地球科学进展 ›› 2023, Vol. 38 ›› Issue (11): 1158 -1172. doi: 10.11867/j.issn.1001-8166.2023.074

青藏高原综合科学考察研究 上一篇    下一篇

青藏高原不同载体中微生物类脂物 GDGTs的研究进展及展望
吴景全 1 , 2( ), 李全莲 1 , 3( ), 武小波 1, 王宁练 4 , 5, 康世昌 1 , 2, 王世金 1 , 3   
  1. 1.中国科学院西北生态环境资源研究院 冰冻圈科学国家重点实验室,甘肃 兰州 730000
    2.中国科学 院大学,北京 100049
    3.中国科学院玉龙雪山冰冻圈与可持续发展国家野外科学观测研究站,甘肃 兰州 730000
    4.陕西省地表系统与环境承载力重点实验室,陕西 西安 710127
    5.西北大学 城市与环境学院 地表系统与灾害研究院,陕西 西安 710127
  • 收稿日期:2023-08-23 修回日期:2023-10-17 出版日期:2023-11-10
  • 通讯作者: 李全莲 E-mail:wujingquan@nieer.ac.cn;liql@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目(41971090);甘肃省科技重大专项计划(22ZD6FA005)

Progress and Prospects of Microbial Membrane Lipids GDGTs in Different Archives on the Qinghai-Xizang Plateau

Jingquan WU 1 , 2( ), Quanlian LI 1 , 3( ), Xiaobo WU 1, Ninglian WANG 4 , 5, Shichang KANG 1 , 2, Shijin WANG 1 , 3   

  1. 1.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Yulong Snow Mountain National Field Observation and Research Station for Cryosphere and Sustainable Development, Chinese Academy of Sciences, Lanzhou 730000, China
    4.Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China
    5.Institute of Earth Surface System and Hazards, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
  • Received:2023-08-23 Revised:2023-10-17 Online:2023-11-10 Published:2023-11-08
  • Contact: Quanlian LI E-mail:wujingquan@nieer.ac.cn;liql@lzb.ac.cn
  • About author:WU Jingquan, Master student, research area includes microbial lipid compounds in glaciers. E-mail: wujingquan@nieer.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(41971090);The Gansu Province Science and Technology Major Project(22ZD6FA005)

甘油二烷基链甘油四醚是一类结构稳定、来源广泛、对气候环境响应敏感的微生物标志物,也是古气候与古环境重建的重要工具。相对于其他地区,青藏高原极端微生物对环境因子的响应机理复杂,不同载体中甘油二烷基链甘油四醚的分布特征不同,这给青藏高原古气候和古环境定量重建研究带来了不确定性,限制了甘油二烷基链甘油四醚在青藏高原研究中的充分应用。首先,总结了青藏高原不同载体中甘油二烷基链甘油四醚的分布特征、来源及影响因素;其次,概述了甘油二烷基链甘油四醚指标在青藏高原古气候环境重建中的应用,重点阐述了甘油二烷基链甘油四醚在青藏高原应用中的不确定性来源及其成因解释;最后,结合青藏高原多圈层相互作用对甘油二烷基链甘油四醚的影响机理,对青藏高原各载体中甘油二烷基链甘油四醚的研究进行了讨论和展望。

Glycerol Dialkyl Glycerol Tetraethers (GDGTs) are structurally stable, ubiquitously distributed, climate-sensitive microbial biomarkers that serve as important proxies for paleoclimatic and paleoenvironmental reconstruction. Compared to other regions, the extreme environment of the Tibetan Plateau triggers complex microbial responses that cause variations in GDGT distribution characteristics across various archives. These introduce uncertainties that limit the full potential of GDGTs in paleoclimate studies on the Tibetan Plateau. This paper summarizes the distribution, sources, and influencing factors of GDGTs in different Tibetan Plateau archives. It also outlines GDGT-based paleotemperature reconstructions, along with their associated uncertainties. The sources of uncertainty and their explanatory mechanisms are highlighted. Finally, considering the interactions between earth system spheres affecting GDGT proxies on the Tibetan Plateau, perspectives on GDGT research across the Tibetan Plateau archives are discussed, and future directions are proposed.

中图分类号: 

图1 古菌isoGDGTs和细菌brGDGTs分子结构及其质子化后的质核比(m/z
Fig. 1 The structures of archaeal isoGDGTs and bacterial brGDGTs and their protonated mass to charge ratiom/z
图2 青藏高原地区已开展的GDGTs研究的位置、数量及研究载体示意图
Fig. 2 The locationsquantities and archives of the GDGTs studies carried out in the Qinghai-Xizang Plateau
图3 青藏高原土壤、泥炭、热泉和湖泊表层沉积物GDGTs分布特征
Fig. 3 Distribution pattern of GDGTs in soilpeathot spring and lake surface sediments in the Qinghai-Xizang Plateau
图4 青藏高原GDGTs相对丰度与环境变量的RDA排序图
(a)isoGDGTs相对丰度;(b)brGDGTs相对丰度;DO代表溶解氧浓度;Depth代表湖水深度;Salinity代表湖水盐度;Alt代表海拔高度;SWC代表土壤含水率;MAAT代表大气年均温
Fig. 4 RDA ranking of relative abundance of GDGTs and environmental variables in the Qinghai-Xizang Plateau:
(a) Relative abundance of individual isoGDGTs; (b) Relative abundance of individual brGDGTs;Depth represents lake water depth; Salinity represents lake water salinity; Alt represents altitude; SWC represents soil water content; MAAT represents Mean Annual Atmospheric Temperature
图5 基于GDGTs指标重建的全新世以来青藏高原不同地区的古温度变化
Fig. 5 Reconstructed temperature variations since Holocene in different regions of the Qinghai-Xizang Plateau based on the GDGTs proxies
图6 基于brGDGTs指标重建的温度与青藏高原不同地区海拔高度的相关性
Fig. 6 Correlation between brGDGTs-derived temperature estimation and altitude in different regions of the Qinghai-Xizang Plateau
1 SHERWOOD S, WEBB M, ANNAN J, et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence[J]. Reviews of Geophysics,2020,58(4). DOI:10.1029/2019RG000678 .
2 SCOTESE C, SONG H, MILLS B, et al. Phanerozoic paleotemperatures: the Earth’s changing climate during the last 540 million years[J]. Earth-Science Reviews,2021,215. DOI:10.1016/j.earscirev.2021.103503 .
3 CHEVALIER M, DAVIS B, HEIRI O, et al. Pollen-based climate reconstruction techniques for late Quaternary studies[J]. Earth-Science Reviews,2020,210. DOI:10.1016/j.earscirev.2020.103384 .
4 CHEN Fahu, ZHANG Jifeng, LIU Jianbao, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene:a comprehensive review[J]. Quaternary Science Reviews, 2020, 243: 106-444.
5 QIU J. China: the third pole[J]. Nature,2008,454(7 203):393-396.
6 YOU Qinglong, CHEN Deliang, WU Fangying, et al. Elevation dependent warming over the Tibetan Plateau:patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210. DOI:10.1016/j.earscirev.2020.103349 .
7 HOU Juzhi, D’ANDREA W, WANG Mingda, et al. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene[J]. Quaternary Science Reviews, 2017, 163: 84-94.
8 HOU Juzhi, HUANG Yongsong, ZHAO Jiangtao, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2016, 43(3): 1 323-1 330.
9 THOMPSON L, MOSLEY-THOMPSON E, BRECHER H, et al. Abrupt tropical climate change: past and present[J]. Proceedings of the National Academy of Sciences, 2006, 103(28): 10 536-10 543.
10 CHEN Fahu, DUAN Yanwu, HAO Shuo, et al. Holocene thermal maximum mode versus the continuous warming mode: problems of data-model comparisons and future research prospects[J]. Science China Earth Sciences, 2023, 66: 1 683-1 701.
11 LIU Jinzhao, AN Zhisheng, ZHANG Liang, et al. Paleoaltimetry performance of coupled δ2Hwax-MBT′5ME proxy in semiarid conditions[J]. Quaternary Science Reviews, 2023, 305. DOI:10.1016/j.quascirev.2023.108017 .
12 WEI Shikai, RAO Zhiguo, CAO Jiantao, et al. Holocene warming trend based on peat brGDGTs records from southeastern humid to northwestern arid China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 619. DOI:10.1016/j.palaeo.2023.111528 .
13 WANG Huanye, DONG Hailiang, ZHANG Chuanlun, et al. Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai-Tibetan Plateau: implications for paleo lake levels and paleoclimate[J]. Chemical Geology, 2014, 368: 76-84.
14 SCHOUTEN S, HOPMANS E C, SINNINGHE DAMSTÉ J. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:a review[J]. Organic Geochemistry, 2013, 54: 19-61.
15 FAN Jiachen, QIAN Shi, PEI Hongye, et al. Application of microbial ether lipids in the reconstruction of paleoenvironments in peatlands:progress and problems[J]. Advances in Earth Science, 2021, 36(12): 1 272-1 290.
樊嘉琛,钱施,裴宏业,等,微生物醚类化合物在泥炭古环境重建中的应用 :进展与问题[J]. 地球科学进展, 2021, 36(12): 1 272-1 290.
16 TIAN Shaohua, XIAO Guoqiao, YANG Huan. Application of Glycerol Dialkyl Glycerol Tetraether lipids in paleoenvironment reconstruction of loess deposits: a review of recent progresses[J]. Advances in Earth Science, 2020, 35(5): 465-477.
田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展,2020, 35(5): 465-477.
17 BLUM L, COLMAN D R, ELOE-FADROSH E A, et al. Distribution and abundance of tetraether lipid cyclization genes in terrestrial hot springs reflect pH[J]. Environmental Microbiology, 2023, 25(9): 1 644-1 658.
18 JENKYNS H, SCHOUTEN-HUIBERS L, SCHOUTEN S, et al. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean[J]. Climate of the Past,2012, 8(1): 215-226.
19 ZENG Zhirui, LIU Xiaolei, FARLEY K, et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences, 2019, 116(45): 22 505-22 511.
20 CHEN Yufei, CHEN Huahui, ZENG Zhirui. Biosynthetic pathways of GDGTs in archaea and bacteria and their biogeochemical implications[J]. Acta Microbiologica Sinica, 2022, 62(12): 4 700-4 712.
陈雨霏,陈华慧,曾芝瑞. 古菌和细菌四醚膜脂GDGTs的生物合成机制及其生物地球化学意义[J]. 微生物学报,2022, 62(12): 4 700-4 712.
21 DING Su, XU Yunping, WANG Yinghui, et al. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau:implications of brGDGTs-based proxies in cold and dry regions[J]. Biogeosciences, 2015, 12(11): 3 141-3 151.
22 LIANG Jie, RICHTER N, XIE Haichao, et al. Branched Glycerol Dialkyl Glycerol Tetraether (brGDGT) distributions influenced by bacterial community composition in various vegetation soils on the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2023,611. DOI:10.1016/j.palaeo.2022.111358 .
23 LIANG Jie, RUSSELL J, XIE Haichao, et al. Vegetation effects on temperature calibrations of branched Glycerol Dialkyl Glycerol Tetraether (brGDGTs) in soils[J]. Organic Geochemistry, 2019, 127: 1-11.
24 LIU Weiguo, WANG Huanye, ZHANG Chuanlun, et al. Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China[J]. Organic Geochemistry, 2013, 57: 76-83.
25 WANG Hansheng, GAO Peng, YANG Rrui, et al. Correlation between brGDGTs distribution and elevation from the eastern Qilian Shan[J]. Frontiers in Earth Science,2022,10. DOI:10.3389/feart.2022.844026 .
26 GÜNTHER F, THIELE A, GLEIXNER G, et al. Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes:implications for GDGT-based proxies in saline high mountain lakes[J]. Organic Geochemistry, 2014, 67: 19-30.
27 KOU Qiangqiang, ZHU Liping, JU Jianting, et al. Influence of salinity on glycerol dialkyl glycerol tetraether-based indicators in Tibetan Plateau lakes:implications for paleotemperature and paleosalinity reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601. DOI:10.1016/j.palaeo.2022.111127 .
28 KOU Qiangqiang, ZHU Liping, MA Qingfeng, et al. Distribution, potential sources, and response to water depth of archaeal tetraethers in Tibetan Plateau lake sediments[J]. Chemical Geology,2022,601. DOI:10.1016/j.chemgeo.2022.120825 .
29 WANG Huanye, HE Yake, LIU Weiguo, et al. Lake water depth controlling archaeal tetraether distributions in midlatitude Asia:implications for paleo lake‐level reconstruction[J]. Geophysical Research Letters, 2019, 46(10): 5 274-5 283.
30 WANG Mingda, LIANG Jie, HOU Juzhi, et al. Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors[J]. Science China Earth Sciences, 2016, 59(5): 961-974.
31 WANG Mingda, TIAN Qian, LI Xiumei, et al. TEX86 as a potential proxy of lake water pH in the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538. DOI:10.1016/j.palaeo.2019.109381 .
32 CHEUNG Manching, ZONG Yongqiang, ZHENG Zhuo, et al. Holocene temperature and precipitation variability on the central Tibetan Plateau revealed by multiple palaeo-climatic proxy records from an alpine wetland sequence[J]. The Holocene, 2017, 27(11): 1 669-1 681.
33 YAN Tianlong, ZHAO Cheng, YAN Hong, et al. Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at ~30° N on eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 570. DOI:10.1016/j.palaeo.2021.110364 .
34 ZHENG Yanhong, LI Qiyuan, WANG Zhangzhang, et al. Peatland GDGT records of Holocene climatic and biogeochemical responses to the Asian Monsoon[J]. Organic Geochemistry, 2015, 87: 86-95.
35 ZHOU Haoda, HU Jianfang, MING Lili, et al. Branched glycerol dialkyl glycerol tetraethers and paleoenvironmental reconstruction in Zoigê peat sediments during the last 150 years[J]. Chinese Science Bulletin, 2011, 56(23): 2 456-2 463.
36 HE Liu, ZHANG Chuanlun, DONG Hailiang, et al. Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs[J]. Geoscience Frontiers, 2012, 3(3): 289-300.
37 JIA Chengling, ZHANG Chuanlun, XIE Wei, et al. Differential temperature and pH controls on the abundance and composition of H-GDGTs in terrestrial hot springs[J]. Organic Geochemistry, 2014, 75: 109-121.
38 LI Fuyan, ZHANG Chuanlun, DONG Hailiang, et al. Environmental controls on the distribution of archaeal lipids in Tibetan hot springs:insight into the application of organic proxies for biogeochemical processes[J]. Environmental Microbiology Reports, 2013, 5(6): 868-882.
39 LI Fuyan, ZHANG Chuanlun, WANG Shang, et al. Production of branched tetraether lipids in Tibetan hot springs:a possible linkage to nitrite reduction by thermotolerant or thermophilic bacteria?[J]. Chemical Geology, 2014, 386: 209-217.
40 CHEN Yufei, ZHENG Fengfeng, CHEN Songze, et al. Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations[J]. Organic Geochemistry, 2018, 117: 12-21.
41 CHEN Yufei, ZHENG Fengfeng, YANG Huan, et al. The production of diverse brGDGTs by an Acidobacterium providing a physiological basis for paleoclimate proxies[J]. Geochimica et Cosmochimica Acta, 2022, 337: 155-165.
42 DEARING CRAMPTON-FLOOD E, TIERNEY J, PETERSE F,et al. BayMBT:a Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats[J]. Geochimica et Cosmochimica Acta, 2020, 268: 142-159.
43 de JONGE C, HOPMANS E, ZELL C, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils:implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141: 97-112.
44 ZHENG Pingbo, YANG Huan, ZHANG Hucai, et al. Influence of hydrological parameters on hydroxylated tetraether lipids in a deep Lake Fuxian, China: implications for their use as environmental proxies[J]. Science of the Total Environment, 2023, 895. DOI:10.1016/j.scitotenv.2023.165022 .
45 BAXTER A, PETERSE F, VERSCHUREN D, et al. Anoxic in situ production of bacterial GMGTs in the water column and surficial bottom sediments of a meromictic tropical crater lake:implications for lake paleothermometry[J]. Geochimica et Cosmochimica Acta, 2021, 306: 171-188.
46 DING Su, SCHWAB V, UEBERSCHAAR N, et al. Identification of novel 7-methyl and cyclopentanyl branched glycerol dialkyl glycerol tetraethers in lake sediments[J]. Organic Geochemistry, 2016, 102: 52-58.
47 SCHOUTEN S, HOPMANS E, SCHEFUSS E, et al. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1/2): 265-274.
48 POWERS L, WERNE J, JOHNSON T, et al. Crenarchaeotal membrane lipids in lake sediments:a new paleotemperature proxy for continental paleoclimate reconstruction?[J]. Geology, 2004, 32(7): 613-616.
49 QIN Wei, CARLSON L, ARMBRUST E, et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota[J]. Proceedings of the National Academy of Sciences,2015, 112(35): 10 979-10 984.
50 RATTANASRIAMPAIPONG R, ZHANG Yige, PEARSON A, et al. Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea[J]. Proceedings of the National Academy of Sciences,2022, 119(31). DOI:10.1073/pnas.2123193119 .
51 ZHANG Yige, PAGANI M, WANG Zhengrong. Ring index:a new strategy to evaluate the integrity of TEX86 paleothermometry[J]. Paleoceanography, 2016, 31(2): 220-232.
52 WEIJERS J, SCHOUTEN S, van DEN DONKER J, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703-713.
53 PETERSE F, van DER MEER J, SCHOUTEN S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96: 215-229.
54 LI Xiumei, ZHU Erlei, WANG Mingda, et al. Distributions of Glycerol Dialkyl Glycerol Tetraether lips along an altitudinal transect on the southern slope of Mt.Himalaya and their indicating significance[J]. Quaternary Sciences, 2017, 37(6): 1 226-1 237.
李秀美,朱二雷,王明达,等. 喜马拉雅山南坡海拔梯度表土GDGTs分布特征及其指示意义[J]. 第四纪研究,2017, 37(6): 1 226-1 237.
55 WANG Huanye, LIU Weiguo. Soil temperature and brGDGTs along an elevation gradient on the northeastern Tibetan Plateau:a test of soil brGDGTs as a proxy for paleoelevation[J]. Chemical Geology, 2021, 566. DOI:10.1016/j.chemgeo.2021.120079 .
56 NAAFS B, INGLIS G, ZHENG Yanhong, et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids[J]. Geochimica et Cosmochimica Acta, 2017, 208: 285-301.
57 SINNINGHE DAMSTÉ J, RIJPSTRA W, HOPMANS ELLEN C, et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of Group I.1a and I.1b Thaumarchaeota in soil[J]. Applied and Environmental Microbiology, 2012, 78(19): 6 866-6 874.
58 KOU Qiangqiang, ZHU Liping, WANG Junbo, et al. Archaeal tetraether-inferred hydrological variations of Serling Co (Central Tibet) during the late Quaternary[J]. Global and Planetary Change, 2023, 224. DOI:10.1016/j.gloplacha.2023.104113 .
59 WANG Huanye, LIU Weiguo, ZHANG Chuanlun, et al. Distribution of glycerol dialkyl glycerol tetraethers in surface sediments of Lake Qinghai and surrounding soil[J]. Organic Geochemistry, 2012, 47: 78-87.
60 WU Xia, DONG Hailiang, ZHANG Chuanlun, et al. Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2013, 61: 45-56.
61 LI Jingjing, PANCOST R, NAAFS B, et al. Distribution of Glycerol Dialkyl Glycerol Tetraether (GDGT) lipids in a hypersaline lake system[J]. Organic Geochemistry, 2016, 99: 113-124.
62 SCHOUTEN S, van DER MEER M, HOPMANS E C, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of yellowstone national park[J]. Applied Environmental Microbiology, 2007, 73(19): 6 181-6 191.
63 SUN Chijun, ZHANG Chuanlun, LI Fuyan, et al. Distribution of branched glycerol dialkyl glycerol tetraethers in soils on the Northeastern Qinghai-Tibetan Plateau and possible production by nitrite-reducing bacteria[J]. Science China Earth Sciences,2016, 59(9): 1 834-1 846.
64 FENG Xiaoping, ZHAO Cheng, D’ANDREA W, et al. Evidence for a relatively warm mid-to late Holocene on the southeastern Tibetan Plateau[J]. Geophysical Research Letters,2022,49(15). DOI:10.1029/2022GL098740 .
65 LI Youmo, WU Duo, WANG Tao, et al. Late Holocene temperature and precipitation variations in an alpine region of the northeastern Tibetan Plateau and their response to global climate change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615. DOI:10.1016/j.palaeo.2023.111442 .
66 WANG Huanye, LIU Weiguo, HE Yuxin, et al. Salinity-controlled isomerization of lacustrine brGDGTs impacts the associated MBT′5ME terrestrial temperature index[J]. Geochimica et Cosmochimica Acta, 2021, 305: 33-48.
67 ZHAO Cheng, ROHLING E, LIU Zhengyu, et al. Possible obliquity-forced warmth in southern Asia during the last glacial stage[J]. Science Bulletin, 2021, 66(11): 1 136-1 145.
68 XIAO Wenjie, XU Yunping, DING Su, et al. Global calibration of a novel, branched GDGT-based soil pH proxy[J]. Organic Geochemistry, 2015, 89/90: 56-60.
69 BLAGA C, G-J REICHART, HEIRI O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments:a study of 47 European lakes along a north-south transect[J]. Journal of Paleolimnology, 2008, 41(3): 523-540.
70 CAO Jiantao, RAO Zhiguo, SHI Fuxi, et al. Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates[J]. Biogeosciences, 2020, 17(9): 2 521-2 536.
71 LIANG Jie, GUO Yanlong, RICHTER N, et al. Calibration and application of branched GDGTs to Tibetan lake sediments: the influence of temperature on the fall of the Guge Kingdom in Western Tibet, China[J]. Paleoceanography and Paleoclimatology, 2022, 37(5). DOI:10.1029/2021PA004393 .
72 ZHANG Can, ZHAO Cheng, YU Shiyong, et al. Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau[J]. Earth-Science Reviews, 2022, 226. DOI:10.1016/j.earscirev.2022.103927 .
73 HE Yue, HOU Juzhi, WANG Mingda, et al. Temperature variation on the central Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers from the sediment record of Lake Linggo Co since the last Deglaciation[J]. Frontiers in Earth Science,2020,8. DOI:10.3389/feart.2020.574206 .
74 WANG Huanye, DONG Hailiang, ZHANG Chuanlun, et al. A 12-kyr record of microbial branched and isoprenoid tetraether index in Lake Qinghai, northeastern Qinghai-Tibet Plateau:implications for paleoclimate reconstruction[J]. Science China Earth Sciences, 2016, 59(5): 951-960.
75 SINNINGHE DAMSTé J S, WEBER Y, ZOPFI J, et al. Distributions and sources of isoprenoidal GDGTs in Lake Lugano and other central European (peri-)alpine lakes: lessons for their use as paleotemperature proxies[J]. Quaternary Science Reviews, 2022, 277. DOI:10.1016/j.quascirev.2021.107352 .
76 LI Xiumei, WANG Mingda, HOU Juzhi. Centennial-scale climate variability during the past 2000 years derived from lacustrine sediment on the western Tibetan Plateau[J]. Quaternary International, 2019, 510: 65-75.
77 SUN Xiaoshuang, ZHAO Cheng, ZHANG Can, et al. Seasonality in Holocene temperature reconstructions in Southwestern China[J]. Paleoceanography and Paleoclimatology, 2021, 36(1). DOI:10.1029/2020PA004025 .
78 ZHANG Ting, WANG Gen, WANG Yongli, et al. Long-term drying trends since the mid-Holocene in the Qaidam Basin[J]. Catena, 2023, 228. DOI:10.1016/j.catena.2023.107145 .
79 WANG Mingda, HOU Juzhi, ZHU La, et al. Changes in the lake thermal and mixing dynamics on the Tibetan Plateau[J]. Hydrological Sciences Journal, 2021, 66(5): 838-850.
80 SUN Zhe, HOU Xiaohuan, JI Kejia,et al. Potential winter-season bias of annual temperature variations in monsoonal Tibetan Plateau since the last Deglaciation[J]. Quaternary Science Reviews,2022,292. DOI:10.1016/j.quascirev.2022.107690 .
81 GÜNTHER F, WITT R, SCHOUTEN S, et al. Quaternary ecological responses and impacts of the Indian Ocean Summer Monsoon at Nam Co, Southern Tibetan Plateau[J]. Quaternary Science Reviews, 2015, 112: 66-77.
82 BECKER K, LIPP J, ZHU Chun, et al. An improved method for the analysis of archaeal and bacterial ether core lipids[J]. Organic Geochemistry, 2013, 61: 34-44.
83 de JONGE C, RADUJKOVIĆ D, SIGURDSSON B, et al. Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils[J]. Organic Geochemistry, 2019, 137. DOI:10.1016/j.orggeochem.2019.07.006 .
84 DIRGHANGI S, PAGANI M, HREN M, et al. Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA[J]. Organic Geochemistry, 2013, 59: 49-60.
85 DANG Xinyue, YANG Huan, NAAFS B, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189: 24-36.
86 CHENG Ziye, XIAO Long, WANG Hongmei, et al. Distribution characteristics of lipids from salt sediments in Qaidam Basin and their astrobiological significance[J]. Science China Earth Sciences, 2021, 65(1): 156-166.
87 LI Xiumei, ZHANG Yong, WANG Mingda, et al. Centennial-scale temperature change during the Common Era revealed by quantitative temperature reconstructions on the Tibetan Plateau[J]. Frontiers in Earth Science,2020,8. DOI:10.3389/feart.2020.00360 .
88 WANG Huanye, DONG Hailiang, ZHANG Chuanlun, et al. Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Research, 2015, 83(1): 116-126.
89 LI Xiumei, WANG Mingda, ZHANG Yuzhi, et al. Holocene climatic and environmental change on the western Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers and leaf wax deuterium-to-hydrogen ratios at Aweng Co[J]. Quaternary Research, 2017, 87(3): 455-467.
90 SUN Wei, ZHAO Shijun, PEI Hongye, et al. The coupled evolution of mid- to late Holocene temperature and moisture in the southeast Qaidam Basin[J]. Chemical Geology, 2019, 528: 119-282.
91 WANG Mingda, HOU Juzhi, DUAN Yanwu, et al. Internal feedbacks forced Middle Holocene cooling on the Qinghai‐Tibetan Plateau[J]. Boreas, 2021, 50(4): 1 116-1 130.
92 HAN Li, LI Yun, LIU Xingqi, et al. Paleoclimatic reconstruction and the response of carbonate minerals during the past 8000 years over the northeast Tibetan Plateau[J]. Quaternary International, 2020, 553: 94-103.
93 MOLNAR P, BOOS W R, BATTISTI D S. Orographic controls on climate and paleoclimate of Asia:thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth Planetary Sciences, 2010, 38(1): 77-102.
94 WANG Chaoran, HREN M, HOKE G, et al. Soil n-alkane δD and Glycerol Dialkyl Glycerol Tetraether (GDGT) distributions along an altitudinal transect from southwest China: evaluating organic molecular proxies for paleoclimate and paleoelevation[J]. Organic Geochemistry, 2017, 107: 21-32.
95 BAI Yan, CHEN Chihao, XU Qiang, et al. Paleoaltimetry potentiality of branched GDGTs from Southern Tibet[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 551-564.
96 LI Xiumei, LIU Sutao, FAN Baowei, et al. Validating the potential application of δ2Hwax and soil brGDGTs in paleoelevation estimates on the southern slopes of the Himalaya[J]. Quaternary Science Reviews,2023,318. DOI:10.1016/j.quascirev.2023.108306 .
97 PETERSE F, van der MEER M, SCHOUTEN S, et al. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction[J]. Biogeosciences, 2009, 6(12): 2 799-2 807.
98 DENG Lihuan, JIA Guodong, JIN Chuanfang, et al. Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate[J]. Organic Geochemistry, 2016, 96: 11-17.
99 FENG Xiaoping, D’ANDREA W, ZHAO Cheng, et al. Evaluation of leaf wax δD and soil brGDGTs as tools for paleoaltimetry on the southeastern Tibetan Plateau[J]. Chemical Geology, 2019, 523: 95-106.
100 CHEN Chihao, BAI Yan, FANG Xiaomin, et al. A late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion[J]. Geophysical Research Letters, 2019, 46(14): 8 375-8 386.
101 TIAN Qian, FANG Xiaomin, BAI Yan, et al. An Early Miocene Lowland on the Northeastern Tibetan Plateau[J]. Frontiers in Earth Science, 2021, 9. DOI:10.3389/feart.2021.759319 .
102 ZHUANG Guangsheng, ZHANG Yige, HOURIGAN J, et al. Microbial and Geochronologic Constraints on the Neogene Paleotopography of Northern Tibetan Plateau[J]. Geophysical Research Letters, 2019, 46(3): 1 312-1 319.
103 XIE Shucheng, PANCOST R D, CHEN Lin, et al. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene[J]. Geology, 2012, 40(4): 291-294.
104 YANG Huan, PANCOST R, DANG Xinyue, et al. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions[J]. Geochimica et Cosmochimica Acta, 2014, 126: 49-69.
105 ZENG Fangming, YANG Huan, BIAN Haokun. GDGTs compounds of the Holocene eolian deposits in Qinghai Lake area and their paleoenvironmental implications[J]. Quaternary Sciences, 2018, 38(5): 1 233-1 243.
曾方明,杨欢,卞昊昆. 青海湖地区全新世风尘堆积的GDGTs化合物及其环境指示意义[J]. 第四纪研究, 2018, 38(5): 1 233-1 243.
106 DING Weihua, YANG Huan, HE Gangqiang, et al. Effects of oxidative degradation by hydrogen peroxide on tetraethers-based organic proxies[J]. Quaternary Sciences, 2013, 33(1): 39-47.
丁伟华,杨欢,何钢强,等. 实验模拟氧化条件对微生物四醚脂的环境替代指标的影响[J]. 第四纪研究, 2013, 33(1): 39-47.
107 LI Jingjing, ZHENG Fengfeng, XU Min, et al. Distribution and environmental implication of GDGTs in lake surface sediments from the middle and lower reaches of Yangtze River[J/OL]. Earth Science,2022. [2023-08-01]. .
李婧婧,郑峰峰,徐敏,等. 长江中下游湖泊GDGTs分布及其环境意义[J/OL]. 地球科学,2022. [2023-08-01]. .
108 PEAPLE M, BEVERLY E, GARZA B, et al. Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem[J]. Organic Geochemistry, 2022, 169. DOI:10.1016/j.orggeochem.2022.104433 .
109 HOPMANS E, WEIJERS J, SCHEFUß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1/2): 107-116.
110 WANG Huanye, LIU Weiguo, ZHANG Chuanlun, et al. Branched and Isoprenoid Tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai:implications for paleo-humidity variation[J]. Organic Geochemistry, 2013, 59: 75-81.
111 DUAN Yanwu, SUN Qing, WERNE J P, et al. Mid-Holocene moisture maximum revealed by pH changes derived from branched tetraethers in loess deposits of the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520: 138-149.
112 LI Qiyuan, LIU Xiaomin, WANG Zhangzhang, et al. Distributions and environmental significance of GDGTs in modern peat samples from Eastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2): 388-395.
李奇缘,刘潇敏,王章章,等. 青藏高原东部现代泥炭GDGTs分布特征及环境意义[J]. 第四纪研究,2016, 36(2): 388-395.
113 XIE Shucheng, YANG Huan, DANG Xinyue, et al. Some Issues in microbial responses to environmental change and the application of molecular Proxies[J]. Geological Review, 2018, 64(1): 183-189.
谢树成,杨欢,党心悦,等. 地质微生物响应地质环境变化的若干问题——兼论环境代用指标的应用[J]. 地质论评,2018, 64(1): 183-189.
114 OUYANG Jingwu, WU Hongchen, YANG Huan, et al. Global warming induces the succession of photosynthetic microbial communities in a glacial lake on the Tibetan Plateau[J]. Water Research,2023,242. DOI:10.1016/j.watres.2023.120213 .
115 LI Cange, WANG Mingda, SUN Zhe, et al. Relationship between Holocene lake water temperature and glacier meltwater on the northwestern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2023,619. DOI:10.1016/j.palaeo.2023.111560 .
116 LIU Keshao, LIU Yongqin, HU Anyi, et al. Fate of glacier surface snow-originating bacteria in the glacier-fed hydrologic continuums[J]. Environmental Microbiology, 2021, 23(11): 6 450-6 462.
117 LIU Yongqin, JI Mukan, YU Tao, et al. A genome and gene catalog of glacier microbiomes[J]. Nature Biotechnology, 2022, 40(9): 1 341-1 348.
118 KANG Shichang, XU Yanwei, YOU Qinglong, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters,2010,5(1). DOI:10.1088/1748-9326/5/1/015101 .
119 YAO Tandong, WU Fuyuan, DING Lin, et al. Multispherical interactions and their effects on the Tibetan Plateau’s Earth system:a review of the recent researches[J]. National Science Review, 2015, 2(4): 468-488.
120 YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[1] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[2] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[3] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[4] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[5] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[6] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[7] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[8] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[9] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[10] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[11] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[12] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[13] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[14] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[15] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
阅读次数
全文


摘要