地球科学进展 ›› 2023, Vol. 38 ›› Issue (11): 1121 -1144. doi: 10.11867/j.issn.1001-8166.2023.071

综述与评述 上一篇    下一篇

海底碳封存监测技术体系研究及未来发展
李姜辉 1( ), 余凤玲 1, 牛雄伟 2, 周天 3, 张运修 4, 李雯菱 1   
  1. 1.厦门大学 海洋与地球学院,福建 厦门 361005
    2.自然资源部第二海洋研究所 海底科学重点 实验室,浙江 杭州 310012
    3.哈尔滨工程大学 水声工程学院,黑龙江 哈尔滨 150001
    4.中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳 110016
  • 收稿日期:2023-07-09 修回日期:2023-09-25 出版日期:2023-11-10
  • 基金资助:
    生态环境部咨询项目(20233160A0073)

Advances and Future Development of Monitoring Technologies for Marine Carbon Storage

Jianghui LI 1( ), Fengling YU 1, Xiongwei NIU 2, Tian ZHOU 3, Yunxiu ZHANG 4, Wenling LI 1   

  1. 1.College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
    2.Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
    3.College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
    4.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2023-07-09 Revised:2023-09-25 Online:2023-11-10 Published:2023-11-24
  • About author:LI Jianghui, Professor, research areas include offshore carbon capture, utilization, and storage, as well as underwater acoustics. E-mail: jli@xmu.edu.cn
  • Supported by:
    the Consultation Project of the Ministry of Ecology and Environment(20233160A0073)

海底碳封存是减少全球温室气体排放的重要途径之一。为确保高效安全地封存CO2,需要在封存前、封存期间和封存后对CO2的潜在运移空间进行勘探、评估和监测。当前可用于海底碳封存监测的方式主要有聚焦海底井筒的内置传感监测、聚焦储层和盖层的地球物理监测以及聚焦海床和海水层的海底环境监测。这3种方式在海底碳封存监测中分别可获得注入、监测井筒附近的温度、压力和声学等数据,深部储层和盖层地震、电磁、重力等数据,以及浅部沉积层和海水层声学、化学和海洋学等数据,对这些数据进行分析有助于识别注入地层CO2的运移特征。但欲获取海底碳封存监测的相关数据,必须首先实现针对相关监测技术和研究方法的集成应用和优质方案的设计,这也成为当前学术界和工程界亟待解决的难题。本着尽可能降本增效的原则,为实现科学有序地进行海底碳封存监测,整理了不同监测方式和相关支撑技术的工作原理、应用现状以及面临的挑战,并展望了海底碳封存监测技术的未来发展。研究结果将为我国海底碳封存作业的实施和发展提供基础指引。

Marine carbon storage plays a crucial role in reducing global greenhouse gas emissions. To ensure the efficient and safe storage of CO2, it is imperative to monitor the potential migration of CO2 before, during, and after injection. Current methods for monitoring marine carbon storage encompass built-in sensor monitoring focusing on the seabed wellbore, geophysical monitoring targeting reservoirs and caprocks, and marine environmental monitoring focusing on the seafloor and water column. These three methods can be used to obtain temperature/pressure/acoustic data near the injection/monitoring wellbore, seismic/electromagnetic/gravity data of deep reservoirs and caprocks, and acoustic/chemical/oceanographic data of near-bottom sedimentary layers and seawater, respectively. Analyzing these datasets is expected to reveal the migration characteristics of CO2 injected into the formation. However, the integrated use of relevant monitoring methods and technologies and the design of high-quality monitoring strategies currently pose significant challenges for both academic and engineering communities. To enable scientific and systematic monitoring of the safety of marine carbon storage, offering essential guidance for offshore storage operations, and concurrently enhancing monitoring efficiency while reducing monitoring costs, we have compiled the fundamental principles, application status, and challenges encountered by different monitoring methods and technologies. We also anticipate future development of monitoring technologies for marine carbon storage.

中图分类号: 

图1 海底碳封存相关的部分潜在风险
Fig. 1 Part of potential risks related to marine carbon storage
表1 海底碳封存监测关键技术及辅助研究方法归纳
Table 1 Summary of key monitoring technologies for marine carbon storage
关键技术 监测方式/辅助方法 监测方法或设备 主要监测目标 主要优点 主要缺点
聚焦海底井筒的内置传感监测技术 分布式光纤压力/ 温度传感 压力和温度传感器 注入井或监测井中压力和温度 可直接获取井筒及附近区域完整性信息 监测区域有限、钻井成本高
分布式光纤声学传感 主动源地震声回波 井附近CO2羽流轮廓
被动源地震声回波 井附近地下介质速度
井中地震 单井观测 CO2注入后井附近地质目标的动态变化
井间观测
井地观测
聚焦储层和盖层的地球物理监测技术 海底地震 二维/三维地震层析成像 流体运移通道特征 可揭示地层结构和流体运移 难以区分流体、信息获取间隔长
时延地震 海底储层内部结构
地震各向异性及横波分裂 储层内部裂隙分布方向及密度特征
微地震 地层局部应力和应变
海底电磁 地层电性差异 储层CO2饱和度 成本低 分辨率低
海底重力 地层密度变化 储层质量变化
卫星遥感 地表抬升/下沉 岩层应变异常 范围大 成本高
辅助方法:数值模拟 热—流—固—化复杂耦合响应 对CO2注入地层的有效性和 安全性进行评价 可获封存预期 准确性验证难
聚焦海床和海水层的海底环境监测技术 声学监测 主动声学 单波束扫描声呐 探测海底气体渗漏相关的形态特征,如海水层气泡羽流、海床麻坑、微生物群落等 探测距离远、 精度高 能耗高、可持续性差
多波束声呐
探鱼声呐
侧扫声呐
合成孔径声呐
海底剖面仪 海底浅地层风险结构 可探测浅地层
被动声学 水听器 海底气泡振动声学特征 能耗低长续航 监测区域有限
化学监测 二氧化碳分压(pCO2)传感 局部海水中CO2浓度 可归因CO2 可能存在时滞
pH传感 局部海水酸碱度
地层流体传感 孔隙水等相关离子/元素
传感器搭载平台 水面船只 搭载声学、化学、海洋学等传感设备对海底地层及近底环境参数采样 范围大 成本高
自主水下航行器 灵活 短续航
水下滑翔机 长续航 载荷小
海底着陆器 长期性 范围小
调查方式:海洋环境背景基线 记录注入CO2前封存区域上部海洋环境的自然状况 提供判断环境异常的基准 降低误判风险
辅助方法:集成及自动数据处理 数据交叉融合 提升归因及量化准确率 提升数据处理及预测效率
大数据与人工智能 提升数据处理效率
数值模拟 自动风险识别、预判未来发展 验证难
图2 海底碳封存井筒内置传感监测示意图
Fig. 2 Schematic diagram showing the built-in sensor monitoring in the wellbore of marine carbon storage
图3 海底碳封存地球物理监测示意图
Fig. 3 Schematic diagram illustrating the geophysical monitoring of marine carbon storage
图4 海底碳封存部分潜在CO2 泄漏路径和海底环境监测示意图
潜在泄漏路径:1.穿过盖层裂缝;2.毛细管过压;3.断层泄漏;4.储层过压扩散;5.废弃钻井泄漏;6.自然流体溶解CO 2;7.地层内运移
Fig. 4 Schematic diagram showing potential CO2 leakage paths and environmental monitoring in marine carbon storage
Potential leakage path: 1. through cracks in the caprock; 2. capillary overpressure; 3. fault leakage; 4. reservoir overpressure diffusion; 5. abandoned drilling leaks; 6. dissolving CO 2 in natural fluids; 7. migration within the formation
图5 海底碳封存潜在监测方案流程图
包括海底井筒内置传感监测、海底地球物理监测和海底环境监测
Fig. 5 Flow chart of a potential monitoring scheme for marine carbon storage
Including built-in sensor monitoring in subsea wellbore, subsea geophysical monitoring, and marine environmental monitoring
11 TORP T A, GALE J. Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects[J]. Energy, 2004, 29(9/10): 1 361-1 369.
12 GODOI J M A, dos SANTOS MATAI P H L. Enhanced oil recovery with carbon dioxide geosequestration: first steps at Pre-salt in Brazil[J]. Journal of Petroleum Exploration and Production, 2021, 11(3): 1-13.
13 LI Jianghui, LI Pengchun, LI Yanzun, et al. Technology system of offshore carbon capture, utilization, and storage[J]. Strategic Study of CAE, 2023, 25(2): 173-186.
李姜辉, 李鹏春, 李彦尊, 等. 离岸碳捕集利用与封存技术体系研究[J]. 中国工程科学, 2023, 25(2): 173-186.
14 FURRE A K, EIKEN O, ALNES H, et al. 20 years of monitoring CO2-injection at sleipner[J]. Energy Procedia, 2017, 114: 3 916-3 926.
15 HANSEN O, GILDING D, NAZARIAN B, et al. Snøhvit: the history of injecting and storing 1 Mt CO2 in the fluvial tubåen Fm[J]. Energy Procedia, 2013, 37: 3 565-3 573.
16 Van der meer L G H. The K12-B CO2 injection project in the Netherlands[M]// Geological storage of carbon dioxide (CO2). Amsterdam: Elsevier, 2013: 301-321, 328e-332e.
17 IGLESIAS R S, KETZER J M, MELO C L, et al. Carbon capture and geological storage in Brazil: an overview[J]. Greenhouse Gases: Science and Technology, 2015, 5(2): 119-130.
18 TANAKA J. Progress of CO2 injection at the Tomakomai CCS demonstration project [Z]. Japan Pavilion COP-24 Katowice, 2018.
19 MARSHALL J P. A social exploration of the West Australian Gorgon gas carbon capture and storage project[J]. Clean Technologies, 2022, 4(1): 67-90.
20 AKERBOOM S, WALDMANN S, MUKHERJEE A, et al. Different this time? the prospects of CCS in the Netherlands in the 2020s[J]. Frontiers in Energy Research, 2021, 9. DOI:10.3389/fenrg.2021.644796 .
21 BALAKRISNAN M, HALIM R B A, JOHAN A, et al. Methodological engineering approach in designing injector and observation wells incorporating MMV requirements in carbonate CCS project in offshore Malaysia[C]. ADIPEC, Abu Dhabi, UAE, 2022. DOI: 10.2118/211722-MS .
22 HARKIN T, FILBY I, SICK H, et al. Development of a CO2 specification for a CCS hub network[J]. Energy Procedia, 2017, 114: 6 708-6 720.
23 ALCALDE J, HEINEMANN N, JAMES A, et al. A criteria-driven approach to the CO2 storage site selection of East Mey for the acorn project in the North Sea[J]. Marine and Petroleum Geology, 2021, 133. DOI:10.1016/J.MARPETGEO.2021.105309 .
24 CHEN S, SARAJI S, MCLAUGHLIN F J. Carbon capture and storage[M]// Lecture notes in energy. Cham: Springer International Publishing, 2023: 183-201.
25 LI J H. Accelerate the offshore CCUS to carbon-neutral China[J]. Fundamental Research, 2022. DOI: 10.1016/j.fmre.2022.10.015 .
26 Commission European. Implementation of directive 2009/31 /EC on the geological storage of carbon dioxide: guidance document 1: CO2 storage life cycle risk management framework [Z]. European Commission Guidance Documents, 2009.
27 ALCALDE J, FLUDE S, WILKINSON M, et al. Estimating geological CO2 storage security to deliver on climate mitigation[J]. Nature Communications, 2018, 9(1): 1-13.
28 BLACKFORD J, STAHL H, BULL J M, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage[J]. Nature Climate Change, 2014, 4(11): 1 011-1 016.
29 DEAN M, BLACKFORD J, CONNELLY D, et al. Insights and guidance for offshore CO2 storage monitoring based on the QICS, ETI MMV, and STEMM-CCS projects[J]. International Journal of Greenhouse Gas Control, 2020, 100. DOI:10.1016/j.ijggc.2020.103120 .
30 LINDEBERG E. Modelling pressure and temperature profile in a CO2 injection well[J]. Energy Procedia, 2011, 4: 3 935-3 941.
31 PARK J, GRIFFITHS L, DAUTRIAT J, et al. Induced-seismicity Geomechanics for Controlled CO2 Storage in the North Sea (IGCCS)[J]. International Journal of Greenhouse Gas Control, 2022, 115. DOI:10.1016/j.ijggc.2022.103614 .
32 IPCC. IPCC guidelines for national greenhouse gas inventories. 2 energy, chap. 5 carbon dioxide transport. injection and geological storage [R]. Japan: IGES, 2006.
33 SHITASHIMA K, MAEDA Y, OHSUMI T. Development of detection and monitoring techniques of CO2 leakage from seafloor in sub-seabed CO2 storage[J]. Applied Geochemistry, 2013, 30: 114-124.
34 DIXON T, ROMANAK K D. Improving monitoring protocols for CO2 geological storage with technical advances in CO2 attribution monitoring[J]. International Journal of Greenhouse Gas Control, 2015, 41: 29-40.
35 IEAGHG. Review of offshore monitoring for CCS project [R]. IEAGHG, 2015.
36 DEAN M, TUCKER O. A risk-based framework for Measurement, Monitoring and Verification (MMV) of the Goldeneye storage complex for the Peterhead CCS project, UK[J]. International Journal of Greenhouse Gas Control, 2017, 61: 1-15.
37 SETIAWAN B. 1996 protocol to the convention on the prevention of marine pollution by dumping of wastes and other matters 1972[J]. Indonesian Journal of International Law, 2015, 1: 597-630.
38 ATLANTIC N. OSPAR guidelines for risk assessment and management of storage of CO2 streams in geological formations 1[R/OL]. 2007. [2023-04-05]. .
39 Communities European. Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006 [J]. Offical Journal of the European Union, 2009, 5(6): 114-135.
40 OSPAR. 2007 amendment to 1992 OSPAR convention, convention for the protection of the marine environment of the North-East Atlantic [R]. Oslo: OSPAR Commission, 2007.
41 SETIAWAN B. 1996 protocol to the convention on the prevention of marine pollution by dumping of wastes and other matters 1972[Z]. London Protocol, 2015.
42 European Commission. Guidance document, the monitoring and reporting regulation-general guidance for installations [Z]. Directorate-General Climate Action, 2012.
43 BEER D D, HAECKEL M, NEUMANN J, et al. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments[J]. Biogeosciences, 2013, 10(8): 5 639-5 649.
44 HASSENRÜCK C, FINK A, LICHTSCHLAG A, et al. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches[J]. FEMS Microbiology Ecology, 2016, 92(5). DOI:10.1093/femsec/fiw027 .
45 LICHTSCHLAG A, JAMES R H, STAHL H, et al. Effect of a controlled sub-seabed release of CO2 on the biogeochemistry of shallow marine sediments, their pore waters, and the overlying water column[J]. International Journal of Greenhouse Gas Control, 2015, 38: 80-92.
46 WALLMANN K, HAECKEL M, LINKE P, et al. Best practice guidance for environmental risk assessment for offshore CO2 geological storage [R]. ECO2 Deliverable D14.1, 2015.
47 ULFSNES A, MØSKELAND T, BROOKS L, et al. Report on environmental risks associated to CO2 storage at Sleipner [R]. ECO2 Deliverable D5.1, 2015.
48 WAARUM I K, BLOMBERG A E A, EEK E, et al. CCS leakage detection technology-industry needs, government regulations, and sensor performance[J]. Energy Procedia, 2017, 114: 3 613-3 627.
49 GCCSI. Brazilian atlas CO2 capture geological storage [R]. Melbourne, Australia, 2014.
50 KIM H, KIM Y H, KANG S G, et al. Development of environmental impact monitoring protocol for offshore Carbon Capture and Storage (CCS): a biological perspective[J]. Environmental Impact Assessment Review, 2016, 57: 139-150.
51 FLOHR A, SCHAAP A, ACHTERBERG E P, et al. Towards improved monitoring of offshore carbon storage: a real-world field experiment detecting a controlled sub-seafloor CO2 release[J]. International Journal of Greenhouse Gas Control, 2021, 106. DOI:10.1016/J.IJGGC.2020.103237 .
52 CONNELLY D P, BULL J M, FLOHR A, et al. Assuring the integrity of offshore carbon dioxide storage[J]. Renewable and Sustainable Energy Reviews, 2022, 166. DOI:10.1016/j.rser.2022.112670 .
53 BLOMBERG A E A, WAARUM I K, TOTLAND C, et al. Marine monitoring for offshore geological carbon storage—a review of strategies, technologies and trends[J]. Geosciences, 2021, 11(9). DOI:10.3390/geosciences11090338 .
54 BLACKFORD J, BULL J M, CEVATOGLU M, et al. Marine baseline and monitoring strategies for Carbon Dioxide Capture and Storage (CCS)[J]. International Journal of Greenhouse Gas Control, 2015, 38: 221-229.
55 WHITE D, DALEY T M, PAULSSON B, et al. Borehole seismic methods for geologic CO2 storage monitoring[J]. The Leading Edge, 2021, 40(6): 434-441.
56 WILSON G A, WILLIS M E, ELLMAUTHALER A. Evaluating 3D and 4D DAS VSP image quality of subsea carbon storage[J]. The Leading Edge, 2021, 40(4): 261-266.
57 SIDENKO E, TERTYSHNIKOV K, GUREVICH B, et al. Distributed fiber-optic sensing transforms an abandoned well into a permanent geophysical monitoring array: a case study from Australian South West[J]. The Leading Edge, 2022, 41(2): 140-148.
58 CHUGUNOV N, ALTUNDAS Y B, RAMAKRISHNAN T S, et al. Global sensitivity analysis for crosswell seismic and neutron-capture measurements in CO2 storage projects[J]. Geophysics, 2013, 78(3): WB77-WB87.
59 COUËSLAN M L, ALI S, CAMPBELL A, et al. Monitoring CO2 injection for carbon capture and storage using time-lapse 3D VSPs[J]. The Leading Edge, 2013, 32(10): 1 268-1 276.
60 HU L W, DOETSCH J, BRAUCHLER R, et al. Characterizing CO2 plumes in deep saline formations: comparison and joint evaluation of time-lapse pressure and seismic tomography[J]. Geophysics, 2017, 82(4): ID1-ID18.
61 ZHAO Gaishan. Geophysical monitoring for geological carbon sequestration: present status, challenges, and future development[J]. Geophysical Prospecting for Petroleum, 2023, 62(2): 194-211.
赵改善. 二氧化碳地质封存地球物理监测: 现状、挑战与未来发展[J]. 石油物探, 2023, 62(2): 194-211.
62 SKURTVEIT E, CHOI J C, OSMOND J, et al. 3D fault integrity screening for smeaheia CO2 injection site[J]. SSRN Electronic Journal, 2019. DOI:10.2139/ssrn.3366335 .
63 DUBOS-SALLÉE N, RASOLOFOSAON P N J. Estimation of permeability anisotropy using seismic inversion for the CO2 geological storage site of Sleipner (North Sea)[J]. Geophysics, 2011, 76(3): WA63-WA69.
64 VERDON JAMES P. Microseismic monitoring and geomechanical modelling of CO₂ storage in subsurface reservoirs[D]. Bristol, South West England, UK: University of Bristol, 2011.
65 OYE V, ZHAO P, KÜHN D, et al. Monitoring of the Krechba In Salah CO2 storage using microseismic data analysis [C]. 3rd. EAGE CO2 Geological Storage Workshop, Edinburgh, UK, 2012.
66 GOERTZ-ALLMANN B P, OYE V, GIBBONS S J, et al. Geomechanical monitoring of CO2 storage reservoirs with microseismicity[J]. Energy Procedia, 2017, 114: 3 937-3 947.
67 BROWN S, BUSSOD G, HAGIN P. AVO monitoring of CO2 sequestration: a benchtop-modeling study[J]. The Leading Edge, 2007, 26(12): 1 576-1 583.
68 GRUDE S, LANDRØ M, OSDAL B. Time-lapse pressure-saturation discrimination for CO2 storage at the Snøhvit field[J]. International Journal of Greenhouse Gas Control, 2013, 19: 369-378.
69 SAWADA Y, TANAKA J, SUZUKI C, et al. Tomakomai CCS demonstration project of Japan, CO2 injection in progress[J]. Energy Procedia, 2018, 154: 3-8.
70 TANASE D. CO2 injection and monitoring of the Tomakomai CCS demonstration project [C]// 5th International Workshop on Offshore Geologic CO2 Storage, 2022.
71 DUNN R A, TOOMEY D R. Crack-induced seismic anisotropy in the oceanic crust across the East Pacific Rise (9°30′N)[J]. Earth and Planetary Science Letters, 2001, 189(1/2): 9-17.
72 LIU Bin, ZHANG Heng. Full waveform inversion of OBS data from ocean gas hydrate: synthetic example[J]. Progress in Geophysics, 2018, 33(1): 379-384.
刘斌, 张衡. 海底水合物 OBS 数据全波形反演数值例子[J]. 地球物理学进展, 2018, 33(1): 379-384.
73 DICKENS G R. The blast in the past[J]. Nature, 1999, 401 (6 755): 752-755.
74 WESTBROOK G K, THATCHER K E, ROHLING E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15). DOI:10.1029/2009GL039191 .
75 CHABERT A, MINSHULL T A, WESTBROOK G K, et al. Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data[J]. Journal of Geophysical Research, 2011, 116(B12). DOI:10.1029/2011JB008211 .
76 HUSTOFT S, MIENERT J, BÜNZ S, et al. High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin[J]. Marine Geology, 2007, 245(1/2/3/4): 89-106.
77 PLAZA-FAVEROLA A, BÜNZ S, MIENERT J. Fluid distributions inferred from P-wave velocity and reflection seismic amplitude anomalies beneath the Nyegga pockmark field of the mid-Norwegian margin[J]. Marine and Petroleum Geology, 2010, 27(1): 46-60.
78 GOSWAMI B K, WEITEMEYER K A, MINSHULL T A, et al. A joint electromagnetic and seismic study of an active pockmark within the hydrate stability field at the Vestnesa Ridge, West Svalbard margin[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(10): 6 797-6 822.
79 SHA Z B, ZHANG M, ZHANG G X, et al. Using 4C OBS to reveal the distribution and velocity attributes of gas hydrates at the northern continental slope of South China Sea[J]. Applied Geophysics, 2015, 12(4): 555-563.
80 QIAN Bozhang, ZHU Jianfang. Natural gas hydrate: immense potential energy[J]. Natural Gas and Oil, 2008, 26(4):47-52.
钱伯章, 朱建芳. 天然气水合物: 巨大的潜在能源[J]. 天然气与石油, 2008, 26(4):47-52.
81 SHA Zhibing, ZHEN Tao, ZHANG Guangxue, et al. An optimal design of a high-frequency ocean bottom seismometer (HF-OBS) and its application to the natural gas hydrate exploration in the South China Sea [J]. Natural Gas Industry, 2014, 34(7): 136-142.
沙志彬, 郑涛, 张光学, 等, 海底高频地震仪观测系统优化设计及其在南海天然气水合物勘探中的应用[J]. 天然气工业, 2014, 34(7): 136-142.
82 JOHNSTON D H. Practical applications of time-lapse seismic data[M]. Houston: Society of Exploration Geophysicists, 2013.
83 WAAGE M, BÜNZ S, LANDRØ M, et al. Repeatability of high-resolution 3D seismic data[J]. Geophysics, 2019, 84(1): B75-B94.
84 CHADWICK R A, WILLIAMS G A, FALCON-SUAREZ I. Forensic mapping of seismic velocity heterogeneity in a CO2 layer at the Sleipner CO2 storage operation, North Sea, using time-lapse seismics[J]. International Journal of Greenhouse Gas Control, 2019, 90. DOI:10.1016/J.IJGGC.2019.102793 .
85 HUDSON J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal International, 1981, 64(1): 133-150.
86 CRAMPIN S. Evaluation of anisotropy by shear-wave splitting[J]. Geophysics, 1985, 50(1): 142-152.
87 THOMSEN L. Elastic anisotropy due to aligned cracks in porous rock1[J]. Geophysical Prospecting, 1995, 43(6): 805-829.
88 CHAPMAN M. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity[J]. Geophysical Prospecting, 2003, 51(5): 369-379.
89 JAKOBSEN M, CHAPMAN M. Unified theory of global flow and squirt flow in cracked porous media[J]. Geophysics, 2009, 74(2): WA65-WA76.
90 BAYRAKCI G, CALLOW B, BULL J M, et al. Seismic anisotropy within an active fluid flow structure: scanner pockmark, north sea[J]. Frontiers in Earth Science, 2021, 9. DOI: 10.3389/feart.2021.626416 .
91 JOONSANG P, ANN B, IVAR-KRISTIAN W, et al. Integrated monitoring approach for offshore geological CO2 storage [C]// Offshore Technology Conference, 2019.
92 VERDON J P, KENDALL J M, MAXWELL S C. A comparison of passive seismic monitoring of fracture stimulation from water and CO2 injection[J]. Geophysics, 2010, 75(3): MA1-MA7.
93 ROBINSON A H, CALLOW B, BÖTTNER C, et al. Multiscale characterisation of chimneys/pipes: fluid escape structures within sedimentary basins[J]. International Journal of Greenhouse Gas Control, 2021, 106. DOI:10.1016/j.ijggc.2020.103245 .
94 SULTAN N, RIBOULOT V, KER S, et al. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria [J]. Journal of Geophysical Research, 2011, 116(B12). DOI:10.1029/2011JB008218 .
95 BHUYIAN A H, LANDRØ M, JOHANSEN S E. 3D CSEM modeling and time-lapse sensitivity analysis for subsurface CO2 storage[J]. Geophysics, 2012, 77(5): E343-E355.
96 PICOTTI S, GEI D, CARCIONE J M, et al. Sensitivity analysis from single-well ERT simulations to image CO2 migrations along wellbores[J]. The Leading Edge, 2013, 32(5): 504-512.
97 JEWELL S, ZHOU X B, APPLE M E, et al. Bulk electric conductivity response to soil and rock CO2 concentration during controlled CO2 release experiments: observations and analytic modeling[J]. Geophysics, 2015, 80(6): E293-E308.
98 WAGNER F M, GÜNTHER T, SCHMIDT-HATTENBERGER C, et al. Constructive optimization of electrode locations for target-focused resistivity monitoring[J]. Geophysics, 2015, 80(2): E29-E40.
99 GASPERIKOVA E, LI Y G. Time-lapse electromagnetic and gravity methods in carbon storage monitoring[J]. The Leading Edge, 2021, 40(6): 442-446.
100 DAVIS K, LI Y G, BATZLE M. Time-lapse gravity monitoring: a systematic 4D approach with application to aquifer storage and recovery[J]. Geophysics, 2008, 73(6): WA61-WA69.
101 KRAHENBUHL R A, MARTINEZ C, LI Y G, et al. Time-lapse monitoring of CO2 sequestration: a site investigation through integration of reservoir properties, seismic imaging, and borehole and surface gravity data[J]. Geophysics, 2015, 80(2): WA15-WA24.
102 BONNEVILLE A, BLACK A J, HARE J L, et al. Time-lapse borehole gravity imaging of CO2 injection and withdrawal in a closed carbonate reef[J]. Geophysics, 2021, 86(6): G113-G132.
103 PARK J, TVEIT S, MANNSETH T, et al. Geophysical monitoring [R]. FME SUCCESS Synthesis Report Vol 4, 2018.
104 TVEIT S, MANNSETH T, PARK J, et al. Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large-scale CO2 injection[J]. Computational Geosciences, 2020, 24(3): 1 201-1 220.
105 BOHLOLI B, BJØRNARÅ T I, PARK J, et al. Can we use surface uplift data for reservoir performance monitoring?A case study from in Salah, Algeria[J]. International Journal of Greenhouse Gas Control, 2018, 76: 200-207.
106 BJØRNARÅ T I, BOHLOLI B, PARK J. Field-data analysis and hydromechanical modeling of CO2 storage at in Salah, Algeria[J]. International Journal of Greenhouse Gas Control, 2018, 79: 61-72.
107 VASCO D W, DIXON T H, FERRETTI A, et al. Monitoring the fate of injected CO2 using geodetic techniques[J]. The Leading Edge, 2020, 39(1): 29-37.
108 MATHIESON A, MIDGLEY J, DODDS K, et al. CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria[J]. The Leading Edge, 2010, 29(2): 216-222.
109 COMOLA F, JANNA C, LOVISON A, et al. Efficient global optimization of reservoir geomechanical parameters based on synthetic aperture radar-derived ground displacements[J]. Geophysics, 2016, 81(3): M23-M33.
110 ZHANG R L, WINTERFELD P H, YIN X L, et al. Sequentially coupled THMC model for CO2 geological sequestration into a 2D heterogeneous saline aquifer[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 579-615.
111 PAFFENHOLZ J. Introduction to this special section: the role of advanced modeling in enhanced carbon storage[J]. The Leading Edge, 2021, 40(6): 408-412.
112 LUMLEY D. 4D seismic monitoring of CO2 sequestration[J]. The Leading Edge, 2010, 29(2): 150-155.
113 MUR A, BARAJAS-OLALDE C, ADAMS D C, et al. Integrated simulation to seismic and seismic reservoir characterization in a CO2 EOR monitoring application[J]. The Leading Edge, 2020, 39(9): 668-678.
114 HAO Y J, YANG D H, ZHOU Y J. A feasibility study of CO2 geologic sequestration integrating reservoir simulation, rock-physics theory, and seismic modeling[J]. Geophysics, 2016, 81(5): M71-M82.
115 RAHMAN M J, FAWAD M, MONDOL N H. Potential effect of Biot’S coefficient on rock failure in CO2 storage site smeaheia, northern north sea[C]// 83rd EAGE annual conference & exhibition. Madrid, Spain: European Association of Geoscientists & Engineers, 2022.
116 FAWAD M, RAHMAN M J, MONDOL N H. Seismic-derived geomechanical properties of potential CO2 storage reservoir and cap rock in Smeaheia area, northern North Sea[J]. The Leading Edge, 2021, 40(4): 254-260.
117 DUPUY B, ROMDHANE A, NORDMANN P L, et al. Bayesian rock-physics inversion: application to CO2 storage monitoring[J]. Geophysics, 2021, 86(4): M101-M122.
118 LI J H, ROCHE B, BULL J M, et al. Broadband acoustic inversion for gas flux quantification—application to a methane plume at scanner pockmark, central north sea[J]. Journal of Geophysical Research: Oceans, 2020, 125(9). DOI:10.1029/2020JC016360 .
119 ZHANG W Y, ZHOU T, LI J H, et al. An efficient method for detection and quantitation of underwater gas leakage based on a 300-kHz multibeam sonar[J]. Remote Sensing, 2022, 14(17). DOI:10.3390/rs14174301 .
120 BLOMBERG A E A, SæBØ T O, HANSEN R E, et al. Automatic detection of marine gas seeps using an interferometric sidescan sonar[J]. IEEE Journal of Oceanic Engineering, 2017, 42(3): 590-602.
121 EDGAR R. Introduction to synthetic aperture sonar[M]//Sonar systems. London: InTech, 2011.
122 PEDERSEN R B, BLOMBERG A E, LANDSCHULZE K, et al. Discovery of 3 km long seafloor fracture system in the Central North Sea [C]. AGU Fall Meeting, 2013.
123 ROCHE B, BULL J M, MARIN-MORENO H, et al. Time-lapse imaging of CO2 migration within near-surface sediments during a controlled sub-seabed release experiment[J]. International Journal of Greenhouse Gas Control, 2021, 109. DOI:10.1016/j.ijggc.2021.103363 .
124 LI J H, WHITE P R, BULL J M, et al. A noise impact assessment model for passive acoustic measurements of seabed gas fluxes[J]. Ocean Engineering, 2019, 183: 294-304.
125 LEIGHTON T G, WHITE P R. Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468(2 138): 485-510.
126 LI J H, ROCHE B, BULL J M, et al. Passive acoustic monitoring of a natural CO2 seep site-implications for carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2020, 93. DOI:10.1016/j.ijggc.2019.102899 .
127 LI J H, WHITE P R, ROCHE B, et al. Acoustic and optical determination of bubble size distributions-quantification of seabed gas emissions[J]. International Journal of Greenhouse Gas Control, 2021, 108. DOI:10.1016/j.ijggc.2021.103313 .
128 LI J H, WHITE P R, BULL J M, et al. Passive acoustic localisation of undersea gas seeps using beamforming[J]. International Journal of Greenhouse Gas Control, 2021, 108. DOI:10.1016/J.IJGGC.2021.103316 .
129 BOZEC Y, THOMAS H, SCHIETTECATTE L S, et al. Assessment of the processes controlling the seasonal variations of dissolved inorganic carbon in the North Sea[J]. Limnology and Oceanography, 2006, 51(6): 2 746-2 762.
130 BLACKFORD J C, GILBERT F J. pH variability and CO2 induced acidification in the North Sea[J]. Journal of Marine Systems, 2007, 64(1/2/3/4): 229-241.
131 BOTNEN H A, OMAR A M, THORSETH I, et al. The effect of submarine CO2 vents on seawater: implications for detection of subsea carbon sequestration leakage[J]. Limnology and Oceanography, 2015, 60(2): 402-410.
132 ALENDAL G, DEWAR M, ALI A, et al. Technical report on environmental conditions and possible leak scenarios in the North Sea. Deliverable Number D3.4: technical report on the CO2 storage site Sleipner [R]. Kiel, Germany: ECO2 Deliverable, D3.4. ECO2 Project Office, 2014.
133 TIAN B Q, GUO J W, SONG Y B, et al. Research progress and prospects of gliding robots applied in ocean observation[J]. Journal of Ocean Engineering and Marine Energy, 2023, 9(1): 113-124.
134 DEWAR M, SALEEM U, FLOHR A, et al. Analysis of the physicochemical detectability and impacts of offshore CO2 leakage through multi-scale modelling of in situ experimental data using the PLUME model[J]. International Journal of Greenhouse Gas Control, 2021, 110. DOI:10.1016/j.ijggc.2021.103441 .
135 HVIDEVOLD H K, ALENDAL G, JOHANNESSEN T, et al. Layout of CCS monitoring infrastructure with highest probability of detecting a footprint of a CO2 leak in a varying marine environment[J]. International Journal of Greenhouse Gas Control, 2015, 37: 274-279.
136 BELLWALD B, WAAGE M, PLANKE S, et al. Monitoring of CO2 leakage using high-resolution 3D seismic data-examples from Snøhvit, vestnesa ridge and the western Barents Sea[C]// Proceedings, fifth CO2 geological storage workshop. Utrecht, Netherlands. Netherlands: EAGE Publications BV, 2018.
137 SHCHIPANOV A A, KOLLBOTN L, BERENBLYUM R. Characterization and monitoring of reservoir flow barriers from pressure transient analysis for CO2 injection in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2019, 91. DOI:10.1016/j.ijggc.2019.102842 .
138 LORANGER S, PEDERSEN G, BLOMBERG A E A. A model for the fate of carbon dioxide from a simulated carbon storage seep[J]. International Journal of Greenhouse Gas Control, 2021, 107. DOI:10.1016/j.ijggc.2021.103293 .
139 UCHIMOTO K, NISHIMURA M, WATANABE Y, et al. Bubble detection with side-scan sonar in shallow sea for future application to marine monitoring at offshore CO2 storage sites[J]. American Journal of Marine Science, 2019, 7(1): 1-6.
1 METZ B. IPCC special report on carbon dioxide capture and storage[M]. Cambridge: Cambridge University Press, 2005.
2 HASZELDINE R, FLUDE S, JOHNSON G, et al. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments[J]. Mathematical, Physical and Engineering Sciences, 2018. DOI:10.1098/rsta.2016.0447 .
3 GALE J, ABANADES J, BACHU S, et al. Special issue commemorating the 10th year anniversary of the publication of the intergovernmental panel on climate change special report on CO2 capture and storage[J]. International Journal of Greenhouse Gas Control, 2015, 40: 1-5.
4 IPCC. An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-Industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development [R]. Geneva, Switzerland: World Meteorological Organization, 2018.
5 IPCC. Mitigation of climate change [R]. Geneva, Switzerland: IPCC Working Group III, 2022.
6 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL].新华社,(2021-10-24) [2023-04-05]..
7 RINGROSE P S, MECKEL T A. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions[J]. Scientific Reports, 2019, 9(1): 1-10.
8 GUO Jianqiang, DONG Guang, ZHANG Senqi, et al. Potential evaluation and demonstration project of CO2 geological storage in China[J]. Geological Survey of China, 2015, 2(4): 36-46.
郭建强, 冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2(4): 36-46.
9 CHADWICK R A. Geoscience, technologies, environmental aspects and legal frameworks: offshore CO2 storage: sleipner natural gas field beneath the North Sea [M]. Philadelphia, USA: Woodhead Publishing Limited, 2013: 227-250.
10 FURRE A K, MENEGUOLO R, RINGROSE P, et al. Building confidence in CCS: from Sleipner to the Northern Lights Project [J]. First Break, 2019, 7: 81-87.
140 von DEIMLING J S, GREINERT J, CHAPMAN N R, et al. Acoustic imaging of natural gas seepage in the North Sea: sensing bubbles controlled by variable currents[J]. Limnology and Oceanography: Methods, 2010, 8(5): 155-171.
141 VIELSTÄDTE L, LINKE P, SCHMIDT M, et al. Footprint and detectability of a well leaking CO2 in the Central North Sea: implications from a field experiment and numerical modelling[J]. International Journal of Greenhouse Gas Control, 2019, 84: 190-203.
142 Commission European. Implementation of directive 2009/31 /EC on the geological storage of carbon dioxide: guidance document 2: characterisation of the storage complex, CO2 stream composition, monitoring and corrective measures [Z]. European Commission Guidance Documents, 2011.
143 JENKINS C, CHADWICK A, HOVORKA S D. The state of the art in monitoring and verification—ten years on[J]. International Journal of Greenhouse Gas Control, 2015, 40: 312-349.
144 LI Qi, LI Yanzun, XU Xiaoyi, et al. Current status and recommendations of offshore CO2 geological storage monitoring[J]. Geological Journal of China Universities, 2023, 29(1):1-12.
李琦, 李彦尊, 许晓艺, 等. 海上CO2地质封存监测现状及建议[J]. 高校地质学报, 2023, 29(1):1-12.
145 Unites States Internal Revenue Code. Section 45Q credit for carbon oxide sequestration [Z]. United States, 2021.
[1] 程惠红, 孙长青, 任杰, 宋小刚, 周军. 2023年度地球物理学和空间物理学学科自然科学基金项目评审与资助成果分析[J]. 地球科学进展, 2023, 38(10): 1045-1054.
[2] 刘溢滂, 胡毅. 浅埋水下文物遗址的海洋地球物理声学探测展望:以沉船为例[J]. 地球科学进展, 2023, 38(1): 99-109.
[3] 张晓潼, 袁华茂, 宋金明, 段丽琴. 海洋 ReMoU对氧化还原环境的指示作用[J]. 地球科学进展, 2022, 37(4): 358-369.
[4] 程惠红, 孙长青, 赵倩, 朱辉, 金子奇. 2022年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2022, 37(12): 1276-1285.
[5] 胡石建, 李诗翰. 海洋热浪研究进展与展望[J]. 地球科学进展, 2022, 37(1): 51-64.
[6] 薛存金, 苏奋振, 何亚文. 过程——一种地理时空动态分析的新视角[J]. 地球科学进展, 2022, 37(1): 65-79.
[7] 朱栋, 高世腾, 朱欣欣, 吴彬, 程冰, 林强. 量子重力仪在地球科学中的应用进展[J]. 地球科学进展, 2021, 36(5): 480-489.
[8] 程惠红, 孙长青, 吴云龙, 黄亚平, 任杰. 2021年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2021, 36(11): 1172-1179.
[9] 程惠红,孙长青,王聪. 2020年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1163-1170.
[10] 郭进义,程惠红,杨昉. 2019年度地球物理学和空间物理学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1185-1188.
[11] 胡毅,丁见祥,房旭东,王立明,刘伯然,李海东. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10): 1081-1091.
[12] 郭进义, 程惠红, 杨昉. 2018年度地球物理学和空间物理学学科报告 *[J]. 地球科学进展, 2018, 33(12): 1292-1296.
[13] 张平松, 孙斌杨. 煤层回采工作面底板破坏探查技术的发展现状[J]. 地球科学进展, 2017, 32(6): 577-588.
[14] 向杰, 陈建平, 胡彬, 胡桥, 杨伟. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6): 603-614.
[15] 华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9): 1025-1036.
阅读次数
全文


摘要