地球科学进展 ›› 2023, Vol. 38 ›› Issue (2): 183 -191. doi: 10.11867/j.issn.1001-8166.2023.002

研究论文 上一篇    下一篇

2019年温州湾藻华期间海洋生态要素演变特征
刘金贵 1 , 3 , 4( ), 车助镁 2, 李尚鲁 2, 仉天宇 1 , 3 , 4( )   
  1. 1.广东海洋大学海洋与气象学院,广东 湛江 524088
    2.浙江省海洋监测预报中心,浙江 杭州 310007
    3.自然资源部空间海洋遥感与应用重点实验室,北京 100081
    4.广东海洋大学,近海海洋变化与灾害预警实验室,广东 湛江 524088
  • 收稿日期:2022-11-02 修回日期:2022-12-26 出版日期:2023-02-10
  • 通讯作者: 仉天宇 E-mail:jinguiliu1981@hotmail.com;zhaangty@sina.com
  • 基金资助:
    广东海洋大学科研启动经费资助项目“典型热带海湾营养盐循环过程——以湛江湾为例”(060302032202);“南海区台风风暴潮数值模拟系统”(060302032106)

Characteristics of Marine Ecological Factors During Red Tide Periods in 2019 in Wenzhou Bay

Jingui LIU 1 , 3 , 4( ), Zhumei CHE 2, Shanglu LI 2, Tianyu ZHANG 1 , 3 , 4( )   

  1. 1.College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang Guangdong 524088, China
    2.Marine Monitoring & Forecasting Center of Zhejiang Province, Hangzhou 310007, China
    3.Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China
    4.Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang Guangdong 524088, China
  • Received:2022-11-02 Revised:2022-12-26 Online:2023-02-10 Published:2023-03-02
  • Contact: Tianyu ZHANG E-mail:jinguiliu1981@hotmail.com;zhaangty@sina.com
  • About author:LIU Jingui (1981-), male, Jingchuan County, Gansu Province, Associate professor. Research areas include estuarine and coastal dynamics, marine ecological environmental numerical simulations. E-mail: jinguiliu1981@hotmail.com
  • Supported by:
    Program for Scientific Research Start-up Funds of Guangdong Ocean University “Nutrients cycling processes in tropical bay: a case study of the Zhanjiang Bay”(060302032202);“Numerical simulation system of typhoon storm surge in South China Sea”(060302032106)

近年温州湾赤潮暴发严重威胁当地经济发展和生态安全。利用2019年4~6月海洋生态浮标实时监测数据,分析温州湾赤潮发生前后主要生态要素的演变特征。结果表明: 温州湾海温春季开始升高,5月初升至约20 ℃;受山溪性径流和潮流共同影响,表层盐度日内波动明显,变化范围为22~31 PSU,洪水时明显下降。 赤潮发生前期,溶解无机氮和活性磷酸盐(PO4-P)主要受水动力条件控制,赤潮暴发后受藻类生长消耗与天气尺度的洪水补充共同影响。 通过主成分分析发现,海温和营养盐是赤潮发生的关键因子。最后分析氮磷比值与溶解氧含量演变过程,指出这两个化学指标可作为赤潮发生监测预警指标。研究结果可促进赤潮暴发与水文、生源要素关系的认识,并为赤潮发生预测预警提供参考。

In recent years, red tides have posed severe threats to local economic development and ecological safety. Using real-time monitoring data from the Biogeochemical Argo from April to June 2019, we investigated the changes in the main ecological factors during red tide periods. The results led to the following conclusions: Water temperature began to increase from early spring and rose to about 20 °C in early May. Owing to the impact of river discharge and tidal current, surface salinity presents obvious daily fluctuations with a range of 22~31 PSU, which evidently decreases due to flooding. Dissolved Inorganic Nitrogen (DIN) and active phosphate are controlled by hydrodynamics prior to occurrence, whereas they are influenced mainly by algal growth and the supply of meteorological-scale flooding post occurrence. Nutrients and sea temperature are determined as key factors through Principal Component Analysis (PCA). Lastly, the variation in the ratio of N∶P and Dissolved Oxygen (DO) was further analyzed, and we proposed that the two chemical indices can be referred to as warning indices of red tide occurrence in Wenzhou Bay. This study will help build a linkage between red tides and hydrology and ecological factors, in support of forecasts and early warning of red tides.

中图分类号: 

图1 温州湾的位置(a)以及温州湾概况、赤潮范围和生态浮标位置(b
绿色虚线范围表示南麂列岛—北麂列岛—洞头列岛以东海域甲藻赤潮区域(中心位置如红色五角星所示),黄色方形表示有毒赤潮,邻近南麂黄色圆形表示浮标位置
Fig. 1 The location of the Wenzhou Baya); close-up of the Wenzhou Bayred tides areasecological Buoy siteb
Green dotted area marks Prorocentrum donghaiense (Center location is shown by red pentagram), yellow squares mark toxic red tides, and yellow circle near the Nanji Islands marks Buoy site
图2 温州湾温度和盐度演变过程
Fig. 2 Daily variations of temperature and salinity in the Wenzhou Bay
图3 温州湾溶解无机氮(DIN)逐日变化(a)与组成(b
Fig. 3 Daily Dissolved Inorganic NitrogenDIN) (aand componentsbin the Wenzhou Bay
图4 温州湾赤潮暴发PO4-P、溶解无机氮(DIN)和叶绿素 a 变化
Fig. 4 Variations of PO4-PDissolved Inorganic NitrogenDINand Chlorophyll-a during red tides periods in the Wenzhou Bay
图5 温州湾赤潮发生主成分分析
Fig. 5 Principle Component Analysis during red tides in the Wenzhou Bay
表1 温州湾赤潮暴发主成分分析
Table 1 Principle component analysis of red tides in the Wenzhou Bay
图6 温州湾赤潮暴发DINPO4-P
Fig. 6 The ratio of DINPO4-P during red tides in the Wenzhou Bay
图7 温州湾赤潮暴发溶解氧演变过程
Fig. 7 Timeseries Dissolved OxygenDOduring red tides in the Wenzhou Bay
14 XU L L, LIANG Y Y, XIAO W J, et al. Analysis of the inter-annual variability and southward expansion of red tides in the Zhejiang coastal waters from 1981 to 2018[J]. Acta Oceanologica Sinica, 2022, 41(1): 132-140.
15 LI Yang, Songhui LÜ, JIANG Tianjiu, et al. Seasonal variation and the factors influenced of nitrogen and phosphorus nutrients in Nanji Islands sea area[J]. Marine Science Bulletin, 2009, 28(4): 74-80.
李扬, 吕颂辉, 江天久, 等. 浙江南麂列岛海域氮、磷营养盐季节动态及其环境影响因子分析[J]. 海洋通报, 2009, 28(4): 74-80.
16 ZHANG Fuxing, YAO Yujuan, MA Linfang. Analysis on hydro-meteorological conditions and characteristics of red tide in Wenzhou coastal waters[J]. Marine Forecasts, 2016, 33(5): 89-94.
张福星, 姚玉娟, 马林芳. 温州沿海赤潮发生的水文气象条件及赤潮特征分析[J]. 海洋预报, 2016, 33(5): 89-94.
17 HOLLAND S M. Principal Components Analysis (PCA)[Z]. Department of Geology, University of Georgia, Atbens, GA 30602-2501. 2019.
18 GONG G C, WEN Y H, WANG B W, et al. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6/7): 1 219-1 236.
19 WANG Zhengfang, ZHANG Qing, Haiyan LÜ. Effects of temperature, salinity, light and pH on the growth of red tide organisms prorocentrum micans[J]. Oceanologia et Limnologia Sinica, 2001, 32(1): 15-18.
王正方, 张庆, 吕海燕. 温度、盐度、光照强度和pH对海洋原甲藻增长的效应[J]. 海洋与湖沼, 2001, 32(1): 15-18.
20 ZHOU Zhengxi, YU Rencheng, ZHOU Mingjiang. Fitting analysis of phytoplankton biomass and environmental factors in the coastal waters adjacent to the Changjiang River Estuary[J]. Marine Sciences, 2016, 40(11): 74-83.
周正熙, 于仁成, 周名江. 长江口邻近海域春季藻华期间浮游植物生物量与环境要素的拟合分析[J]. 海洋科学, 2016, 40(11): 74-83.
21 LI Y C, LIU J G. A numerical study on salinity stratification at the Oujiang River Estuary, China[J]. Acta Oceanologica Sinica, 2019, 38(11): 40-50.
22 LIN Xiaojuan, GAO Shan, ZHANG Tianyu, et al. Researching progress and application status of eutrophication evaluation method of seawater[J]. Advances in Earth Science, 2018, 33(4): 373-384.
林晓娟, 高姗, 仉天宇, 等. 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
23 LIN Senjie, JI Nanjing, LUO Hao. Recent progress in marine harmful algal bloom research[J]. Oceanologia et Limnologia Sinica, 2019, 50(3): 495-510.
林森杰, 姬南京, 罗昊. 海洋有害藻华研究进展[J]. 海洋与湖沼, 2019, 50(3): 495-510.
24 ZHANG Y Q, LIN X, SHI X G, et al. Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom[J]. Frontiers in Microbiology, 2019, 10. DOI:10.3389/fmicb.2019.00590 .
25 ANDERSON D M, GLIBERT P M, BURKHOLDER J M. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences[J]. Estuaries, 2002, 25(4): 704-726.
26 YU Zhiming, CHEN Nansheng. Emerging trends in red tide and major research progresses[J]. Oceanologia et Limnologia Sinica, 2019, 50(3): 474-486.
俞志明, 陈楠生. 国内外赤潮的发展趋势与研究热点[J]. 海洋与湖沼, 2019, 50(3): 474-486.
27 DIAZ R J, ROSENBERG R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5 891): 926-929.
28 KARKI S, SULTAN M, ELKADIRI R, et al. Mapping and forecasting onsets of harmful algal blooms using MODIS data over coastal waters surrounding Charlotte County, Florida[J]. Remote Sensing, 2018, 10(10). DOI:10.3390/rs10101656 .
29 WANG W D, HSU S B, WANG F B. Dynamics of harmful algae with seasonal temperature variations in the cove-main lake[J]. Discrete and Continuous Dynamical Systems—Series B, 2016, 21(1): 313-335.
1 SONG Jinming, LI Xuegang, YUAN Huamao. Marine biogeochemistry[M]. Beijing: Science Press, 2020.
宋金明, 李学刚, 袁华茂. 海洋生物地球化学[M]. 北京: 科学出版社, 2020.
2 XIE Hongying, WANG Jinhui, MA Zuyou, et al. Review of harmful algal blooms hazard[J]. Marine Environmental Science, 2019, 38(3): 482-488.
谢宏英, 王金辉, 马祖友, 等. 赤潮灾害的研究进展[J]. 海洋环境科学, 2019, 38(3): 482-488.
3 GLIBERT P, BURFORD M. Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges[J]. Oceanography, 2017, 30(1): 58-69.
4 YU Rencheng, Songhui LÜ, QI Yuzao, et al. Progress and perspectives of harmful algal bloom studies in China[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 768-788.
于仁成, 吕颂辉, 齐雨藻, 等. 中国近海有害藻华研究现状与展望[J]. 海洋与湖沼, 2020, 51(4): 768-788.
5 JIANG Shan, WANG Yicheng, MA Renfeng. Change conalysis of chlorophyll concentration in the East China Sea and its response to seawater temperature[J]. Bulletin of Surveying and Mapping, 2020(6): 39-44.
江杉, 王益澄, 马仁锋. 中国东海叶绿素浓度变化分析及其海水温度响应[J]. 测绘通报, 2020(6): 39-44.
6 CHEN Nansheng, CHEN Yang. Advances in the study of biodiversity of phytoplankton and red tide species in China (II): the East China Sea[J]. Oceanologia et Limnologia Sinica, 2021, 52(2): 363-418.
陈楠生, 陈阳. 中国海洋浮游植物和赤潮物种的生物多样性研究进展(二): 东海[J]. 海洋与湖沼, 2021, 52(2): 363-418.
7 DAI X F, LU D D, GUAN W B, et al. The correlation between Prorocentrum donghaiense blooms and the Taiwan warm current in the East China Sea—evidence for the Pelagic Seed Bank hypothesis[J]. PLoS ONE, 2013, 8(5). DOI:10.1371/journal.pone.0064188 .
8 XU N, DUAN S S, LI A F, et al. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu[J]. Harmful Algae, 2010, 9(1): 13-17.
9 ZHOU Mingjiang, ZHU Mingyuan. Progress of the project “ecology and oceanography of harmful algal blooms in China”[J]. Advances in Earth Science, 2006, 21(7): 673-679, 764.
周名江, 朱明远. “我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展[J]. 地球科学进展, 2006, 21(7): 673-679, 764.
10 ZHU Hong, HUANG Xiuqing, QIN Yutao. Distribution of red tide plankton community in Zhejiang coastal water in summer, 2006[J]. Marine Environmental Science, 2009, 28(6): 702-705.
朱虹, 黄秀清, 秦玉涛. 2006年夏季浙江海域赤潮生物群落分布[J]. 海洋环境科学, 2009, 28(6): 702-705.
11 LI Yangdong, XIE Yangyang, LI Renhu, et al. Research on the temporal and spatial distribution characteristics of red tide in Zhejiang coastal area[J]. Marine Forecasts, 2021, 38(1): 54-60.
李阳东, 谢洋洋, 李仁虎, 等. 浙江近岸海域赤潮事件时空分布特征研究[J]. 海洋预报, 2021, 38(1): 54-60.
12 YANG Zhi, RAN Lihua, XU Xiaoqun, et al. The behavior of phosphate in the Xiangshan Bay and its potential impact on harmful algal blooms[J]. Haiyang Xuebao, 2018, 40(10): 61-70.
杨志, 冉莉华, 徐晓群, 等. 象山港水体的磷酸盐及其对赤潮的潜在影响[J]. 海洋学报, 2018, 40(10): 61-70.
13 CHEN Lei, XU Zhaoli, YAO Weimin, et al. The distribution of nutrients, phytoplankton and zooplankton in spring of the Oujiang River Estuary[J]. Acta Ecologica Sinica, 2009, 29(3): 1 571-1 577.
陈雷, 徐兆礼, 姚炜民, 等. 瓯江口春季营养盐、浮游植物和浮游动物的分布[J]. 生态学报, 2009, 29(3): 1 571-1 577.
[1] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[2] 张强,张良,崔显成,曾剑. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7): 763-778.
[3] 傅丽君,安新丽,郑天凌. 环境中放线菌及其抑藻活性物质研究的若干进展[J]. 地球科学进展, 2010, 25(9): 960-965.
[4] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[5] 周名江,朱明远. “我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展[J]. 地球科学进展, 2006, 21(7): 673-679.
[6] 张武昌,孙松. 铁假说和HNLC海区的现场铁加富实验[J]. 地球科学进展, 2002, 17(4): 613-616.
[7] 任 玲,杨 军. 海洋中氮营养盐循环及其模型研究[J]. 地球科学进展, 2000, 15(1): 58-64.
阅读次数
全文


摘要