1 |
GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7 176): 293-296.
|
2 |
GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226.
|
3 |
FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2013, 368(1 621). DOI:10.1098/rstb.2013.0164 .
|
4 |
GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4): 341-356.
|
5 |
TOWNSEND A R, HOWARTH R W, BAZZAZ F A, et al. Human health effects of a changing global nitrogen cycle[J]. Frontiers in Ecology and the Environment, 2003, 1(5): 240-246.
|
6 |
TOWNSEND A R, HOWARTH R W. Fixing the global nitrogen problem[J]. Scientific American, 2010, 302(2): 64-71.
|
7 |
ERISMAN J W, GALLOWAY J N, SEITZINGER S, et al. Consequences of human modification of the global nitrogen cycle[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1 621). DOI:10.1098/rstb.2013.0116 .
|
8 |
ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7 263): 472-475.
|
9 |
STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. Planetary boundaries: guiding human development on a changing planet[J]. Science, 2015, 347(6 223). DOI:10.1126/science.1259855 .
|
10 |
LADE S J, STEFFEN W, de VRIES W, et al. Human impacts on planetary boundaries amplified by Earth system interactions[J]. Nature Sustainability, 2019, 3(2): 119-128.
|
11 |
MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9): 701-710.
|
12 |
USTICK L J, LARKIN A A, GARCIA C A, et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation[J]. Science, 2021, 372(6 539): 287-291.
|
13 |
FALKOWSKI P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature, 1997, 387(6 630): 272-275.
|
14 |
DAIMS H, LÜCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9): 699-712.
|
15 |
CRUTZEN P J. The influence of nitrogen oxides on the atmospheric ozone content[J]. Quarterly Journal of the Royal Meteorological Society, 1970, 96(408): 320-325.
|
16 |
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5 949): 123-125.
|
17 |
KORTH F, KOCK A, ARÉVALO-MARTÍNEZ D L, et al. Hydroxylamine as a potential indicator of nitrification in the open ocean[J]. Geophysical Research Letters, 2019, 46(4): 2 158-2 166.
|
18 |
HUGHES E D, INGOLD C K, RIDD J H. 13. Nitrosation, diazotisation, and deamination. part I. principles, background, and method for the kinetic study of diazotisation[J]. Journal of the Chemical Society (Resumed), 1958(0): 58-65. DOI:10.1039/JR9580000058 .
|
19 |
SZILÁRD I, JACOBSEN E, SYVÄOJA E L, et al. Stability constants of metal ion-hydroxylamine complexes in aqueous solution[J]. Acta Chemica Scandinavica, 1963, 17: 2 674-2 680.
|
20 |
ERLENMEYER H, FLIERL C, SIGEL H. Metal ions and hydrogen peroxide. XXI. On the kinetics and mechanism of the reactions of hydrogen peroxide with hydrazine or hydroxylamine, catalyzed by Cu2+ and by the Cu2+-2, 2'-bipyridyl complex[J]. Journal of the American Chemical Society, 1969, 91(5): 1 065-1 071.
|
21 |
SHARON N, KATCHALSKY A. Equilibrium constants in interaction of carbonyl compounds with hydroxylamine[J]. Analytical Chemistry, 1952, 24(9): 1 509-1 510.
|
22 |
FIADEIRO M, SOLÓRZANO L, STRICKLAND J D H. Hydroxylamine in seawater[J]. Limnology and Oceanography, 1967, 12(3): 555-556.
|
23 |
von BREYMANN M T, de ANGELIS M A, GORDON L I. Gas chromatography with electron capture detection for determination of hydroxylamine in seawater[J]. Analytical Chemistry, 1982, 54(7): 1 209-1 210.
|
24 |
BUTLER J H, GORDON L I. An improved gas chromatographic method for the measurement of hydroxylamine in marine and fresh waters[J]. Marine Chemistry, 1986, 19(3): 229-243.
|
25 |
BUTLER J H, JONES R D, GARBER J H, et al. Seasonal distributions and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 697-706.
|
26 |
GEBHARDT S, WALTER S, NAUSCH G, et al. Hydroxylamine (NH2OH) in the Baltic Sea[J]. Biogeosciences Discussions, 2004, 1: 709-724.
|
27 |
MA X, BANGE H W, EIRUND G K, et al. Nitrous oxide and hydroxylamine measurements in the Southwest Indian Ocean[J]. Journal of Marine Systems, 2020, 209. DOI:10.1016/j.jmarsys.2018.03.003 .
|
28 |
GU X J, CHENG F, CHEN X L, et al. Dissolved nitrous oxide and hydroxylamine in the South Yellow Sea and the East China Sea during early spring: distribution, production, and emissions[J]. Frontiers in Marine Science, 2021, 8. DOI:10.3389/fmars.2021.725713 .
|
29 |
LEES H. Hydroxylamine as an intermediate in nitrification[J]. Nature, 1952, 169(4 291): 156-157.
|
30 |
BÖTTCHER B, KOOPS H P. Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine[J]. FEMS Microbiology Letters, 1994, 122(3): 263-266.
|
31 |
VAJRALA N, MARTENS-HABBENA W, SAYAVEDRA-SOTO L A, et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine Archaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 1 006-1 011.
|
32 |
KITS K D, JUNG M Y, VIERHEILIG J, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata [J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09790-x .
|
33 |
GIBLIN A, TOBIAS C, SONG B, et al. The importance of Dissimilatory Nitrate Reduction to Ammonium (DNRA) in the nitrogen cycle of coastal ecosystems[J]. Oceanography, 2013, 26(3): 124-131.
|
34 |
HANSON T E, CAMPBELL B J, KALIS K M, et al. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate[J]. Frontiers in Microbiology, 2013, 4. DOI:10.3389/fmicb.2013.00180 .
|
35 |
van der STAR W R L, van de GRAAF M J, KARTAL B, et al. Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine[J]. Applied and Environmental Microbiology, 2008, 74(14): 4 417-4 426.
|
36 |
KARTAL B, MAALCKE W J, de ALMEIDA N M, et al. Molecular mechanism of anaerobic ammonium oxidation[J]. Nature, 2011, 479(7 371): 127-130.
|
37 |
HU Z Y, WESSELS H J C T, van ALEN T, et al. Nitric oxide-dependent anaerobic ammonium oxidation[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09268-w .
|
38 |
HANUŠOVÁ J, HAVLÍK B. The production of hydroxylamine by aquatic organisms[J]. Acta Hydrochimica et Hydrobiologica, 1979, 7(1): 35-41.
|
39 |
SHAW S, LUKOYANOV D, DANYAL K, et al. Nitrite and hydroxylamine as nitrogenase substrates: mechanistic implications for the pathway of N₂ reduction[J]. Journal of the American Chemical Society, 2014, 136(36): 12 776-12 783.
|
40 |
SOLER-JOFRA A, PÉREZ J, van LOOSDRECHT M C M. Hydroxylamine and the nitrogen cycle: a review[J]. Water Research, 2021, 190. DOI:10.1016/j.watres.2020.116723 .
|
41 |
EINSLE O, MESSERSCHMIDT A, HUBER R, et al. Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase[J]. Journal of the American Chemical Society, 2002, 124(39): 11 737-11 745.
|
42 |
TIKHONOVA T V, SLUTSKY A, ANTIPOV A N, et al. Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens [J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1 764(4): 715-723.
|
43 |
SIMON J, KLOTZ M G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1 827(2): 114-135.
|
44 |
HAASE D, HERMANN B, EINSLE O, et al. Epsilonproteobacterial hydroxylamine oxidoreductase (εHao): characterization of a ‘missing link’ in the multihaem cytochrome c family[J]. Molecular Microbiology, 2017, 105(1): 127-138.
|
45 |
DIETL A, FEROUSI C, MAALCKE W J, et al. The inner workings of the hydrazine synthase multiprotein complex[J]. Nature, 2015, 527(7 578): 394-397.
|
46 |
KARTAL B, KELTJENS J T. Anammox biochemistry: a tale of heme c proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1 011.
|
47 |
SEEFELDT L C, YANG Z Y, LUKOYANOV D A, et al. Reduction of substrates by nitrogenases[J]. Chemical Reviews, 2020, 120(12): 5 082-5 106.
|
48 |
NOVAK R, WILSON P W. The utilization of nitrogen in hydroxylamine and oximes by Azotobacter vinelandii [J]. Journal of Bacteriology, 1948, 55(4): 517-524.
|
49 |
PETHICA B A, ROBERTS E R, WINTER E R S. Role of hydroxylamine in biological fixation of nitrogen[J]. Nature, 1949, 163(4141). DOI:10.1038/163408a0 .
|
50 |
SEGAL W, WILSON P W. Hydroxylamine as a source of nitrogen for Azotobacter vinelandii [J]. Journal of Bacteriology, 1949, 57(1): 55-60.
|
51 |
CHAUDHARY M T, WILSON T G G, ROBERTS E R. Studies in the biological fixation of nitrogen II. inhibition in Azotobacter vinelandii by hyponitrous acid[J]. Biochimica et Biophysica Acta, 1954, 14: 507-513.
|
52 |
SPENCER D, TAKAHASHI H, NASON A. Relationship of nitrite and hydroxylamine reductases to nitrate assimilation and nitrogen fixation in azotobacter agile [J]. Journal of Bacteriology, 1957, 73(4): 553-562.
|
53 |
GARCIA-RIVERA J, BURRIS R H. Hydrazine and hydroxylamine as possible intermediates in the biological fixation of nitrogen[J]. Archives of Biochemistry and Biophysics, 1967, 119: 167-172.
|
54 |
HATTORI A. Adaptive formation of nitrate reducing system in Anabaena cylindrica [J]. Plant and Cell Physiology, 1962, 3(4): 371-377.
|
55 |
LU Guangyuan, SONG Xiuxian, YU Zhiming. Indirect determination of hydroxylamine in seawater in spectrophotometry[J]. Oceanologia et Limnologia Sinica, 2014, 45(5): 954-958.
|
|
卢光远, 宋秀贤, 俞志明. 利用分光光度法间接测定海水中的羟胺[J]. 海洋与湖沼, 2014, 45(5): 954-958.
|
56 |
WARD B B, ARP D J, KLOTZ M G. Nitrification[M]. Washington, D.C.: ASM Press, 2011.
|
57 |
van KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7 583): 555-559.
|
58 |
VERSANTVOORT W, POL A, JETTEN M S M, et al. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39): 24 459-24 463.
|
59 |
CARANTO J D, LANCASTER K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31): 8 217-8 222.
|
60 |
COLEMAN R E, LANCASTER K M. Heme P460: a (cross) link to nitric oxide[J]. Accounts of Chemical Research, 2020, 53(12): 2 925-2 935.
|
61 |
KOZLOWSKI J A, STIEGLMEIER M, SCHLEPER C, et al. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota[J]. The ISME Journal, 2016, 10(8): 1 836-1 845.
|
62 |
CARINI P, DUPONT C L, SANTORO A E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments[J]. Environmental Microbiology, 2018, 20(6): 2 112-2 124.
|
63 |
HOSSEINZADEH P, TIAN S L, MARSHALL N M, et al. A purple cupredoxin from Nitrosopumilus maritimus containing a mononuclear type 1 copper center with an open binding site[J]. Journal of the American Chemical Society, 2016, 138(20): 6 324-6 327.
|
64 |
CAMPBELL M A, NYERGES G, KOZLOWSKI J A, et al. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria[J]. FEMS Microbiology Letters, 2011, 322(1): 82-89.
|
65 |
SUTKA R L, OSTROM N E, OSTROM P H, et al. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath[J]. Rapid Communications in Mass Spectrometry, 2003, 17(7): 738-745.
|
66 |
LIU S R, HAN P, HINK L, et al. Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation[J]. Environmental Science & Technology, 2017, 51(22): 13 122-13 132.
|
67 |
WALTER S, BANGE H W, BREITENBACH U, et al. Nitrous oxide in the North Atlantic Ocean[J]. Biogeosciences, 2006, 3(4): 607-619.
|
68 |
CHARPENTIER J, FARIAS L, YOSHIDA N, et al. Nitrous oxide distribution and its origin in the central and eastern South Pacific Subtropical Gyre[J]. Biogeosciences, 2007, 4(5): 729-741.
|
69 |
de la PAZ M, GARCÍA-IBÁÑEZ M I, STEINFELDT R, et al. Ventilation versus biology: what is the controlling mechanism of nitrous oxide distribution in the North Atlantic?[J]. Global Biogeochemical Cycles, 2017, 31(4): 745-760.
|
70 |
CARANTO J D, VILBERT A C, LANCASTER K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14 704-14 709.
|
71 |
BONNER F T, DZELZKALNS L S, BONUCCI J A. Properties of nitroxyl as intermediate in the nitric oxide-hydroxylamine reaction and in trioxodinitrate decomposition[J]. Inorganic Chemistry, 1978, 17(9): 2 487-2 494.
|
72 |
STIEGLMEIER M, MOOSHAMMER M, KITZLER B, et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing Archaea[J]. The ISME Journal, 2014, 8(5): 1 135-1 146.
|
73 |
STEIN L Y, KLOTZ M G. Nitrifying and denitrifying pathways of methanotrophic bacteria[J]. Biochemical Society Transactions, 2011, 39(6): 1 826-1 831.
|
74 |
WAN X S, HOU L, KAO S J, et al. Pathways of N2O production by marine ammonia-oxidizing Archaea determined from dual-isotope labeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(11). DOI:10.1073/pnas.222069712 .
|
75 |
QI M T, QIAN W, SARDANS J, et al. Spatial and seasonal variability of hydroxylamine concentrations in a human-impacted estuary off southeast China[J]. Journal of Geophysical Research: Biogeosciences, 2023, 128(3). DOI:10.1029/2022JG007208 .
|
76 |
MOEWS P C, AUDRIETH L F. The autoxidation of hydroxylamine[J]. Journal of Inorganic and Nuclear Chemistry, 1959, 11(3): 242-246.
|
77 |
ANDERSON J H. The copper-catalysed oxidation of hydroxylamine[J]. Analyst, 1964, 89(1 058): 357-362.
|
78 |
TERADA A, SUGAWARA S, HOJO K, et al. Hybrid nitrous oxide production from a partial nitrifying bioreactor: hydroxylamine interactions with nitrite[J]. Environmental Science & Technology, 2017, 51(5): 2 748-2 756.
|
79 |
SOLER-JOFRA A, PICIOREANU C, YU R, et al. Importance of hydroxylamine in abiotic N2O production during transient anoxia in planktonic axenic Nitrosomonas cultures[J]. Chemical Engineering Journal, 2018, 335: 756-762.
|
80 |
HEIL J, LIU S R, VEREECKEN H, et al. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties[J]. Soil Biology and Biochemistry, 2015, 84: 107-115.
|
81 |
HUGHES M N, NICKLIN H G. Autoxidation of hydroxylamine in alkaline solutions[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1971: 164. DOI:10.1039/J19710000164 .
|
82 |
TIAN Xiaolei. Study on the determination method of hydroxylamine in short-cut nitrification process [D]. Xi’an: Chang’an University, 2017.
|
|
田晓雷. 短程硝化过程羟胺的测定方法研究 [D]. 西安:长安大学, 2017.
|
83 |
BRAY W C, SIMPSON M E, MACKENZIE A A. The volumetric determination of hydroxylamine[J]. Journal of the American Chemical Society, 1919, 41(9): 1 363-1 378.
|
84 |
FREAR D S, BURRELL R C. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants[J]. Analytical Chemistry, 1955, 27(10): 1 664-1 665.
|
85 |
AFKHAMI A, MADRAKIAN T, MALEKI A. Indirect kinetic spectrophotometric determination of hydroxylamine based on its reaction with iodate[J]. Analytical Sciences, 2006, 22(2): 329-331.
|
86 |
LI Jingxiong, WEN Xinrong, WU Xiuping. Spectrophotometric determination of hydroxylamine hydrochloride with ammonium phosphomolybdate [J]. Chinese Journal of Analysis Laboratory, 2013, 32(3): 86-88.
|
|
李京雄, 温欣荣, 吴秀萍. 磷钼酸铵分光光度法测定盐酸羟胺 [J]. 分析试验室, 2013, 32(3): 86-88.
|
87 |
YUAN Junjun. Determination of hydroxylamine hydrochloride by violuric acid-Fe(Ⅲ) spectrophotometry[J]. Chemical Analysis and Meterage, 2014, 23(6): 49-51.
|
|
袁君君. 紫尿酸—Fe(Ⅲ)分光光度法测定盐酸羟胺[J]. 化学分析计量, 2014, 23(6): 49-51.
|
88 |
SEIKE Y, FUKUMORI R, SENGA Y, et al. A simple and sensitive method for the determination of hydroxylamine in fresh-water samples using hypochlorite followed by gas chromatography[J]. Analytical Sciences, 2004, 20(1): 139-142.
|
89 |
KOCK A, BANGE H W. Nitrite removal improves hydroxylamine analysis in aqueous solution by conversion with iron(III)[J]. Environmental Chemistry, 2013, 10(1): 64-76.
|
90 |
HIKINO A, SUGAHARA S, KATO T, et al. Sensitive gas chromatography detection of nanomolar hydroxylamine in environmental water by Fe(III) oxidation[J]. Analytical Sciences, 2021, 37(2): 347-351.
|
91 |
KORTE W D. Determination of hydroxylamine in aqueous solutions of pyridinium aldoximes by high-performance liquid chromatography with UV and fluorometric detection[J]. Journal of Chromatography A, 1992, 603(1/2): 145-150.
|
92 |
SONG M, WU S, LU P B, et al. A selective and sensitive pre-column derivatization HPLC method for the trace analysis of genotoxic impurity hydroxylamine in active pharmaceutical ingredients[J]. Analytical Methods, 2016, 8(47): 8 352-8 361.
|
93 |
PENG S X, STROJNOWSKI M J, HU J K, et al. Gas chromatographic-mass spectrometric analysis of hydroxylamine for monitoring the metabolic hydrolysis of metalloprotease inhibitors in rat and human liver microsomes[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 724(1): 181-187.
|
94 |
YANG M, ZHU J J. Indirect voltammetric determination of trace hydroxylamine using magnetic microspheres[J]. The Analyst, 2003, 128(2): 178-181.
|
95 |
KANNAN P, JOHN S A. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on Sol-gel film modified gold electrode[J]. Analytica Chimica Acta, 2010, 663(2): 158-164.
|
96 |
KRISHNAN R G, SARASWATHYAMMA B. Electro-generated poly (cysteine) film as a sensor platform towards the simultaneous electroanalysis of hydrazine and hydroxylamine[J]. Materials Chemistry and Physics, 2021, 271. DOI:10.1016/j.matchemphys.2021.124880 .
|
97 |
MALAKOOTIAN M, GHOLAMI Z, MAHMOUDI-MOGHADDAM H. Electrochemical determination of hydroxylamine in water samples using modified screen-printed electrode with TiO2/GO[J]. International Journal of Environmental Analytical Chemistry, 2021, 101(1): 35-47.
|
98 |
TAJIK S, BEITOLLAHI H, AHMADI S A, et al. Screen-printed electrode surface modification with NiCo2O4/RGO nanocomposite for hydroxylamine detection[J]. Nanomaterials, 2021, 11(12). DOI:10.3390/nano11123208 .
|
99 |
XI W Y, ZHAI J L, TIAN L, et al. Curcumin-Cu2+ complex generated on carbon nanotubes for electrocatalytic application toward electrooxidation of hydroxylamine[J]. Microchemical Journal, 2021, 161. DOI:10.1016/j.microc.2020.105792 .
|
100 |
SEDGWICK A C, CHAPMAN R S L, GARDINER J E, et al. A bodipy based hydroxylamine sensor[J]. Chemical Communications, 2017, 53(75): 10 441-10 443.
|
101 |
RANA P, PANDA L, MURMU N, et al. Fluorometric sensing of hydroxylamine in an aqueous medium utilizing a diphenyl imidazole-based probe[J]. Organic & Biomolecular Chemistry, 2020, 18(30): 5 963-5 971.
|
102 |
KOLASA T, WARDENCKI W. Quantitative determination of hydroxylamine[J]. Talanta, 1974, 21(8): 845-857.
|
103 |
KATO T, SUGAHARA S, MURAKAMI M, et al. Sensitive method for the oxidation-determination of trace hydroxylamine in environmental water using hypochlorite followed by gas chromatography[J]. Analytical Sciences, 2017, 33(6): 691-695.
|
104 |
CAVAZOS A R, TAILLEFERT M, TANG Y Z, et al. Kinetics of nitrous oxide production from hydroxylamine oxidation by birnessite in seawater[J]. Marine Chemistry, 2018, 202: 49-57.
|
105 |
SCHWEIGER B, HANSEN H P, BANGE H W. A time series of hydroxylamine (NH2OH) in the southwestern Baltic Sea[J]. Geophysical Research Letters, 2007, 34(24). DOI:10.1029/2007GL031086 .
|
106 |
TANAKA M. Occurrence of hydroxylamine in lake waters as an intermediate in bacterial reduction of nitrate[J]. Nature, 1953, 171(4 365): 1 160-1 161.
|
107 |
KOYAMA T, TOMINO T. Decomposition process of organic carbon and nitrogen in lake water[J]. Geochemical Journal, 1967, 1(3): 109-124.
|
108 |
PITTWELL L R. The determination of hydroxylamine in Ethiopian Rivers and lakes[J]. Microchimica Acta, 1975, 64(4): 425-429.
|
109 |
BIKBULATOVA E M, STEPANOVA I E, BIKBULATOV E S. Concentration and localization of hydroxylamine in the reservoirs and lakes in the territory of European Russia[J]. Water Resources, 2007, 34(5): 554-562.
|
110 |
SEIKE Y, MURAKAMI M, FUKUMORI R, et al. Behavior of hydroxylamine and nitrous oxide in the stratified brackish Lake Nakaumi, Japan[J]. SIL Proceedings, 1922-2010, 2009, 30(7): 1 073-1 076.
|
111 |
BUTLER J H, PEQUEGNAT J E, GORDON L I, et al. Cycling of methane, carbon monoxide, nitrous oxide, and hydroxylamine in a meromictic, coastal lagoon[J]. Estuarine, Coastal and Shelf Science, 1988, 27(2): 181-203.
|
112 |
LAM P, KUYPERS M M M. Microbial nitrogen cycling processes in oxygen minimum zones[J]. Annual Review of Marine Science, 2011, 3: 317-345.
|
113 |
YANG N, ZHANG C, WANG L Q, et al. Nitrogen cycling processes and the role of multi-trophic microbiota in dam-induced river-reservoir systems[J]. Water Research, 2021, 206. DOI:10.1016/j.watres.2021.117730 .
|
114 |
TISCHER J, ZOPFI J, FREY C, et al. Isotopic signatures of biotic and abiotic N2O production and consumption in the water column of meromictic, ferruginous Lake La Cruz (Spain)[J]. Limnology and Oceanography, 2022, 67(8): 1 760-1 775.
|
115 |
BIANCHI T S, DiMARCO S F, COWAN J H, et al. The science of hypoxia in the Northern Gulf of Mexico: a review[J]. Science of the Total Environment, 2010, 408(7): 1 471-1 484.
|
116 |
BHALLA S, MELNEKOFF D T, ALEMAN A, et al. Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications[J]. Science Advances, 2021, 7(47). DOI:10.1126/sciadv.abg9551 .
|
117 |
SAKAI S, NAKAYA M, TAKAYASU K. Hydrogen sulfide distribution in bottom and pore waters during an anoxic period in Lake Nakaumi, Japan [J]. Laguna, 2004, 11: 65-68.
|
118 |
KALVELAGE T, LAVIK G, LAM P, et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone[J]. Nature Geoscience, 2013, 6(3): 228-234.
|
119 |
JI Q X, BABBIN A R, JAYAKUMAR A, et al. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone[J]. Geophysical Research Letters, 2015, 42(24): 10 755-10 764.
|
120 |
WAN X S, SHENG H X, DAI M H, et al. Phytoplankton-nitrifier interactions control the geographic distribution of nitrite in the upper ocean[J]. Global Biogeochemical Cycles, 2021, 35(11). DOI: 10.1029/2021GB007072 .
|
121 |
LU S M, LIU X G, LIU C, et al. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems[J].Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 531-542.
|