地球科学进展 ›› 2023, Vol. 38 ›› Issue (11): 1145 -1157. doi: 10.11867/j.issn.1001-8166.2023.062

研究论文 上一篇    下一篇

贵州省分光地表反照率时空变化趋势和影响因子分析
袁娜 1 , 2( ), 邓玲玲 1 , 2, 尹霞 1 , 2, 宋善海 3, 刘绥华 1 , 2( )   
  1. 1.贵州师范大学 地理与环境科学学院,贵州 贵阳 550025
    2.贵州师范大学 贵州省山地资源与环境遥感应用重点实验室,贵州 贵阳 550025
    3.贵州省生态气象和卫星遥感中心,贵州 贵阳 550002
  • 收稿日期:2023-07-25 修回日期:2023-08-29 出版日期:2023-11-10
  • 通讯作者: 刘绥华 E-mail:y2043193797@163.com;Lsh23@163.com
  • 基金资助:
    国家自然科学基金项目(42161029);贵州省科技技术项目(编号:黔科合基础-ZK[2022]一般278)资助

Analysis of Temporal and Spatial Trends and Influencing Factors of Spectral Surface Albedo in Guizhou Province

Na YUAN 1 , 2( ), Lingling Deng 1 , 2, Xia YIN 1 , 2, Shanhai SONG 3, Suihua LIU 1 , 2( )   

  1. 1.School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China
    2.Key Laboratory of Remote Sensing Applications for Mountain Resources and Environment, Guizhou Province, Guizhou Normal University, Guiyang 550025, China
    3.Guizhou Ecological Meteorology and Satellite Remote Sensing Center, Guiyang 550002, China
  • Received:2023-07-25 Revised:2023-08-29 Online:2023-11-10 Published:2023-11-24
  • Contact: Suihua LIU E-mail:y2043193797@163.com;Lsh23@163.com
  • About author:YUAN Na, Master student, research area includes geographic information and remote sensing. E-mail: y2043193797@163.com
  • Supported by:
    the National Natural Science Foundation of China(42161029);The Guizhou Provincial Science and Technology Project (Grant No. Qiankeheji-ZK[2022] General 278)

贵州省具有独特的地形地势和复杂的气候条件,分光地表反照率(短波、近红外和可见光)研究不仅能细化地表参数、了解太阳分光辐射特征,还能为探究低纬山区地—气系统能量转换过程中相关分光辐射变量的物理过程提供科学参考。基于MCD43A3反照率数据、MCD15A2H叶面积指数数据、气温、降水、土地利用和土壤水分数据,使用异常变异分析、Theil-Sen(T-S)和Mann-Kendall(M-K)趋势分析以及地理探测器,分析贵州省分光地表反照率时空变化趋势及影响因子。结果表明: 分光地表反照率年际变化大小排序为:近红外>短波>可见光,除可见光地表反照率外均呈上升趋势,3个波段地表反照率高值区基本一致,呈东北至西南一线以及西部威宁县分布; 在季节变化中,短波和近红外地表反照率大小排序一致为:夏>秋>春>冬,可见光地表反照率为:春>冬>秋>夏; 分光地表反照率的主要影响因子均为叶面积指数,其次为土地利用。研究结果可揭示贵州分光地表反照率时空变化和驱动机制,为贵州山区生态保护提供参考。

Guizhou Province, characterized by unique topography and complex climatic conditions, offers an excellent opportunity to study spectral surface albedo (short-wave, near-infrared, and visible light). Analyzing this refines surface parameters and understands the characteristics of solar spectral radiation but also provides scientific references to explore the physical processes of the relevant spectral radiation, variables in the process of energy conversion of the earth-air system in mountainous areas at low latitudes. Therefore, based on MCD43A3 albedo data, MCD15A2H Leaf Area Index (LAI), temperature, precipitation, land use, and soil moisture data, using anomalous variance analysis, Theil-Sen (T-S) and Mann-Kendall (M-K) trend analyses, and geophones, we analyzed the spatial and temporal trends and driving factors of spectral surface albedo in Guizhou Province. The results show that interannual changes in spectral surface albedo were in the order of size: near-infrared>short-wave>visible. In addition to visible surface albedo being on the rise (the three bands of surface albedo high-value area were basically the same), there was a line from the northeast to the southwest, and the western distribution of the characteristics of the County of Weining; considering seasonal changes, the size order of short-wave and near-infrared surface albedo was the same, as follows: summer>autumn>spring>winter and that of visible surface albedo was spring>winter. The sizes of short-wave and short-wave albedo were the same, as follows: summer> autumn>spring>winter, and that of visible surface albedo was: spring>winter>autumn>summer; the driving factors of spectral surface albedo were LAI, followed by land use. The results of this study reveal spatial and temporal variations and driving mechanisms of the spectral surface albedo in Guizhou, which can provide a reference for the ecological protection of mountainous areas in Guizhou.

中图分类号: 

图1 贵州省概况
Fig. 1 Overview of Guizhou Province
表1 研究数据基本信息
Table 1 Basic information about the study data
表2 交互作用探测判断依据
Table 2 Interaction detection judgment basis
图2 20012022年贵州省短波(SW)、近红外(NIR)、可见光(VIS)地表反照率年均值和月均值
Fig. 2 Annual mean values of ShortwaveSW), Near-InfraredNIR), and VisibleVISsurface albedo and monthly mean values2001-2022
图3 20012022年贵州省短波(SW)、近红外(NIR)和可见光(VIS)地表反照率年均时空变化趋势分布图
M-K:2/-2:正负微显著;3/3:正负显著;4/-4:正负极显著;-1/1:正负不显著变化
Fig. 3 Distribution of annual average temporal and spatial trends of ShortwaveSW), Near-InfraredNIRand VisibleVISsurface albedo in Guizhou Province2001-2022
M-K: 2/-2: Minimally significant positively or negatively; 3/3: Significantly positively or negatively; 4/-4: Very significantly positively or negatively; -1/1: Positively or negatively insignificant change
图4 20012022年贵州省四季短波(SW)、近红外(NIR)和可见光(VIS)地表反照率年均变化趋势
Fig. 4 Average annual trends in ShortwaveSW), Near-InfraredNIRand VisibleVISsurface albedo for Guizhou Province in four seasons2001-2022
图5 20012022年贵州省四季短波(SW)、近红外(NIR)和可见光(VIS)地表反照率年均分布
Fig. 5 Average annual distribution of ShortwaveSW), Near-InfraredNIRand VisibleVISsurface albedo in Guizhou Province in four seasons2001-2022
图6 20012022年贵州省四季短波(SW)、近红外(NIR)和可见光(VIS)地表反照率标准差
Fig. 6 Standard deviation of ShortwaveSW), Near-InfraredNIRand VisibleVISsurface albedo in Guizhou Province in four seasons2001-2022
图7 20012022年贵州省四季短波(SW)、近红外(NIR)和可见光(VIS)地表反照率变化趋势
Fig. 7 Trends in ShortwaveSW), Near-InfraredNIRand VisibleVISsurface albedo in Guizhou Province in four seasons2001-2022
图8 20012022年贵州省四季短波(SW)、近红外(NIR)和可见光(VIS)地表反照率趋势检验
M-K:2/-2:正负微显著;3/3:正负显著;4/-4:正负极显著;-1/1:正负不显著变化
Fig. 8 Examination of the trend of ShortwaveSW), Near-InfraredNIRand VisibleVISsurface albedo in Guizhou Province in four seasons2001-2022
M-K: 2/-2: Minimally significant positively or negatively; 3/3: Significantly positively or negatively; 4/-4: Very significantly positively or negatively; -1/1: Positively or negatively insignificant change
图9 贵州省短波(SW)、近红外(NIR)和可见光(VIS)地表反照率空间分异影响因子解释力
Fig. 9 Explanatory power of drivers of spatial variability in ShortwaveSW), Near-InfraredNIRand VisibleVISsurface albedo in Guizhou Province
图10 贵州省短波(SW)、近红外(NIR)和可见光(VIS)地表反照率影响因子交互探测解释力 q
Fig. 10 Interaction detection explanatory power of ShortwaveSW), Near-InfraredNIRand VisibleVISsurface albedo drivers in Guizhou Province q-value
1 MOODY E G, KING M D, SCHAAF C B, et al. Northern hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence of snow: statistics computed from Terra MODIS land products[J]. Remote Sensing of Environment, 2007, 111(2/3): 337-345.
2 LU Yunbo, WANG Lunche, NIU Zigeng, et al. Variations of land surface albedo and its influencing factors in China from 2000 to 2017[J]. Geographical Research, 2022, 41(2): 562-579.
陆云波, 王伦澈, 牛自耕, 等. 2000—2017年中国区域地表反照率变化及其影响因子[J]. 地理研究, 2022, 41(2): 562-579.
3 ZHENG L, ZHAO G S, DONG J W, et al. Spatial, temporal, and spectral variations in albedo due to vegetation changes in China’s grasslands[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 1-12.
4 ZHENG Zhiyuan, WEI Zhigang, LI Zhenchao, et al. Characteristics of solar spectral radiation and albedo during early autumn in Dunhuang Gobi[J]. Acta Energiae Solaris Sinica, 2012, 33(11): 1 937-1 943.
郑志远, 韦志刚, 李振朝, 等. 敦煌戈壁秋初太阳分光辐射及其反照率特征[J]. 太阳能学报, 2012, 33(11): 1 937-1 943.
5 LI Z C, YANG J X, GAO X Q, et al. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo[J]. Theoretical and Applied Climatology, 2018, 131(3): 857-864.
6 ZHENG Z Y, DONG W J, LI Z C, et al. Observational study of surface spectral radiation and corresponding albedo over gobi, desert, and bare loess surfaces in northwestern China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(3): 883-896.
7 LIU Qinqin, CUI Yaoping, LIU Sujie, et al. Study on surface albedo of spectral radiation of different land use types in China[J]. Remote Sensing Technology and Application, 2019, 34(1): 46-56.
刘亲亲, 崔耀平, 刘素洁, 等. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
8 HE Juan, ZHANG Hua, SU Hongjuan, et al. Study on long-term change of global spectral surface albedo[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 279-293.
何娟, 张华, 苏红娟, 等. 全球分光地表反照率的长期变化[J]. 大气与环境光学学报, 2022, 17(3): 279-293.
9 LIU Wei, JIAO Shulin, AN Quan, et al. Impacts of climate change and human activities on NDVI in Guizhou Province from 1998 to 2018[J]. Resources and Environment in the Yangtze Basin, 2021, 30(12): 2 883-2 895.
刘炜, 焦树林, 安全, 等. 气候变化及人类活动对贵州省1998—2018年NDVI的影响[J]. 长江流域资源与环境, 2021, 30(12): 2 883-2 895.
10 RUAN Ying, WANG Chuankuan, LIU Fan, et al. Temporal variation and influencing factors of albedo in a deciduous broad-leaved forest[J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2 068-2 076.
阮颖, 王传宽, 刘帆, 等. 落叶阔叶林反照率的时间变化与影响因素[J]. 应用生态学报, 2022, 33(8): 2 068-2 076.
11 ZHANG Xuezhen. The responses of surface albedo to climatic changes in Xilin Gol grassland[J]. Geographical Research, 2012, 31(2): 299-310.
张学珍. 锡林郭勒草原地表反照率对气候变化的响应[J]. 地理研究, 2012, 31(2): 299-310.
12 YANG J X, LI Z C, ZHAI P M, et al. The influence of soil moisture and solar altitude on surface spectral albedo in arid area[J]. Environmental Research Letters, 2020, 15(3). DOI:10.1088/1748-9326/ab6ae2 .
13 RODRÍGUEZ-CABALLERO E, KNERR T, WEBER B. Importance of biocrusts in dryland monitoring using spectral indices[J]. Remote Sensing of Environment, 2015, 170: 32-39.
14 ALIBAKHSHI S, HOVI A, RAUTIAINEN M. Temporal dynamics of albedo and climate in the sparse forests of Zagros[J]. Science of the Total Environment, 2019, 663: 596-609.
15 ZHOU S, WILLIAMS A P, BERG A M, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 848-18 853.
16 FELDMAN A F, SHORT GIANOTTI D J, TRIGO I F, et al. Satellite-based assessment of land surface energy partitioning-soil moisture relationships and effects of confounding variables[J]. Water Resources Research, 2019, 55(12): 10 657-10 677.
17 LI S T, YAN Q L, LIU Z H, et al. Seasonality of albedo and fraction of absorbed photosynthetically active radiation in the temperate secondary forest ecosystem: a comprehensive observation using Qingyuan Ker towers[J]. Agricultural and Forest Meteorology, 2023, 333. DOI:10.1016/J.AGRFORMET.2023.109418 .
18 YANG Jiaxi, LI Zhenchao, WEI Zhigang, et al. Characteristics of solar spectral radiation and corresponding albedo in sparse vegetation region[J]. Acta Energiae Solaris Sinica, 2017, 38(3): 852-859.
杨佳希, 李振朝, 韦志刚, 等. 稀疏植被地表分光辐射及其反照率特征研究[J]. 太阳能学报, 2017, 38(3): 852-859.
19 YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3 907-3 925.
20 MENG X J, MAO K B, MENG F, et al. A fine-resolution soil moisture dataset for China in 2002-2018[J]. Earth System Science Data, 2021, 13(7): 3 239-3 261.
21 STOKES G M, SCHWARTZ S E. The Atmospheric Radiation Measurement (ARM) Program: programmatic background and design of the cloud and radiation test bed[J]. Bulletin of the American Meteorological Society, 1994, 75(7): 1 201-1 222.
22 LEWIS P, BARNSLEY M J. Influence of the sky radiance distribution on various formulations of the earth surface albedo[C]// 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, ISPRS. CNES Val d’Isere, France, 1994: 707-715.
23 EILERS P H C. A perfect smoother[J]. Analytical Chemistry, 2003, 75(14): 3 631-3 636.
24 ATZBERGER C, REMBOLD F. Estimation of inter-annual winter crop area variation and spatial distribution with low resolution NDVI data by using neural networks trained on high resolution images[C]// Proceeding SPIE 7472, Remote Sensing for Agriculture, Ecosystems, and Hydrology XI, 2009, 7472: 44-55.
25 LIANG J Y, REN C, LI Y, et al. Using enhanced gap-filling and Whittaker smoothing to reconstruct high spatiotemporal resolution NDVI time series based on landsat 8, sentinel-2, and MODIS imagery[J]. ISPRS International Journal of Geo-Information, 2023, 12(6). DOI:10.3390/ijgi12060214 .
26 HU Haitao. Reconstruction of surface albedo, temporal and spatial evolution and influencing factors in Guizhou Province from 2001 to 2020[D]. Guiyang: Guizhou Normal University, 2023.
胡海涛. 贵州省2001—2020年地表反照率重建及时空演变与影响因素分析[D]. 贵阳: 贵州师范大学, 2023.
27 AMAZIRH A, BOURAS E H, OLIVERA-GUERRA L E, et al. Retrieving crop albedo based on radar sentinel-1 and random forest approach[J]. Remote Sensing, 2021, 13(16). DOI:10.3390/rs13163181 .
28 THEIL H. A Rank-Invariant method of linear and polynomial regression analysis[M]// RAJ B, KOERTS J. Henri Theil’s contributions to economics and econometrics. Dordrecht: Springer, 1992: 345-381.
29 MANN H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3). DOI:10.2307/1907187 .
30 WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
31 PI Guining, HE Zhonghua, ZHANG Lang, et al. Response of vegetation to meteorological drought in watershed at different time scales—a case study of Guizhou Province[J]. Research of Soil and Water Conservation, 2022, 29(4): 277-284, 291.
皮贵宁, 贺中华, 张浪, 等. 区域植被对不同时间尺度气象干旱的响应: 以贵州省为例[J]. 水土保持研究, 2022, 29(4): 277-284, 291.
32 MINNIS P, MAYOR S, SMITH W L, et al. Asymmetry in the diurnal variation of surface albedo[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 879-890.
33 HAO G H, PIRAZZINI R, YANG Q H, et al. Spectral albedo of coastal landfast sea ice in Prydz Bay, Antarctica[J]. Journal of Glaciology, 2021, 67(261): 126-136.
34 ZHAO F, LAN X C, LI W Y, et al. Influence of land use change on the surface albedo and climate change in the Qinling-Daba Mountains[J]. Sustainability, 2021, 13(18). DOI:10.3390/su131810153 .
35 LIANG S L, SHUEY C J, RUSS A L, et al. Narrowband to broadband conversions of land surface albedo: II. validation[J]. Remote Sensing of Environment, 2003, 84(1): 25-41.
36 SCHWAIGER H P, BIRD D N. Integration of albedo effects caused by land use change into the climate balance: should we still account in greenhouse gas units?[J]. Forest Ecology and Management, 2010, 260(3): 278-286.
37 JIANG Huanyu, XIE Lijuan, PENG Yongshi, et al. Effect of temperature on near-infrared spectra of leaves[J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1 510-1 513.
蒋焕煜,谢丽娟,彭永石,等.温度对叶片近红外光谱的影响[J]. 光谱学与光谱分析, 2008, 28(7): 1 510-1 513.
38 YANG Jianqing, LUO Jijun, XU Jun, et al. Study on near infrared radiation attenuation based on distribution database of raindrops[J]. Laser Technology, 2018, 42(2): 161-165.
杨建清, 罗积军, 徐军, 等. 基于雨滴谱分布数据库的近红外辐射衰减研究[J]. 激光技术, 2018, 42(2): 161-165.
[1] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.
[2] 李宁, 刘丽, 张正涛, 冯介玲, 陈曦, 白扣. 气候变化经济影响研究热点的足迹可视化:整合被引文献和突现词[J]. 地球科学进展, 2018, 33(8): 865-873.
[3] 陈京华, 贾文雄*, 赵珍, 张禹舜, 刘亚荣. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
[4] 王晓青,刘健,王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-.
[5] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
[6] 王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.
[7] 刘斌涛,陶和平,宋春风,郭兵,史展. 我国西南山区降雨侵蚀力时空变化趋势研究[J]. 地球科学进展, 2012, 27(5): 499-509.
[8] 侯建军;黄邦钦. 海洋蓝细菌生物固氮的研究进展[J]. 地球科学进展, 2005, 20(3): 312-319.
[9] 周莉;李保国;周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105.
[10] 张明军;任贾文;孙俊英;效存德;李忠勤;秦大河;康建成. 南极冰盖 NO - 3 浓度记录研究进展[J]. 地球科学进展, 2004, 19(2): 275-282.
[11] 李 林,张国胜,汪青春,时兴合. 黄河上游流域蒸散量及其影响因子研究[J]. 地球科学进展, 2000, 15(3): 256-259.
阅读次数
全文


摘要