI L L, NGUYỄN H P, et al. Submarine landslides in the west continental slope of the South China Sea and their tsunamigenic potential[J]. Frontiers in Earth Science, 2022, 10. DOI: 10.3389/feart.2022.843173 .
|
67 |
NGUYỄN HỒNG PHƯƠNG V V P. Possibility of near-field tsunami generation in the southern central coast of vietnam[C]// Ioc Unesco meeting on South China Sea. Vietnam, Hanoi, 2017.
|
68 |
FYHN M B W, NIELSEN L H, BOLDREEL L O, et al. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam[J]. Marine and Petroleum Geology, 2009, 26(1): 1-24.
|
69 |
AN Huiting, LI Sanzhong, SUO Yanhui, et al. Basin-controlling faults and formation mechanism of the Cenozoic Basin groups in the western South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6): 95-111.
|
|
安慧婷, 李三忠, 索艳慧, 等. 南海西部新生代控盆断裂及盆地群成因[J]. 海洋地质与第四纪地质, 2012, 32(6): 95-111.
|
70 |
TAN M T, DUNG L V, BACH L D, et al. Pliocene-Quaternary evolution of the continental shelf of central Vietnam based on high resolution seismic data[J]. Journal of Asian Earth Sciences, 2014, 79: 529-539.
|
71 |
SCHIMANSKI A, STATTEGGER K. Deglacial and Holocene evolution of the Vietnam shelf: stratigraphy, sediments and sea-level change[J]. Marine Geology, 2005, 214(4): 365-387.
|
72 |
NGUYEN P H, BUI Q C, NGUYEN X D. Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast[J]. Natural Hazards, 2012, 64(1): 311-327.
|
73 |
WANG D W, WU S G, QIN Z L, et al. Seismic characteristics of the Huaguang mass transport deposits in the Qiongdongnan Basin, South China Sea: implications for regional tectonic activity[J]. Marine Geology, 2013, 346: 165-182.
|
74 |
ZHAO Z X, SUN Z, WANG Z F, et al. The high resolution sedimentary filling in Qiongdongnan Basin, northern South China Sea[J]. Marine Geology, 2015, 361: 11-24.
|
75 |
SUN Q L, WU S G, CARTWRIGH T J, et al. Neogene igneous intrusions in the northern South China Sea: evidence from high-resolution three dimensional seismic data[J]. Marine and Petroleum Geology, 2014, 54: 83-95.
|
76 |
ZHANG Bingkun, LI Sanzhong, XIA Zhen, et al. Time sequence of submarine landslides and gas hydrates in the northern South China Sea[J]. Geotectonica et Metallogenia, 2014, 38(2): 434-440.
|
|
张丙坤, 李三忠, 夏真, 等. 南海北部海底滑坡与天然气水合物形成与分解的时序性[J]. 大地构造与成矿学, 2014, 38(2): 434-440.
|
77 |
HUANG Yi, WANG Shuhong, YAN Wen, et al. Gas hydrate dissociation event and its relationship with submarine slide in Dongsha area of northern South China Sea[J]. Journal of Tropical Oceanography, 2018, 37(4): 61-69.
|
|
黄怡, 王淑红, 颜文, 等. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系[J]. 热带海洋学报, 2018, 37(4): 61-69.
|
78 |
QIN Guoquan. Late Cenozoic sequence stratigraphy and sea-level changes in Pearl River Mouth Basin, South China Sea[J]. China Offshore Oil and Gas, 2002, 14(1): 1-10, 18.
|
|
秦国权. 珠江口盆地新生代晚期层序地层划分和海平面变化[J]. 中国海上油气地质, 2002, 14(1): 1-10, 18.
|
79 |
HAQ B, HARDENBOL J, VAIL P. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1 156-1 167.
|
80 |
MAT-ZIN I C, TUCKER M E. An alternative stratigraphic scheme for the Sarawak Basin[J]. Journal of Asian Earth Sciences, 1999, 17(1/2): 215-232.
|
81 |
POSAMENTIER H W, SUMMERHAYES C P, HAQ B U, et al. Sequence stratigraphy and facies associations[M]. The International Association of Sedimentologists, 1993.
|
82 |
DUGAN B, SHEAHAN T C. Offshore sediment overpressures of passive margins: mechanisms, measurement, and models[J]. Reviews of Geophysics, 2012, 50(3): 1-20.
|
83 |
KUHLMANN J, HUHN K, IKARI M J. Do embedded volcanoclastic layers serve as potential glide planes? An integrated analysis from the Gela Basin offshore southern sicily[J]. Advances in Natural and Technological Hazards Research, 2016, 41: 273-280.
|
84 |
LOCAT J, LEE H J. Submarine landslides: advances and challenges[J]. Canadian Geotechnical Journal, 2002, 39: 193-212.
|
85 |
URGELES R, CAMERLENGHI A. Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2 600-2 618.
|
86 |
FYHN M B W, BOLDREEL L O, NIELSEN L H. Geological development of the Central and South Vietnamese margin: implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism[J]. Tectonophysics, 2009, 478(3/4): 184-214.
|
87 |
ENET F, GRILLI S T. Experimental study of tsunami generation by three-dimensional rigid underwater landslides[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(6): 442-454.
|
88 |
GRILLI S T, VOGELMANN S, WATTS P. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides[J]. Engineering Analysis with Boundary Elements, 2002, 26(4): 301-313.
|
89 |
WANG X, WANG Y, HE M, et al. Genesis and evolution of the mass transport deposits in the middle segment of the Pearl River canyon, South China Sea: insights from 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 555-574.
|
90 |
CHEN Mei, ZHANG Li, SHI Xiaobin, et al. The Cenozoic evolution of sedimentary environment of Xisha Trough Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 15-24.
|
|
陈梅, 张莉, 施小斌, 等. 西沙海槽盆地新生代沉积环境演化[J]. 海洋地质与第四纪地质, 2019, 39(1): 15-24.
|
91 |
STRAUB K M, MOHRIG D, PIRMEZ C. Architecture of an aggradational tributary submarine-channel network on the continental slope offshore Brunei Darussalam[J]. Thrombosis Research, 2012, 46(3): 457-471.
|
92 |
ZHANG C, KIRBY J T, SHI F, et al. A two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 2. numerical discretization and model validation[J]. Ocean Modelling, 2021, 160. DOI: 10.1016/j.ocemod.2021.101769 .
|
93 |
ZHANG C, KIRBY J T, SHI F, et al. A two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 1. theoretical basis[J]. Ocean Modelling, 2021, 159. DOI:10.1016/J.OCEMOD.2020.101749 .
|
94 |
MA G, SHI F, KIRBY J T. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes[J]. Ocean Modelling, 2012, 43/44: 22-35.
|
95 |
LI L, SWITZER A D, WANG Y, et al. What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast?[J]. Geophysical Research Letters, 2015, 42(20): 8 498-8 506.
|
96 |
GRILLI S T, SHELBY M, KIMMOUN O, et al. Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast[J]. Natural Hazards, 2017, 86(1): 353-391.
|
97 |
SCHAMBACH L, GRILLI S T, TAPPIN D R, et al. New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source[J]. Marine Geology, 2020, 421. DOI: 10.1016/j.margeo.2019.106093 .
|
98 |
TEHRANIRAD B, SHI F, KIRBY J T, et al. Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0[R]. Center for Applied Coastal Research, University of Delaware, 2011.
|
99 |
KIRBY J T, SHI F Y, NICOLSKY D, et al. The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: a comparison of modeling approaches[J]. Landslides, 2016, 13(6): 1 421-1 434.
|
100 |
CHIOCCI F L, ROMAGNOLI C, TOMMASI P, et al. The Stromboli 2002 tsunamigenic submarine slide: characteristics and possible failure mechanisms[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B10). DOI: 10.1029/2007JB005172 .
|
101 |
TAPPIN D R, GRILLI S T, HARRIS J C, et al. Did a submarine landslide contribute to the 2011 Tohoku tsunami?[J]. Marine Geology, 2014, 357: 344-361.
|
102 |
HSU S K, KUO J, LO C L, et al. Turbidity Currents, submarine landslides and the 2006 pingtung earthquake off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(6): 767-772.
|
103 |
SU C C, TSENG J Y, HSU H H, et al. Records of submarine natural hazards off SW Taiwan[J]. Geological Society, London, Special Publications, 2012, 361(1): 41-60.
|
104 |
LØVHOLT F, BONDEVIK S, LABERG J S, et al. Some giant submarine landslides do not produce large tsunamis[J]. Geophysical Research Letters, 2017, 44(16): 8 463-8 472.
|
105 |
KIM J, LØVHOLT F, ISSLER D, et al. Landslide material control on tsunami genesis—the Storegga slide and tsunami (8, 100 Years BP)[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3 607-3 627.
|
106 |
POPE E L, TALLING P J, CARTER L. Which earthquakes trigger damaging submarine mass movements: insights from a global record of submarine cable breaks?[J]. Marine Geology, 2017, 384: 131-146.
|
107 |
WANG F W, DAI Z L, NAKAHARA Y, et al. Experimental study on impact behavior of submarine landslides on undersea communication cables[J]. Ocean Engineering, 2018, 148: 530-537.
|
108 |
NAJAFI-JILANI A, ATAIE-ASHTIANI B. Estimation of near-field characteristics of tsunami generation by submarine landslide[J]. Ocean Engineering, 2008, 35(5/6): 545-557.
|
109 |
LØVHOLT F, HARBITZ C B, HAUGEN K B. A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway[J]. Marine and Petroleum Geology, 2005, 22(1/2): 219-231.
|
110 |
GRILLI S, WATTS P. Tsunami generation by submarine mass failure. I: modeling, experimental validation, and sensitivity analyses[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2005, 131: 283-297.
|
111 |
WARD S N. Landslide tsunami[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B6): 11 201-11 215.
|
112 |
TINTI S, BORTOLUCCI E, CHIAVETTIERI C. Tsunami excitation by submarine slides in shallow-water approximation[J]. Pure and Applied Geophysics, 2001, 158(4): 759-797.
|
113 |
HARBITZ C B, LØVHOLT F, PEDERSEN G, et al. Mechanisms of tsunami generation by submarine landslides: a short review[C]. Norsk Geologisk Tidsskrift: 86, 2006: 255-264.
|
114 |
WARD S N, DAY S. Cumbre Vieja volcano—potential collapse and tsunami at La Palma, Canary Islands[J]. Geophysical Research Letters, 2001, 28(17): 3 397-3 400.
|