地球科学进展 ›› 2023, Vol. 38 ›› Issue (7): 688 -702. doi: 10.11867/j.issn.1001-8166.2023.033

综述与评述 上一篇    下一篇

海洋氮循环中间体羟胺的研究进展
童森炜 1( ), 杨进宇 1, 万显会 1, 牛晴晴 1, 高树基 1 , 2( )   
  1. 1.厦门大学近海海洋环境科学国家重点实验室 海洋与地球学院, 福建 厦门 361102
    2.海南大学南海海洋资源利用国家重点实验室 海洋学院, 海南 海口 570228
  • 收稿日期:2023-03-16 修回日期:2023-05-12 出版日期:2023-07-10
  • 通讯作者: 高树基 E-mail:senweitong@stu.xmu.edu.cn;sjkao@xmu.edu.cn
  • 基金资助:
    国家自然科学基金重大研究计划“西北太平洋真光层氮循环关键过程及其对氧化亚氮海气通量的贡献”(92058204);国家自然科学基金创新研究群体项目“海洋氮循环与全球变化”(41721005)

Research Progress on Hydroxylamine, An Intermediate in the Nitrogen Cycle

Senwei TONG 1( ), Jinyu YANG 1, Xianhui WAN 1, Qingqing NIU 1, Shuh-Ji KAO 1 , 2( )   

  1. 1.State Key Laboratory of Marine Environmental Sciences, College of Ocean and Earth Science, Xiamen University, Xiamen Fujian 361102, China
    2.College of Ocean, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
  • Received:2023-03-16 Revised:2023-05-12 Online:2023-07-10 Published:2023-07-19
  • Contact: Shuh-Ji KAO E-mail:senweitong@stu.xmu.edu.cn;sjkao@xmu.edu.cn
  • About author:TONG Senwei (1997-), male, Yuhuan City, Zhejiang Province, Ph. D student. Research area includes marine biogeochemical research. E-mail: senweitong@stu.xmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Source and flux of N2O in the euphotic zone of the Northwestern Pacific”(92058204);Creative Research Groups of the National Natural Science Foundation of China “Nitrogen cycle under global change”(41721005)

羟胺(NH2OH)是海洋中极为活跃的痕量氮素之一,是氨氧化、硝酸盐异化还原成铵和厌氧氨氧化等诸多氮循环过程的关键中间产物,是构架海洋氮循环网络的重要组成。同时,NH2OH也是温室气体氧化亚氮(N2O)的重要前体物,与海洋N2O的产生与释放紧密关联。因此,系统理解NH2OH在海洋中的源汇格局、时空变异及其调控机理,对刻画海洋氮循环以及气候效应至关重要。然而,由于NH2OH在海洋中纳摩尔级别浓度及其复杂、活跃的迁移转化过程,使得海洋学界对于NH2OH的认识仍不清晰。系统综述了当前关于海洋NH2OH的研究进展,重点总结了NH2OH潜在的源汇过程、测定方法及其对海洋N2O产生的可能贡献,以及海洋中NH2OH的分布特征及其潜在影响因素。最后,梳理了关于NH2OH测定和影响其分布的可能机理等方面存在的问题和难点,提出未来海洋NH2OH研究的建议与展望。

Hydroxylamine (NH2OH) is one of the most active trace forms of nitrogen in oceans, and it is the key intermediate product of many nitrogen cycle processes, such as ammonia oxidation, dissimilatory nitrate reduction to ammonium and anaerobic ammonia oxidation. Therefore, it is an important component of the marine nitrogen cycle network framework. Concurrently, NH2OH is an important precursor of the greenhouse gas nitrous oxide (N2O), closely related to the production and release of marine N2O. Accordingly, a systematic understanding of the source and sink, spatiotemporal variations, and regulatory mechanisms of NH2OH in the ocean is essential to understand the oceanic nitrogen cycle and climate effects. However, the nanomolar concentration of NH2OH in the ocean and its complex and active migration and transformation processes render the oceanographic community’s understanding of NH2OH unclear. Current research on marine NH2OH is systematically reviewed, focusing on the potential source and sink processes of NH2OH, the determination methods of NH2OH, the possible contribution of NH2OH to marine N2O, and the distribution characteristics and potential impact factors of NH2OH in the ocean. Finally, the problems and difficulties in determining NH2OH and the possible mechanisms affecting its distribution are summarized, and suggestions and prospects for future research on marine NH2OH are discussed.

中图分类号: 

图1 传统视角下海洋中的氮循环过程(据参考文献[ 14 ]修改)
Fig. 1 Nitrogen cycle process in the ocean from the traditional perspectivemodified after reference 14 ])
图2 海洋中NH2OH产生和转化过程
虚线为还未确定或存在争议的路径,实线为已被证实的路径,问号为该过程涉及的酶还未知。AMO:氨单加氧酶;HAO:羟胺氧化还原酶;cupredoxin Nmar1307:含有1个第一类型的铜中心的铜氧化还原蛋白;NIR:亚硝酸盐还原酶;HZS:肼合酶;HOX:羟胺氧化酶;HDH:肼脱氢酶;NAR/NAP:硝酸盐还原酶;NrfA:氨生成亚硝酸盐还原酶;CcNiR:细胞色素c亚硝酸盐还原酶;εHao:ε-羟胺氧化还原酶;Nif:固氮酶
Fig. 2 Production and transformation process of NH2OH in the sea
The dashed line represents the pathway that has not yet been determined or disputed, while the solid line represents the pathway that has been confirmed, and the question mark indicates that the enzymes involved in this process are still unknown. AMO: Ammonia monooxygenase; HAO: Hydroxylamine Oxidoreductase; cupredoxin Nmar1307: a cupredoxin contains a T1Cu center; NIR: Nitrite Reductase; HZS: Hydrazine Synthase; HOX: Hydroxylamine Oxidase; HDH: Hydrazine Dehydrogenase; NAR/NAP: Nitrate Reductase; NrfA: Ammonia Forming Nitrite Reductase; CcNiR: Cytochrome c Nitrite Reductase; εHao: ε-Hydroxylamine oxidoreductase; Nif: Nitrogenase
表1 不同天然水体中 NH2OH的浓度及回收率
Table 1 NH 2OH concentration and recovery rate in different natural water
研究区域 时间

NH2OH浓度

/(nmol/L)

检测方法 回收率/% 参与分析的环境因子
河流及湖泊

Kizaki-ko 106

(日本山脉湖泊)

1952年9月 检出限约1 500 碘氧化法 溶解氧、NH3、NO 2 - 、NO 3 -

Kizaki-ko 107

(日本山脉湖泊)

1963年7~8月 检出限约721 碘氧化法 溶解氧、NO 2 - 、NO 3 -
埃塞俄比亚河流湖泊与河流 108 检出限约152 000 碘氧化法

Iu河 88

(日本河流)

2003年2月

2003年6月

36~150 Fe3+-GC 97.0~99.2
Hii河 88 (日本河流)

2003年2月

2003年6月

21~3 614 Fe3+-GC 97.0~99.2
俄罗斯水库、湖泊 109 2004年 检出限约5 000 碘氧化法、Fe3+-GC 溶解氧、温度、NH3、NO 2 - 、NO 3 -

Nakaumi 110

(日本层化咸水湖)

2004年7月

2004年10月2005年9月

检出限约450 Fe3+-GC 溶解氧、N2O、NO 2 - 、NO 3 -

Nakaumi 103

(日本层化咸水湖)

2014年8月 114 NaClO-GC 101~105 NH3、N2O、NO 2 - 、NO 3 -

Sanbe-dam水库 90

(日本)

2019年9月 102~450 Fe3+-GC 99~103 N2O、叶绿素
近岸及河口 秘鲁沿岸缺氧区 22 <14.3 碘酸盐氧化法 溶解氧
俄勒冈州近岸 23 1981年7月 检出限约7.8 Fe3+-GC 50 溶解氧、N2O

Yaquina河口 25

(俄勒冈州)

1983年10月至1984年8月 检出限约362 Fe3+-GC 氨氧化速率、N2O

滨海潟湖 111

(加利福尼亚州)

1985年5~8月 检出限约175 Fe3+-GC 氨氧化速率、N2O
波罗的海 26 2004年2月 2~179 Fe3+-GC 30~32 溶解氧、N2O、NO 2 - 、NO 3 -
波罗的海 105 2005年7月至2006年5月 检出限约18.5 Fe3+-GC 44~64 溶解氧、密度
秘鲁沿岸缺氧区 17 2012年11~12月 1.5~20 Fe3+-GC 46~84 溶解氧、N2O、NO 2 - 、NO 3 -
中国东海、黄海 28 2017年3~4月 检出限约16.4 Fe3+-GC 63~69

温度、盐度、溶解氧、叶绿素、NH3、N2O、N2O饱和度、

NO 2 - 、NO 3 -

中国闽江河口 75 2021年 0.22~140 Fe3+-GC pH、溶解氧、温度、NH 4 +
开阔大洋 赤道大西洋 17 2011年5月 2~9.5 Fe3+-GC 46~84 溶解氧、N2O、NO 2 - 、NO 3 -
东赤道南太平洋 17 2012年11~12月 0.6~23.8 Fe3+-GC 46~84 溶解氧、N2O、NO 2 - 、NO 3 -
西南印度洋 27 2014年7~8月 检出限约6.76 Fe3+-GC 68~80 溶解氧、N2O、NO 2 - 、NO 3 -
图3 各研究区域NH2OH与各环境因子之间的Spearman相关系数热图
河流及湖泊区域数据来自于参考文献[ 103 106 - 107 109 - 110 ], n=132;近岸及河口区域数据来自于参考文献[ 17 24 26 28 111 ], n=129;开阔大洋数据来自于参考文献[ 17 27 ], n=63。其中,*表示 p<0.05;**表示 p<0.01;***表示 p<0.001;****表示 p<0.000 1
Fig. 3 Spearman correlation coefficient heat map between NH2OH and various environmental factors in each study area
The data of rivers and lakes come from references [103,106-107,109-110], n=132; The data of the nearshore and estuarine areas come from references [17,24,26,28,111], n=129;The data of open ocean come from references [17,27], n=63. “*” indicates p<0.05;“**” indicates p<0.01;“***” indicates p<0.001; “****” indicates p<0.000 1
1 GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7 176): 293-296.
2 GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226.
3 FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2013, 368(1 621). DOI:10.1098/rstb.2013.0164 .
4 GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4): 341-356.
5 TOWNSEND A R, HOWARTH R W, BAZZAZ F A, et al. Human health effects of a changing global nitrogen cycle[J]. Frontiers in Ecology and the Environment, 2003, 1(5): 240-246.
6 TOWNSEND A R, HOWARTH R W. Fixing the global nitrogen problem[J]. Scientific American, 2010, 302(2): 64-71.
7 ERISMAN J W, GALLOWAY J N, SEITZINGER S, et al. Consequences of human modification of the global nitrogen cycle[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1 621). DOI:10.1098/rstb.2013.0116 .
8 ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7 263): 472-475.
9 STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. Planetary boundaries: guiding human development on a changing planet[J]. Science, 2015, 347(6 223). DOI:10.1126/science.1259855 .
10 LADE S J, STEFFEN W, de VRIES W, et al. Human impacts on planetary boundaries amplified by Earth system interactions[J]. Nature Sustainability, 2019, 3(2): 119-128.
11 MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9): 701-710.
12 USTICK L J, LARKIN A A, GARCIA C A, et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation[J]. Science, 2021, 372(6 539): 287-291.
13 FALKOWSKI P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature, 1997, 387(6 630): 272-275.
14 DAIMS H, LÜCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9): 699-712.
15 CRUTZEN P J. The influence of nitrogen oxides on the atmospheric ozone content[J]. Quarterly Journal of the Royal Meteorological Society, 1970, 96(408): 320-325.
16 RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5 949): 123-125.
17 KORTH F, KOCK A, ARÉVALO-MARTÍNEZ D L, et al. Hydroxylamine as a potential indicator of nitrification in the open ocean[J]. Geophysical Research Letters, 2019, 46(4): 2 158-2 166.
18 HUGHES E D, INGOLD C K, RIDD J H. 13. Nitrosation, diazotisation, and deamination. part I. principles, background, and method for the kinetic study of diazotisation[J]. Journal of the Chemical Society (Resumed), 1958(0): 58-65. DOI:10.1039/JR9580000058 .
19 SZILÁRD I, JACOBSEN E, SYVÄOJA E L, et al. Stability constants of metal ion-hydroxylamine complexes in aqueous solution[J]. Acta Chemica Scandinavica, 1963, 17: 2 674-2 680.
20 ERLENMEYER H, FLIERL C, SIGEL H. Metal ions and hydrogen peroxide. XXI. On the kinetics and mechanism of the reactions of hydrogen peroxide with hydrazine or hydroxylamine, catalyzed by Cu2+ and by the Cu2+-2, 2'-bipyridyl complex[J]. Journal of the American Chemical Society, 1969, 91(5): 1 065-1 071.
21 SHARON N, KATCHALSKY A. Equilibrium constants in interaction of carbonyl compounds with hydroxylamine[J]. Analytical Chemistry, 1952, 24(9): 1 509-1 510.
22 FIADEIRO M, SOLÓRZANO L, STRICKLAND J D H. Hydroxylamine in seawater[J]. Limnology and Oceanography, 1967, 12(3): 555-556.
23 von BREYMANN M T, de ANGELIS M A, GORDON L I. Gas chromatography with electron capture detection for determination of hydroxylamine in seawater[J]. Analytical Chemistry, 1982, 54(7): 1 209-1 210.
24 BUTLER J H, GORDON L I. An improved gas chromatographic method for the measurement of hydroxylamine in marine and fresh waters[J]. Marine Chemistry, 1986, 19(3): 229-243.
25 BUTLER J H, JONES R D, GARBER J H, et al. Seasonal distributions and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 697-706.
26 GEBHARDT S, WALTER S, NAUSCH G, et al. Hydroxylamine (NH2OH) in the Baltic Sea[J]. Biogeosciences Discussions, 2004, 1: 709-724.
27 MA X, BANGE H W, EIRUND G K, et al. Nitrous oxide and hydroxylamine measurements in the Southwest Indian Ocean[J]. Journal of Marine Systems, 2020, 209. DOI:10.1016/j.jmarsys.2018.03.003 .
28 GU X J, CHENG F, CHEN X L, et al. Dissolved nitrous oxide and hydroxylamine in the South Yellow Sea and the East China Sea during early spring: distribution, production, and emissions[J]. Frontiers in Marine Science, 2021, 8. DOI:10.3389/fmars.2021.725713 .
29 LEES H. Hydroxylamine as an intermediate in nitrification[J]. Nature, 1952, 169(4 291): 156-157.
30 BÖTTCHER B, KOOPS H P. Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine[J]. FEMS Microbiology Letters, 1994, 122(3): 263-266.
31 VAJRALA N, MARTENS-HABBENA W, SAYAVEDRA-SOTO L A, et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine Archaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 1 006-1 011.
32 KITS K D, JUNG M Y, VIERHEILIG J, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata [J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09790-x .
33 GIBLIN A, TOBIAS C, SONG B, et al. The importance of Dissimilatory Nitrate Reduction to Ammonium (DNRA) in the nitrogen cycle of coastal ecosystems[J]. Oceanography, 2013, 26(3): 124-131.
34 HANSON T E, CAMPBELL B J, KALIS K M, et al. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate[J]. Frontiers in Microbiology, 2013, 4. DOI:10.3389/fmicb.2013.00180 .
35 van der STAR W R L, van de GRAAF M J, KARTAL B, et al. Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine[J]. Applied and Environmental Microbiology, 2008, 74(14): 4 417-4 426.
36 KARTAL B, MAALCKE W J, de ALMEIDA N M, et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479(7 371): 127-130.
37 HU Z Y, WESSELS H J C T, van ALEN T, et al. Nitric oxide-dependent anaerobic ammonium oxidation[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09268-w .
38 HANUŠOVÁ J, HAVLÍK B. The production of hydroxylamine by aquatic organisms[J]. Acta Hydrochimica et Hydrobiologica, 1979, 7(1): 35-41.
39 SHAW S, LUKOYANOV D, DANYAL K, et al. Nitrite and hydroxylamine as nitrogenase substrates: mechanistic implications for the pathway of N₂ reduction[J]. Journal of the American Chemical Society, 2014, 136(36): 12 776-12 783.
40 SOLER-JOFRA A, PÉREZ J, van LOOSDRECHT M C M. Hydroxylamine and the nitrogen cycle: a review[J]. Water Research, 2021, 190. DOI:10.1016/j.watres.2020.116723 .
41 EINSLE O, MESSERSCHMIDT A, HUBER R, et al. Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase[J]. Journal of the American Chemical Society, 2002, 124(39): 11 737-11 745.
42 TIKHONOVA T V, SLUTSKY A, ANTIPOV A N, et al. Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens [J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1 764(4): 715-723.
43 SIMON J, KLOTZ M G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1 827(2): 114-135.
44 HAASE D, HERMANN B, EINSLE O, et al. Epsilonproteobacterial hydroxylamine oxidoreductase (εHao): characterization of a ‘missing link’ in the multihaem cytochrome c family[J]. Molecular Microbiology, 2017, 105(1): 127-138.
45 DIETL A, FEROUSI C, MAALCKE W J, et al. The inner workings of the hydrazine synthase multiprotein complex[J]. Nature, 2015, 527(7 578): 394-397.
46 KARTAL B, KELTJENS J T. Anammox biochemistry: a tale of heme c proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1 011.
47 SEEFELDT L C, YANG Z Y, LUKOYANOV D A, et al. Reduction of substrates by nitrogenases[J]. Chemical Reviews, 2020, 120(12): 5 082-5 106.
48 NOVAK R, WILSON P W. The utilization of nitrogen in hydroxylamine and oximes by Azotobacter vinelandii [J]. Journal of Bacteriology, 1948, 55(4): 517-524.
49 PETHICA B A, ROBERTS E R, WINTER E R S. Role of hydroxylamine in biological fixation of nitrogen[J]. Nature, 1949, 163(4141). DOI:10.1038/163408a0 .
50 SEGAL W, WILSON P W. Hydroxylamine as a source of nitrogen for Azotobacter vinelandii [J]. Journal of Bacteriology, 1949, 57(1): 55-60.
51 CHAUDHARY M T, WILSON T G G, ROBERTS E R. Studies in the biological fixation of nitrogen II. inhibition in Azotobacter vinelandii by hyponitrous acid[J]. Biochimica et Biophysica Acta, 1954, 14: 507-513.
52 SPENCER D, TAKAHASHI H, NASON A. Relationship of nitrite and hydroxylamine reductases to nitrate assimilation and nitrogen fixation in azotobacter agile [J]. Journal of Bacteriology, 1957, 73(4): 553-562.
53 GARCIA-RIVERA J, BURRIS R H. Hydrazine and hydroxylamine as possible intermediates in the biological fixation of nitrogen[J]. Archives of Biochemistry and Biophysics, 1967, 119: 167-172.
54 HATTORI A. Adaptive formation of nitrate reducing system in Anabaena cylindrica [J]. Plant and Cell Physiology, 1962, 3(4): 371-377.
55 LU Guangyuan, SONG Xiuxian, YU Zhiming. Indirect determination of hydroxylamine in seawater in spectrophotometry[J]. Oceanologia et Limnologia Sinica, 2014, 45(5): 954-958.
卢光远, 宋秀贤, 俞志明. 利用分光光度法间接测定海水中的羟胺[J]. 海洋与湖沼, 2014, 45(5): 954-958.
56 WARD B B, ARP D J, KLOTZ M G. Nitrification[M]. Washington, D.C.: ASM Press, 2011.
57 van KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7 583): 555-559.
58 VERSANTVOORT W, POL A, JETTEN M S M, et al. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39): 24 459-24 463.
59 CARANTO J D, LANCASTER K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31): 8 217-8 222.
60 COLEMAN R E, LANCASTER K M. Heme P460: a (cross) link to nitric oxide[J]. Accounts of Chemical Research, 2020, 53(12): 2 925-2 935.
61 KOZLOWSKI J A, STIEGLMEIER M, SCHLEPER C, et al. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota[J]. The ISME Journal, 2016, 10(8): 1 836-1 845.
62 CARINI P, DUPONT C L, SANTORO A E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments[J]. Environmental Microbiology, 2018, 20(6): 2 112-2 124.
63 HOSSEINZADEH P, TIAN S L, MARSHALL N M, et al. A purple cupredoxin from Nitrosopumilus maritimus containing a mononuclear type 1 copper center with an open binding site[J]. Journal of the American Chemical Society, 2016, 138(20): 6 324-6 327.
64 CAMPBELL M A, NYERGES G, KOZLOWSKI J A, et al. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria[J]. FEMS Microbiology Letters, 2011, 322(1): 82-89.
65 SUTKA R L, OSTROM N E, OSTROM P H, et al. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath[J]. Rapid Communications in Mass Spectrometry, 2003, 17(7): 738-745.
66 LIU S R, HAN P, HINK L, et al. Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation[J]. Environmental Science & Technology, 2017, 51(22): 13 122-13 132.
67 WALTER S, BANGE H W, BREITENBACH U, et al. Nitrous oxide in the North Atlantic Ocean[J]. Biogeosciences, 2006, 3(4): 607-619.
68 CHARPENTIER J, FARIAS L, YOSHIDA N, et al. Nitrous oxide distribution and its origin in the central and eastern South Pacific Subtropical Gyre[J]. Biogeosciences, 2007, 4(5): 729-741.
69 de la PAZ M, GARCÍA-IBÁÑEZ M I, STEINFELDT R, et al. Ventilation versus biology: what is the controlling mechanism of nitrous oxide distribution in the North Atlantic?[J]. Global Biogeochemical Cycles, 2017, 31(4): 745-760.
70 CARANTO J D, VILBERT A C, LANCASTER K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14 704-14 709.
71 BONNER F T, DZELZKALNS L S, BONUCCI J A. Properties of nitroxyl as intermediate in the nitric oxide-hydroxylamine reaction and in trioxodinitrate decomposition[J]. Inorganic Chemistry, 1978, 17(9): 2 487-2 494.
72 STIEGLMEIER M, MOOSHAMMER M, KITZLER B, et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing Archaea[J]. The ISME Journal, 2014, 8(5): 1 135-1 146.
73 STEIN L Y, KLOTZ M G. Nitrifying and denitrifying pathways of methanotrophic bacteria[J]. Biochemical Society Transactions, 2011, 39(6): 1 826-1 831.
74 WAN X S, HOU L, KAO S J, et al. Pathways of N2O production by marine ammonia-oxidizing Archaea determined from dual-isotope labeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(11). DOI:10.1073/pnas.222069712 .
75 QI M T, QIAN W, SARDANS J, et al. Spatial and seasonal variability of hydroxylamine concentrations in a human-impacted estuary off southeast China[J]. Journal of Geophysical Research: Biogeosciences, 2023, 128(3). DOI:10.1029/2022JG007208 .
76 MOEWS P C, AUDRIETH L F. The autoxidation of hydroxylamine[J]. Journal of Inorganic and Nuclear Chemistry, 1959, 11(3): 242-246.
77 ANDERSON J H. The copper-catalysed oxidation of hydroxylamine[J]. Analyst, 1964, 89(1 058): 357-362.
78 TERADA A, SUGAWARA S, HOJO K, et al. Hybrid nitrous oxide production from a partial nitrifying bioreactor: hydroxylamine interactions with nitrite[J]. Environmental Science & Technology, 2017, 51(5): 2 748-2 756.
79 SOLER-JOFRA A, PICIOREANU C, YU R, et al. Importance of hydroxylamine in abiotic N2O production during transient anoxia in planktonic axenic Nitrosomonas cultures[J]. Chemical Engineering Journal, 2018, 335: 756-762.
80 HEIL J, LIU S R, VEREECKEN H, et al. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties[J]. Soil Biology and Biochemistry, 2015, 84: 107-115.
81 HUGHES M N, NICKLIN H G. Autoxidation of hydroxylamine in alkaline solutions[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1971: 164. DOI:10.1039/J19710000164 .
82 TIAN Xiaolei. Study on the determination method of hydroxylamine in short-cut nitrification process [D]. Xi’an: Chang’an University, 2017.
田晓雷. 短程硝化过程羟胺的测定方法研究 [D]. 西安:长安大学, 2017.
83 BRAY W C, SIMPSON M E, MACKENZIE A A. The volumetric determination of hydroxylamine[J]. Journal of the American Chemical Society, 1919, 41(9): 1 363-1 378.
84 FREAR D S, BURRELL R C. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants[J]. Analytical Chemistry, 1955, 27(10): 1 664-1 665.
85 AFKHAMI A, MADRAKIAN T, MALEKI A. Indirect kinetic spectrophotometric determination of hydroxylamine based on its reaction with iodate[J]. Analytical Sciences, 2006, 22(2): 329-331.
86 LI Jingxiong, WEN Xinrong, WU Xiuping. Spectrophotometric determination of hydroxylamine hydrochloride with ammonium phosphomolybdate [J]. Chinese Journal of Analysis Laboratory, 2013, 32(3): 86-88.
李京雄, 温欣荣, 吴秀萍. 磷钼酸铵分光光度法测定盐酸羟胺 [J]. 分析试验室, 2013, 32(3): 86-88.
87 YUAN Junjun. Determination of hydroxylamine hydrochloride by violuric acid-Fe(Ⅲ) spectrophotometry[J]. Chemical Analysis and Meterage, 2014, 23(6): 49-51.
袁君君. 紫尿酸—Fe(Ⅲ)分光光度法测定盐酸羟胺[J]. 化学分析计量, 2014, 23(6): 49-51.
88 SEIKE Y, FUKUMORI R, SENGA Y, et al. A simple and sensitive method for the determination of hydroxylamine in fresh-water samples using hypochlorite followed by gas chromatography[J]. Analytical Sciences, 2004, 20(1): 139-142.
89 KOCK A, BANGE H W. Nitrite removal improves hydroxylamine analysis in aqueous solution by conversion with iron(III)[J]. Environmental Chemistry, 2013, 10(1): 64-76.
90 HIKINO A, SUGAHARA S, KATO T, et al. Sensitive gas chromatography detection of nanomolar hydroxylamine in environmental water by Fe(III) oxidation[J]. Analytical Sciences, 2021, 37(2): 347-351.
91 KORTE W D. Determination of hydroxylamine in aqueous solutions of pyridinium aldoximes by high-performance liquid chromatography with UV and fluorometric detection[J]. Journal of Chromatography A, 1992, 603(1/2): 145-150.
92 SONG M, WU S, LU P B, et al. A selective and sensitive pre-column derivatization HPLC method for the trace analysis of genotoxic impurity hydroxylamine in active pharmaceutical ingredients[J]. Analytical Methods, 2016, 8(47): 8 352-8 361.
93 PENG S X, STROJNOWSKI M J, HU J K, et al. Gas chromatographic-mass spectrometric analysis of hydroxylamine for monitoring the metabolic hydrolysis of metalloprotease inhibitors in rat and human liver microsomes[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 724(1): 181-187.
94 YANG M, ZHU J J. Indirect voltammetric determination of trace hydroxylamine using magnetic microspheres[J]. The Analyst, 2003, 128(2): 178-181.
95 KANNAN P, JOHN S A. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on Sol-gel film modified gold electrode[J]. Analytica Chimica Acta, 2010, 663(2): 158-164.
96 KRISHNAN R G, SARASWATHYAMMA B. Electro-generated poly (cysteine) film as a sensor platform towards the simultaneous electroanalysis of hydrazine and hydroxylamine[J]. Materials Chemistry and Physics, 2021, 271. DOI:10.1016/j.matchemphys.2021.124880 .
97 MALAKOOTIAN M, GHOLAMI Z, MAHMOUDI-MOGHADDAM H. Electrochemical determination of hydroxylamine in water samples using modified screen-printed electrode with TiO2/GO[J]. International Journal of Environmental Analytical Chemistry, 2021, 101(1): 35-47.
98 TAJIK S, BEITOLLAHI H, AHMADI S A, et al. Screen-printed electrode surface modification with NiCo2O4/RGO nanocomposite for hydroxylamine detection[J]. Nanomaterials, 2021, 11(12). DOI:10.3390/nano11123208 .
99 XI W Y, ZHAI J L, TIAN L, et al. Curcumin-Cu2+ complex generated on carbon nanotubes for electrocatalytic application toward electrooxidation of hydroxylamine[J]. Microchemical Journal, 2021, 161. DOI:10.1016/j.microc.2020.105792 .
100 SEDGWICK A C, CHAPMAN R S L, GARDINER J E, et al. A bodipy based hydroxylamine sensor[J]. Chemical Communications, 2017, 53(75): 10 441-10 443.
101 RANA P, PANDA L, MURMU N, et al. Fluorometric sensing of hydroxylamine in an aqueous medium utilizing a diphenyl imidazole-based probe[J]. Organic & Biomolecular Chemistry, 2020, 18(30): 5 963-5 971.
102 KOLASA T, WARDENCKI W. Quantitative determination of hydroxylamine[J]. Talanta, 1974, 21(8): 845-857.
103 KATO T, SUGAHARA S, MURAKAMI M, et al. Sensitive method for the oxidation-determination of trace hydroxylamine in environmental water using hypochlorite followed by gas chromatography[J]. Analytical Sciences, 2017, 33(6): 691-695.
104 CAVAZOS A R, TAILLEFERT M, TANG Y Z, et al. Kinetics of nitrous oxide production from hydroxylamine oxidation by birnessite in seawater[J]. Marine Chemistry, 2018, 202: 49-57.
105 SCHWEIGER B, HANSEN H P, BANGE H W. A time series of hydroxylamine (NH2OH) in the southwestern Baltic Sea[J]. Geophysical Research Letters, 2007, 34(24). DOI:10.1029/2007GL031086 .
106 TANAKA M. Occurrence of hydroxylamine in lake waters as an intermediate in bacterial reduction of nitrate[J]. Nature, 1953, 171(4 365): 1 160-1 161.
107 KOYAMA T, TOMINO T. Decomposition process of organic carbon and nitrogen in lake water[J]. Geochemical Journal, 1967, 1(3): 109-124.
108 PITTWELL L R. The determination of hydroxylamine in Ethiopian Rivers and lakes[J]. Microchimica Acta, 1975, 64(4): 425-429.
109 BIKBULATOVA E M, STEPANOVA I E, BIKBULATOV E S. Concentration and localization of hydroxylamine in the reservoirs and lakes in the territory of European Russia[J]. Water Resources, 2007, 34(5): 554-562.
110 SEIKE Y, MURAKAMI M, FUKUMORI R, et al. Behavior of hydroxylamine and nitrous oxide in the stratified brackish Lake Nakaumi, Japan[J]. SIL Proceedings, 1922-2010, 2009, 30(7): 1 073-1 076.
111 BUTLER J H, PEQUEGNAT J E, GORDON L I, et al. Cycling of methane, carbon monoxide, nitrous oxide, and hydroxylamine in a meromictic, coastal lagoon[J]. Estuarine, Coastal and Shelf Science, 1988, 27(2): 181-203.
112 LAM P, KUYPERS M M M. Microbial nitrogen cycling processes in oxygen minimum zones[J]. Annual Review of Marine Science, 2011, 3: 317-345.
113 YANG N, ZHANG C, WANG L Q, et al. Nitrogen cycling processes and the role of multi-trophic microbiota in dam-induced river-reservoir systems[J]. Water Research, 2021, 206. DOI:10.1016/j.watres.2021.117730 .
114 TISCHER J, ZOPFI J, FREY C, et al. Isotopic signatures of biotic and abiotic N2O production and consumption in the water column of meromictic, ferruginous Lake La Cruz (Spain)[J]. Limnology and Oceanography, 2022, 67(8): 1 760-1 775.
115 BIANCHI T S, DiMARCO S F, COWAN J H, et al. The science of hypoxia in the Northern Gulf of Mexico: a review[J]. Science of the Total Environment, 2010, 408(7): 1 471-1 484.
116 BHALLA S, MELNEKOFF D T, ALEMAN A, et al. Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications[J]. Science Advances, 2021, 7(47). DOI:10.1126/sciadv.abg9551 .
117 SAKAI S, NAKAYA M, TAKAYASU K. Hydrogen sulfide distribution in bottom and pore waters during an anoxic period in Lake Nakaumi, Japan [J]. Laguna, 2004, 11: 65-68.
118 KALVELAGE T, LAVIK G, LAM P, et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone[J]. Nature Geoscience, 2013, 6(3): 228-234.
119 JI Q X, BABBIN A R, JAYAKUMAR A, et al. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone[J]. Geophysical Research Letters, 2015, 42(24): 10 755-10 764.
120 WAN X S, SHENG H X, DAI M H, et al. Phytoplankton-nitrifier interactions control the geographic distribution of nitrite in the upper ocean[J]. Global Biogeochemical Cycles, 2021, 35(11). DOI: 10.1029/2021GB007072 .
121 LU S M, LIU X G, LIU C, et al. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems[J].Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 531-542.
[1] 陈阳军, 陈敏. 亚硝酸盐氮、氧同位素技术及其在海洋氮循环中的应用[J]. 地球科学进展, 2021, 36(12): 1224-1234.
[2] 张介霞, 詹力扬, 陈立奇. 南大洋N 2O研究进展及测量新技术展望 *[J]. 地球科学进展, 2013, 28(11): 1201-1208.
[3] 宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.
[4] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[5] 詹力扬,陈立奇. 海洋N 2O的研究进展[J]. 地球科学进展, 2006, 21(03): 269-277.
阅读次数
全文


摘要