1 |
SHERWOOD S, WEBB M, ANNAN J, et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence[J]. Reviews of Geophysics,2020,58(4). DOI:10.1029/2019RG000678 .
|
2 |
SCOTESE C, SONG H, MILLS B, et al. Phanerozoic paleotemperatures: the Earth’s changing climate during the last 540 million years[J]. Earth-Science Reviews,2021,215. DOI:10.1016/j.earscirev.2021.103503 .
|
3 |
CHEVALIER M, DAVIS B, HEIRI O, et al. Pollen-based climate reconstruction techniques for late Quaternary studies[J]. Earth-Science Reviews,2020,210. DOI:10.1016/j.earscirev.2020.103384 .
|
4 |
CHEN Fahu, ZHANG Jifeng, LIU Jianbao, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene:a comprehensive review[J]. Quaternary Science Reviews, 2020, 243: 106-444.
|
5 |
QIU J. China: the third pole[J]. Nature,2008,454(7 203):393-396.
|
6 |
YOU Qinglong, CHEN Deliang, WU Fangying, et al. Elevation dependent warming over the Tibetan Plateau:patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210. DOI:10.1016/j.earscirev.2020.103349 .
|
7 |
HOU Juzhi, D’ANDREA W, WANG Mingda, et al. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene[J]. Quaternary Science Reviews, 2017, 163: 84-94.
|
8 |
HOU Juzhi, HUANG Yongsong, ZHAO Jiangtao, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2016, 43(3): 1 323-1 330.
|
9 |
THOMPSON L, MOSLEY-THOMPSON E, BRECHER H, et al. Abrupt tropical climate change: past and present[J]. Proceedings of the National Academy of Sciences, 2006, 103(28): 10 536-10 543.
|
10 |
CHEN Fahu, DUAN Yanwu, HAO Shuo, et al. Holocene thermal maximum mode versus the continuous warming mode: problems of data-model comparisons and future research prospects[J]. Science China Earth Sciences, 2023, 66: 1 683-1 701.
|
11 |
LIU Jinzhao, AN Zhisheng, ZHANG Liang, et al. Paleoaltimetry performance of coupled δ2Hwax-MBT′5ME proxy in semiarid conditions[J]. Quaternary Science Reviews, 2023, 305. DOI:10.1016/j.quascirev.2023.108017 .
|
12 |
WEI Shikai, RAO Zhiguo, CAO Jiantao, et al. Holocene warming trend based on peat brGDGTs records from southeastern humid to northwestern arid China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 619. DOI:10.1016/j.palaeo.2023.111528 .
|
13 |
WANG Huanye, DONG Hailiang, ZHANG Chuanlun, et al. Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai-Tibetan Plateau: implications for paleo lake levels and paleoclimate[J]. Chemical Geology, 2014, 368: 76-84.
|
14 |
SCHOUTEN S, HOPMANS E C, SINNINGHE DAMSTÉ J. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:a review[J]. Organic Geochemistry, 2013, 54: 19-61.
|
15 |
FAN Jiachen, QIAN Shi, PEI Hongye, et al. Application of microbial ether lipids in the reconstruction of paleoenvironments in peatlands:progress and problems[J]. Advances in Earth Science, 2021, 36(12): 1 272-1 290.
|
|
樊嘉琛,钱施,裴宏业,等,微生物醚类化合物在泥炭古环境重建中的应用 :进展与问题[J]. 地球科学进展, 2021, 36(12): 1 272-1 290.
|
16 |
TIAN Shaohua, XIAO Guoqiao, YANG Huan. Application of Glycerol Dialkyl Glycerol Tetraether lipids in paleoenvironment reconstruction of loess deposits: a review of recent progresses[J]. Advances in Earth Science, 2020, 35(5): 465-477.
|
|
田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展,2020, 35(5): 465-477.
|
17 |
BLUM L, COLMAN D R, ELOE-FADROSH E A, et al. Distribution and abundance of tetraether lipid cyclization genes in terrestrial hot springs reflect pH[J]. Environmental Microbiology, 2023, 25(9): 1 644-1 658.
|
18 |
JENKYNS H, SCHOUTEN-HUIBERS L, SCHOUTEN S, et al. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean[J]. Climate of the Past,2012, 8(1): 215-226.
|
19 |
ZENG Zhirui, LIU Xiaolei, FARLEY K, et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences, 2019, 116(45): 22 505-22 511.
|
20 |
CHEN Yufei, CHEN Huahui, ZENG Zhirui. Biosynthetic pathways of GDGTs in archaea and bacteria and their biogeochemical implications[J]. Acta Microbiologica Sinica, 2022, 62(12): 4 700-4 712.
|
|
陈雨霏,陈华慧,曾芝瑞. 古菌和细菌四醚膜脂GDGTs的生物合成机制及其生物地球化学意义[J]. 微生物学报,2022, 62(12): 4 700-4 712.
|
21 |
DING Su, XU Yunping, WANG Yinghui, et al. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau:implications of brGDGTs-based proxies in cold and dry regions[J]. Biogeosciences, 2015, 12(11): 3 141-3 151.
|
22 |
LIANG Jie, RICHTER N, XIE Haichao, et al. Branched Glycerol Dialkyl Glycerol Tetraether (brGDGT) distributions influenced by bacterial community composition in various vegetation soils on the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2023,611. DOI:10.1016/j.palaeo.2022.111358 .
|
23 |
LIANG Jie, RUSSELL J, XIE Haichao, et al. Vegetation effects on temperature calibrations of branched Glycerol Dialkyl Glycerol Tetraether (brGDGTs) in soils[J]. Organic Geochemistry, 2019, 127: 1-11.
|
24 |
LIU Weiguo, WANG Huanye, ZHANG Chuanlun, et al. Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China[J]. Organic Geochemistry, 2013, 57: 76-83.
|
25 |
WANG Hansheng, GAO Peng, YANG Rrui, et al. Correlation between brGDGTs distribution and elevation from the eastern Qilian Shan[J]. Frontiers in Earth Science,2022,10. DOI:10.3389/feart.2022.844026 .
|
26 |
GÜNTHER F, THIELE A, GLEIXNER G, et al. Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes:implications for GDGT-based proxies in saline high mountain lakes[J]. Organic Geochemistry, 2014, 67: 19-30.
|
27 |
KOU Qiangqiang, ZHU Liping, JU Jianting, et al. Influence of salinity on glycerol dialkyl glycerol tetraether-based indicators in Tibetan Plateau lakes:implications for paleotemperature and paleosalinity reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601. DOI:10.1016/j.palaeo.2022.111127 .
|
28 |
KOU Qiangqiang, ZHU Liping, MA Qingfeng, et al. Distribution, potential sources, and response to water depth of archaeal tetraethers in Tibetan Plateau lake sediments[J]. Chemical Geology,2022,601. DOI:10.1016/j.chemgeo.2022.120825 .
|
29 |
WANG Huanye, HE Yake, LIU Weiguo, et al. Lake water depth controlling archaeal tetraether distributions in midlatitude Asia:implications for paleo lake‐level reconstruction[J]. Geophysical Research Letters, 2019, 46(10): 5 274-5 283.
|
30 |
WANG Mingda, LIANG Jie, HOU Juzhi, et al. Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors[J]. Science China Earth Sciences, 2016, 59(5): 961-974.
|
31 |
WANG Mingda, TIAN Qian, LI Xiumei, et al. TEX86 as a potential proxy of lake water pH in the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538. DOI:10.1016/j.palaeo.2019.109381 .
|
32 |
CHEUNG Manching, ZONG Yongqiang, ZHENG Zhuo, et al. Holocene temperature and precipitation variability on the central Tibetan Plateau revealed by multiple palaeo-climatic proxy records from an alpine wetland sequence[J]. The Holocene, 2017, 27(11): 1 669-1 681.
|
33 |
YAN Tianlong, ZHAO Cheng, YAN Hong, et al. Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at ~30° N on eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 570. DOI:10.1016/j.palaeo.2021.110364 .
|
34 |
ZHENG Yanhong, LI Qiyuan, WANG Zhangzhang, et al. Peatland GDGT records of Holocene climatic and biogeochemical responses to the Asian Monsoon[J]. Organic Geochemistry, 2015, 87: 86-95.
|
35 |
ZHOU Haoda, HU Jianfang, MING Lili, et al. Branched glycerol dialkyl glycerol tetraethers and paleoenvironmental reconstruction in Zoigê peat sediments during the last 150 years[J]. Chinese Science Bulletin, 2011, 56(23): 2 456-2 463.
|
36 |
HE Liu, ZHANG Chuanlun, DONG Hailiang, et al. Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs[J]. Geoscience Frontiers, 2012, 3(3): 289-300.
|
37 |
JIA Chengling, ZHANG Chuanlun, XIE Wei, et al. Differential temperature and pH controls on the abundance and composition of H-GDGTs in terrestrial hot springs[J]. Organic Geochemistry, 2014, 75: 109-121.
|
38 |
LI Fuyan, ZHANG Chuanlun, DONG Hailiang, et al. Environmental controls on the distribution of archaeal lipids in Tibetan hot springs:insight into the application of organic proxies for biogeochemical processes[J]. Environmental Microbiology Reports, 2013, 5(6): 868-882.
|
39 |
LI Fuyan, ZHANG Chuanlun, WANG Shang, et al. Production of branched tetraether lipids in Tibetan hot springs:a possible linkage to nitrite reduction by thermotolerant or thermophilic bacteria?[J]. Chemical Geology, 2014, 386: 209-217.
|
40 |
CHEN Yufei, ZHENG Fengfeng, CHEN Songze, et al. Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations[J]. Organic Geochemistry, 2018, 117: 12-21.
|
41 |
CHEN Yufei, ZHENG Fengfeng, YANG Huan, et al. The production of diverse brGDGTs by an Acidobacterium providing a physiological basis for paleoclimate proxies[J]. Geochimica et Cosmochimica Acta, 2022, 337: 155-165.
|
42 |
DEARING CRAMPTON-FLOOD E, TIERNEY J, PETERSE F,et al. BayMBT:a Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats[J]. Geochimica et Cosmochimica Acta, 2020, 268: 142-159.
|
43 |
de JONGE C, HOPMANS E, ZELL C, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils:implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141: 97-112.
|
44 |
ZHENG Pingbo, YANG Huan, ZHANG Hucai, et al. Influence of hydrological parameters on hydroxylated tetraether lipids in a deep Lake Fuxian, China: implications for their use as environmental proxies[J]. Science of the Total Environment, 2023, 895. DOI:10.1016/j.scitotenv.2023.165022 .
|
45 |
BAXTER A, PETERSE F, VERSCHUREN D, et al. Anoxic in situ production of bacterial GMGTs in the water column and surficial bottom sediments of a meromictic tropical crater lake:implications for lake paleothermometry[J]. Geochimica et Cosmochimica Acta, 2021, 306: 171-188.
|
46 |
DING Su, SCHWAB V, UEBERSCHAAR N, et al. Identification of novel 7-methyl and cyclopentanyl branched glycerol dialkyl glycerol tetraethers in lake sediments[J]. Organic Geochemistry, 2016, 102: 52-58.
|
47 |
SCHOUTEN S, HOPMANS E, SCHEFUSS E, et al. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 265-274.
|
48 |
POWERS L, WERNE J, JOHNSON T, et al. Crenarchaeotal membrane lipids in lake sediments:a new paleotemperature proxy for continental paleoclimate reconstruction?[J]. Geology, 2004, 32(7): 613-616.
|
49 |
QIN Wei, CARLSON L, ARMBRUST E, et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota[J]. Proceedings of the National Academy of Sciences,2015, 112(35): 10 979-10 984.
|
50 |
RATTANASRIAMPAIPONG R, ZHANG Yige, PEARSON A, et al. Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea[J]. Proceedings of the National Academy of Sciences,2022, 119(31). DOI:10.1073/pnas.2123193119 .
|
51 |
ZHANG Yige, PAGANI M, WANG Zhengrong. Ring index:a new strategy to evaluate the integrity of TEX86 paleothermometry[J]. Paleoceanography, 2016, 31(2): 220-232.
|
52 |
WEIJERS J, SCHOUTEN S, van DEN DONKER J, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703-713.
|
53 |
PETERSE F, van DER MEER J, SCHOUTEN S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96: 215-229.
|
54 |
LI Xiumei, ZHU Erlei, WANG Mingda, et al. Distributions of Glycerol Dialkyl Glycerol Tetraether lips along an altitudinal transect on the southern slope of Mt.Himalaya and their indicating significance[J]. Quaternary Sciences, 2017, 37(6): 1 226-1 237.
|
|
李秀美,朱二雷,王明达,等. 喜马拉雅山南坡海拔梯度表土GDGTs分布特征及其指示意义[J]. 第四纪研究,2017, 37(6): 1 226-1 237.
|
55 |
WANG Huanye, LIU Weiguo. Soil temperature and brGDGTs along an elevation gradient on the northeastern Tibetan Plateau:a test of soil brGDGTs as a proxy for paleoelevation[J]. Chemical Geology, 2021, 566. DOI:10.1016/j.chemgeo.2021.120079 .
|
56 |
NAAFS B, INGLIS G, ZHENG Yanhong, et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids[J]. Geochimica et Cosmochimica Acta, 2017, 208: 285-301.
|
57 |
SINNINGHE DAMSTÉ J, RIJPSTRA W, HOPMANS ELLEN C, et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of Group I.1a and I.1b Thaumarchaeota in soil[J]. Applied and Environmental Microbiology, 2012, 78(19): 6 866-6 874.
|
58 |
KOU Qiangqiang, ZHU Liping, WANG Junbo, et al. Archaeal tetraether-inferred hydrological variations of Serling Co (Central Tibet) during the late Quaternary[J]. Global and Planetary Change, 2023, 224. DOI:10.1016/j.gloplacha.2023.104113 .
|
59 |
WANG Huanye, LIU Weiguo, ZHANG Chuanlun, et al. Distribution of glycerol dialkyl glycerol tetraethers in surface sediments of Lake Qinghai and surrounding soil[J]. Organic Geochemistry, 2012, 47: 78-87.
|
60 |
WU Xia, DONG Hailiang, ZHANG Chuanlun, et al. Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2013, 61: 45-56.
|
61 |
LI Jingjing, PANCOST R, NAAFS B, et al. Distribution of Glycerol Dialkyl Glycerol Tetraether (GDGT) lipids in a hypersaline lake system[J]. Organic Geochemistry, 2016, 99: 113-124.
|
62 |
SCHOUTEN S, van DER MEER M, HOPMANS E C, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of yellowstone national park[J]. Applied Environmental Microbiology, 2007, 73(19): 6 181-6 191.
|
63 |
SUN Chijun, ZHANG Chuanlun, LI Fuyan, et al. Distribution of branched glycerol dialkyl glycerol tetraethers in soils on the Northeastern Qinghai-Tibetan Plateau and possible production by nitrite-reducing bacteria[J]. Science China Earth Sciences,2016, 59(9): 1 834-1 846.
|
64 |
FENG Xiaoping, ZHAO Cheng, D’ANDREA W, et al. Evidence for a relatively warm mid-to late Holocene on the southeastern Tibetan Plateau[J]. Geophysical Research Letters,2022,49(15). DOI:10.1029/2022GL098740 .
|
65 |
LI Youmo, WU Duo, WANG Tao, et al. Late Holocene temperature and precipitation variations in an alpine region of the northeastern Tibetan Plateau and their response to global climate change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615. DOI:10.1016/j.palaeo.2023.111442 .
|
66 |
WANG Huanye, LIU Weiguo, HE Yuxin, et al. Salinity-controlled isomerization of lacustrine brGDGTs impacts the associated MBT′5ME terrestrial temperature index[J]. Geochimica et Cosmochimica Acta, 2021, 305: 33-48.
|
67 |
ZHAO Cheng, ROHLING E, LIU Zhengyu, et al. Possible obliquity-forced warmth in southern Asia during the last glacial stage[J]. Science Bulletin, 2021, 66(11): 1 136-1 145.
|
68 |
XIAO Wenjie, XU Yunping, DING Su, et al. Global calibration of a novel, branched GDGT-based soil pH proxy[J]. Organic Geochemistry, 2015, 89/90: 56-60.
|
69 |
BLAGA C, G-J REICHART, HEIRI O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments:a study of 47 European lakes along a north-south transect[J]. Journal of Paleolimnology, 2008, 41(3): 523-540.
|
70 |
CAO Jiantao, RAO Zhiguo, SHI Fuxi, et al. Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates[J]. Biogeosciences, 2020, 17(9): 2 521-2 536.
|
71 |
LIANG Jie, GUO Yanlong, RICHTER N, et al. Calibration and application of branched GDGTs to Tibetan lake sediments: the influence of temperature on the fall of the Guge Kingdom in Western Tibet, China[J]. Paleoceanography and Paleoclimatology, 2022, 37(5). DOI:10.1029/2021PA004393 .
|
72 |
ZHANG Can, ZHAO Cheng, YU Shiyong, et al. Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau[J]. Earth-Science Reviews, 2022, 226. DOI:10.1016/j.earscirev.2022.103927 .
|
73 |
HE Yue, HOU Juzhi, WANG Mingda, et al. Temperature variation on the central Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers from the sediment record of Lake Linggo Co since the last Deglaciation[J]. Frontiers in Earth Science,2020,8. DOI:10.3389/feart.2020.574206 .
|
74 |
WANG Huanye, DONG Hailiang, ZHANG Chuanlun, et al. A 12-kyr record of microbial branched and isoprenoid tetraether index in Lake Qinghai, northeastern Qinghai-Tibet Plateau:implications for paleoclimate reconstruction[J]. Science China Earth Sciences, 2016, 59(5): 951-960.
|
75 |
SINNINGHE DAMSTé J S, WEBER Y, ZOPFI J, et al. Distributions and sources of isoprenoidal GDGTs in Lake Lugano and other central European (peri-)alpine lakes: lessons for their use as paleotemperature proxies[J]. Quaternary Science Reviews, 2022, 277. DOI:10.1016/j.quascirev.2021.107352 .
|
76 |
LI Xiumei, WANG Mingda, HOU Juzhi. Centennial-scale climate variability during the past 2000 years derived from lacustrine sediment on the western Tibetan Plateau[J]. Quaternary International, 2019, 510: 65-75.
|
77 |
SUN Xiaoshuang, ZHAO Cheng, ZHANG Can, et al. Seasonality in Holocene temperature reconstructions in Southwestern China[J]. Paleoceanography and Paleoclimatology, 2021, 36(1). DOI:10.1029/2020PA004025 .
|
78 |
ZHANG Ting, WANG Gen, WANG Yongli, et al. Long-term drying trends since the mid-Holocene in the Qaidam Basin[J]. Catena, 2023, 228. DOI:10.1016/j.catena.2023.107145 .
|
79 |
WANG Mingda, HOU Juzhi, ZHU La, et al. Changes in the lake thermal and mixing dynamics on the Tibetan Plateau[J]. Hydrological Sciences Journal, 2021, 66(5): 838-850.
|
80 |
SUN Zhe, HOU Xiaohuan, JI Kejia,et al. Potential winter-season bias of annual temperature variations in monsoonal Tibetan Plateau since the last Deglaciation[J]. Quaternary Science Reviews,2022,292. DOI:10.1016/j.quascirev.2022.107690 .
|
81 |
GÜNTHER F, WITT R, SCHOUTEN S, et al. Quaternary ecological responses and impacts of the Indian Ocean Summer Monsoon at Nam Co, Southern Tibetan Plateau[J]. Quaternary Science Reviews, 2015, 112: 66-77.
|
82 |
BECKER K, LIPP J, ZHU Chun, et al. An improved method for the analysis of archaeal and bacterial ether core lipids[J]. Organic Geochemistry, 2013, 61: 34-44.
|
83 |
de JONGE C, RADUJKOVIĆ D, SIGURDSSON B, et al. Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils[J]. Organic Geochemistry, 2019, 137. DOI:10.1016/j.orggeochem.2019.07.006 .
|
84 |
DIRGHANGI S, PAGANI M, HREN M, et al. Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA[J]. Organic Geochemistry, 2013, 59: 49-60.
|
85 |
DANG Xinyue, YANG Huan, NAAFS B, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189: 24-36.
|
86 |
CHENG Ziye, XIAO Long, WANG Hongmei, et al. Distribution characteristics of lipids from salt sediments in Qaidam Basin and their astrobiological significance[J]. Science China Earth Sciences, 2021, 65(1): 156-166.
|
87 |
LI Xiumei, ZHANG Yong, WANG Mingda, et al. Centennial-scale temperature change during the Common Era revealed by quantitative temperature reconstructions on the Tibetan Plateau[J]. Frontiers in Earth Science,2020,8. DOI:10.3389/feart.2020.00360 .
|
88 |
WANG Huanye, DONG Hailiang, ZHANG Chuanlun, et al. Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Research, 2015, 83(1): 116-126.
|
89 |
LI Xiumei, WANG Mingda, ZHANG Yuzhi, et al. Holocene climatic and environmental change on the western Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers and leaf wax deuterium-to-hydrogen ratios at Aweng Co[J]. Quaternary Research, 2017, 87(3): 455-467.
|
90 |
SUN Wei, ZHAO Shijun, PEI Hongye, et al. The coupled evolution of mid- to late Holocene temperature and moisture in the southeast Qaidam Basin[J]. Chemical Geology, 2019, 528: 119-282.
|
91 |
WANG Mingda, HOU Juzhi, DUAN Yanwu, et al. Internal feedbacks forced Middle Holocene cooling on the Qinghai‐Tibetan Plateau[J]. Boreas, 2021, 50(4): 1 116-1 130.
|
92 |
HAN Li, LI Yun, LIU Xingqi, et al. Paleoclimatic reconstruction and the response of carbonate minerals during the past 8000 years over the northeast Tibetan Plateau[J]. Quaternary International, 2020, 553: 94-103.
|
93 |
MOLNAR P, BOOS W R, BATTISTI D S. Orographic controls on climate and paleoclimate of Asia:thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth Planetary Sciences, 2010, 38(1): 77-102.
|
94 |
WANG Chaoran, HREN M, HOKE G, et al. Soil n-alkane δD and Glycerol Dialkyl Glycerol Tetraether (GDGT) distributions along an altitudinal transect from southwest China: evaluating organic molecular proxies for paleoclimate and paleoelevation[J]. Organic Geochemistry, 2017, 107: 21-32.
|
95 |
BAI Yan, CHEN Chihao, XU Qiang, et al. Paleoaltimetry potentiality of branched GDGTs from Southern Tibet[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 551-564.
|
96 |
LI Xiumei, LIU Sutao, FAN Baowei, et al. Validating the potential application of δ2Hwax and soil brGDGTs in paleoelevation estimates on the southern slopes of the Himalaya[J]. Quaternary Science Reviews,2023,318. DOI:10.1016/j.quascirev.2023.108306 .
|
97 |
PETERSE F, van der MEER M, SCHOUTEN S, et al. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction[J]. Biogeosciences, 2009, 6(12): 2 799-2 807.
|
98 |
DENG Lihuan, JIA Guodong, JIN Chuanfang, et al. Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate[J]. Organic Geochemistry, 2016, 96: 11-17.
|
99 |
FENG Xiaoping, D’ANDREA W, ZHAO Cheng, et al. Evaluation of leaf wax δD and soil brGDGTs as tools for paleoaltimetry on the southeastern Tibetan Plateau[J]. Chemical Geology, 2019, 523: 95-106.
|
100 |
CHEN Chihao, BAI Yan, FANG Xiaomin, et al. A late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion[J]. Geophysical Research Letters, 2019, 46(14): 8 375-8 386.
|
101 |
TIAN Qian, FANG Xiaomin, BAI Yan, et al. An Early Miocene Lowland on the Northeastern Tibetan Plateau[J]. Frontiers in Earth Science, 2021, 9. DOI:10.3389/feart.2021.759319 .
|
102 |
ZHUANG Guangsheng, ZHANG Yige, HOURIGAN J, et al. Microbial and Geochronologic Constraints on the Neogene Paleotopography of Northern Tibetan Plateau[J]. Geophysical Research Letters, 2019, 46(3): 1 312-1 319.
|
103 |
XIE Shucheng, PANCOST R D, CHEN Lin, et al. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene[J]. Geology, 2012, 40(4): 291-294.
|
104 |
YANG Huan, PANCOST R, DANG Xinyue, et al. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions[J]. Geochimica et Cosmochimica Acta, 2014, 126: 49-69.
|
105 |
ZENG Fangming, YANG Huan, BIAN Haokun. GDGTs compounds of the Holocene eolian deposits in Qinghai Lake area and their paleoenvironmental implications[J]. Quaternary Sciences, 2018, 38(5): 1 233-1 243.
|
|
曾方明,杨欢,卞昊昆. 青海湖地区全新世风尘堆积的GDGTs化合物及其环境指示意义[J]. 第四纪研究, 2018, 38(5): 1 233-1 243.
|
106 |
DING Weihua, YANG Huan, HE Gangqiang, et al. Effects of oxidative degradation by hydrogen peroxide on tetraethers-based organic proxies[J]. Quaternary Sciences, 2013, 33(1): 39-47.
|
|
丁伟华,杨欢,何钢强,等. 实验模拟氧化条件对微生物四醚脂的环境替代指标的影响[J]. 第四纪研究, 2013, 33(1): 39-47.
|
107 |
LI Jingjing, ZHENG Fengfeng, XU Min, et al. Distribution and environmental implication of GDGTs in lake surface sediments from the middle and lower reaches of Yangtze River[J/OL]. Earth Science,2022. [2023-08-01]. .
|
|
李婧婧,郑峰峰,徐敏,等. 长江中下游湖泊GDGTs分布及其环境意义[J/OL]. 地球科学,2022. [2023-08-01]. .
|
108 |
PEAPLE M, BEVERLY E, GARZA B, et al. Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem[J]. Organic Geochemistry, 2022, 169. DOI:10.1016/j.orggeochem.2022.104433 .
|
109 |
HOPMANS E, WEIJERS J, SCHEFUß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1/2): 107-116.
|
110 |
WANG Huanye, LIU Weiguo, ZHANG Chuanlun, et al. Branched and Isoprenoid Tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai:implications for paleo-humidity variation[J]. Organic Geochemistry, 2013, 59: 75-81.
|
111 |
DUAN Yanwu, SUN Qing, WERNE J P, et al. Mid-Holocene moisture maximum revealed by pH changes derived from branched tetraethers in loess deposits of the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520: 138-149.
|
112 |
LI Qiyuan, LIU Xiaomin, WANG Zhangzhang, et al. Distributions and environmental significance of GDGTs in modern peat samples from Eastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2): 388-395.
|
|
李奇缘,刘潇敏,王章章,等. 青藏高原东部现代泥炭GDGTs分布特征及环境意义[J]. 第四纪研究,2016, 36(2): 388-395.
|
113 |
XIE Shucheng, YANG Huan, DANG Xinyue, et al. Some Issues in microbial responses to environmental change and the application of molecular Proxies[J]. Geological Review, 2018, 64(1): 183-189.
|
|
谢树成,杨欢,党心悦,等. 地质微生物响应地质环境变化的若干问题——兼论环境代用指标的应用[J]. 地质论评,2018, 64(1): 183-189.
|
114 |
OUYANG Jingwu, WU Hongchen, YANG Huan, et al. Global warming induces the succession of photosynthetic microbial communities in a glacial lake on the Tibetan Plateau[J]. Water Research,2023,242. DOI:10.1016/j.watres.2023.120213 .
|
115 |
LI Cange, WANG Mingda, SUN Zhe, et al. Relationship between Holocene lake water temperature and glacier meltwater on the northwestern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2023,619. DOI:10.1016/j.palaeo.2023.111560 .
|
116 |
LIU Keshao, LIU Yongqin, HU Anyi, et al. Fate of glacier surface snow-originating bacteria in the glacier-fed hydrologic continuums[J]. Environmental Microbiology, 2021, 23(11): 6 450-6 462.
|
117 |
LIU Yongqin, JI Mukan, YU Tao, et al. A genome and gene catalog of glacier microbiomes[J]. Nature Biotechnology, 2022, 40(9): 1 341-1 348.
|
118 |
KANG Shichang, XU Yanwei, YOU Qinglong, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters,2010,5(1). DOI:10.1088/1748-9326/5/1/015101 .
|
119 |
YAO Tandong, WU Fuyuan, DING Lin, et al. Multispherical interactions and their effects on the Tibetan Plateau’s Earth system:a review of the recent researches[J]. National Science Review, 2015, 2(4): 468-488.
|
120 |
YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
|