地球科学进展 ›› 2023, Vol. 38 ›› Issue (1): 99 -109. doi: 10.11867/j.issn.1001-8166.2022.078

研究简报 上一篇    下一篇

浅埋水下文物遗址的海洋地球物理声学探测展望:以沉船为例
刘溢滂 1 , 2( ), 胡毅 1 , 2 , 3( )   
  1. 1.福州大学先进制造学院, 福建 泉州 362200
    2.自然资源部第三海洋研究所, 福建 厦门 361005
    3.福建省海洋物理与地质过程重点实验室, 福建 厦门 361005
  • 收稿日期:2022-07-20 修回日期:2022-09-29 出版日期:2023-01-10
  • 通讯作者: 胡毅 E-mail:208527226@fzu.edu.cn;huyi@tio.org.cn
  • 基金资助:
    福建省自然科学基金项目“厦门湾外的全新世潮流沉积沙体研究”(2018J01063);福建省科技计划引导性项目“海洋单道地震固态接收缆的研制与应用”(2022Y0070)

Prospect of Marine Geophysical Acoustic Detection of Buried Underwater Cultural Relics: A Case Study of Shipwrecks

Yipang LIU 1 , 2( ), Yi HU 1 , 2 , 3( )   

  1. 1.School of Advanced Manufacturing, Fuzhou University, Quanzhou Fujian 362200, China
    2.Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
    3.Fujian Provincial Key Laboratory of Marine Physical and Geological Processes, Xiamen 361005, China
  • Received:2022-07-20 Revised:2022-09-29 Online:2023-01-10 Published:2023-02-02
  • Contact: Yi HU E-mail:208527226@fzu.edu.cn;huyi@tio.org.cn
  • About author:LIU Yipang (1997-), male, Loudi City, Hunan Province, Master student. Research areas include marine geology and marine geophysics. E-mail: 208527226@fzu.edu.cn
  • Supported by:
    the Fujian Natural Science Fund Project “Research on Holocene tidal sedimentary sand bodies outside Xiamen Bay”(2018J01063);The Leading Project of Fujian Provincial Science and Technology Plan “Development and application of marine single channel seismic solid receiving cable”(2022Y0070)

水下文化遗产与历史、艺术、经济和科学的发展有着密切联系。浅埋沉船是我国今后水下文物遗址探测中所必须考虑的重要类型,海洋地球物理方法在这类遗址探测中发挥着关键作用。通过海洋地球物理声学探测方法在浅埋沉船中的应用研究,分析浅埋沉船与周边环境之间的反射系数和极性变化特性,论述海洋地球物理声学探测在浅埋沉船判别、浅埋沉船降解程度评估以及浅埋沉船遗骸3D重建等方面的应用与进展,指出我国浅埋沉船探测研究在可控实验模拟、数据精细处理和学科交叉综合研究等方面亟待加强,以满足浅埋沉船这一重要水下考古类型的探测需求。

Underwater cultural heritage is closely related to the development of history, art, economy, and science. Buried shipwrecks are an important type of underwater cultural heritage that must be considered in the future exploration of underwater cultural relic sites in China. Marine geophysical methods play an important role in the exploration of these sites. Based on research on the application of marine geophysical acoustic detection methods in buried shipwrecks, the characteristics of reflection coefficient and polarity change between buried shipwrecks and the surrounding environment was analyzed, and the application and progress of marine geophysical acoustic detection in the identification of buried shipwrecks, degradation degree evaluation of buried shipwrecks, and 3D reconstruction of buried shipwrecks remains was discussed. The detection and research of buried shipwrecks in China needs to be strengthened in terms of controllable experimental simulation, fine data processing, and interdisciplinary comprehensive research to satisfactorily detect buried shipwrecks.

中图分类号: 

1 RYABININ V, BARBIÈRE J, HAUGAN P, et al. The UN decade of ocean science for sustainable development[J]. Frontiers in Marine Science, 2019, 6. DOI:10.3389/fmars.2019.00470 .
2 VISBECK M. Ocean science research is key for a sustainable future[J]. Nature Communications, 2018, 9. DOI:10.1038/s41467-018-03158-3 .
3 ZHAO W J. A golden decade for ocean science (2021-2030): from knowledge to solutions and actions[J]. National Science Review, 2021, 8(5). DOI: 10.1093/nsr/nwab021 .
4 LEE Y H. Ocean cultural heritage and ocean literacy programs in the UN decade of ocean science for sustainable development(2021-2030)[J]. Journal of Ocean & Culture, 2019, 2: 136-146.
5 HENDERSON J. Oceans without history? marine cultural heritage and the sustainable development agenda[J]. Sustainability, 2019, 11(18). DOI:10.3390/su11185080 .
6 TRAKADAS A. The cultural heritage framework programme: ensuring a place for cultural heritage’s contribution to the UN decade of ocean science[J]. Marine Technology Society Journal, 2022, 56(3): 110-111.
7 ZHAO Yajuan, ZHANG Liang. On the perfection of China’s underwater cultural heritage protection system from the “Nanhai No.1” incident[J]. Legal Science Monthly, 2007(1): 118-125.
赵亚娟, 张亮. 从“南海一号”事件看我国水下文化遗产保护制度的完善[J]. 法学, 2007(1): 118-125.
8 KINGSLEY S A. Fishing and shipwreck heritage: marine archaeology’s greatest threat?[M]. London, New York: Bloomsbury Academic,2016.
9 LIN Guilan, LIN Aijun, DONG Weiwei, et al. Management countermeasures of marine cultural heritage conservation under the background of marine development[J]. Ocean Development and Management, 2016, 33(10): 30-35.
林桂兰, 蔺爱军, 董卫卫, 等. 海洋开发背景下的中国海洋水下文化遗产保护对策探讨[J]. 海洋开发与管理, 2016, 33(10): 30-35.
10 HU Yi, XU Jiang, YU Xingguang, et al. Prospects of the research of detection and protection system for underwater archaeology[J]. Science, 2013, 65(5): 31-35.
胡毅, 许江, 余兴光, 等. 水下文物探测与保护技术体系研究[J]. 科学, 2013, 65(5): 31-35.
11 ZHAO Zike, CHEN Chunliang, ZHANG Jibiao. The importance of the area division and environmental investigation in wreck archeology[J]. Ocean Development and Management, 2017, 34(2): 65-69.
赵子科, 陈春亮, 张际标. 浅谈区域划分与环境调查对沉船考古工作的重要性[J]. 海洋开发与管理, 2017, 34(2): 65-69.
12 BAO Chunlei. Discovery and protection of “Huaguang Reef I” sunken ship in Southern Song Dynasty[J]. Popular Archaeology, 2014(1): 35-41.
包春磊. “华光礁Ⅰ号”南宋沉船的发现与保护[J]. 大众考古, 2014(1): 35-41.
13 ZHAO Jiabin. On-the-spot salvage record of the Sunken boat Wanjiao No.1[J]. China Cultural Heritage, 2005(6): 62-72.
赵嘉斌. “碗礁1号”沉船打捞纪实[J]. 中国文化遗产, 2005(6): 62-72.
14 ZHOU Chunshui. Research on the site of Warship Chin Yuen in Dandong, Liaoning Province[J]. Study on Natural and Cultural Heritage, 2020, 5(7): 12-20.
周春水. 辽宁丹东致远舰遗址调查[J]. 自然与文化遗产研究, 2020, 5(7): 12-20.
15 LIU Hongyu. “Nanhai No.1”: a masterpiece of underwater archaeology—interview with Li Bin, associate research librarian of the Underwater Archaeological Research Center of the National Museum in China[N]. Liaoning Daily, 2008-01-08(6).
刘洪宇. “南海一号”:水下考古巨著: 访中国国家博物馆水下考古研究中心副研究馆员李滨[N]. 辽宁日报, 2008-01-08(6).
16 MA Yong, LI Jiabiao, WU Ziyin, et al. The application of an integrated geophysical prospecting system to underwater archeology—an example from Chuan Island, Guangdong Province[J]. Journal of Marine Sciences, 2016, 34(2): 43-52.
马永, 李家彪, 吴自银, 等. 综合物探技术在海洋考古中的应用: 以川岛水下考古为例[J]. 海洋学研究, 2016, 34(2): 43-52.
17 CHENG Xiao. The prosperity and decline of shipbuilding technology in ancient China and its enlightenment[D]. Wuhan: Wuhan University of Science and Technology, 2007.
程晓. 我国古代造船技术的兴衰及其启示[D]. 武汉: 武汉科技大学, 2007.
18 SCHOCK S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 1 200-1 217.
19 RAKOTONARIVO S, LEGRIS M, DESMARE R, et al. Forward modeling for marine sediment characterization using chirp sonars[J]. Geophysics, 2011, 76(4): T91-T99.
20 TRIPATHI S K, DAS S, MEITEI S I, et al. Mass flow deposit south of Central Andaman Trough, Andaman Sea: evidence from sub bottom profiler records[J]. Indian Journal of Geo-Marine Sciences, 2017, 46(8): 1 519-1 527.
21 CAO X H, QU Z G, SHEN B J, et al. Illuminating centimeter-level resolution stratum via developed high-frequency sub-bottom profiler mounted on Deep-Sea Warrior deep-submergence vehicle[J]. Marine Georesources & Geotechnology, 2021, 39(11): 1 296-1 306.
22 WANG R, LENG Y B, LI C Z. The use of sub-bottom profiler in the surveying of embankments’ foundation[J]. Applied Mechanics and Materials, 2010, 36: 162-166.
23 MENARD E, NASSER N A, PATTERSON R T, et al. Sub-bottom acoustic profiling as a remediation assessment tool for contaminated lakes[J]. SN Applied Sciences, 2019, 1(6): 1-15.
24 ZHENG G, ZHAO J H, LI S B, et al. Zero-shot pipeline detection for sub-bottom profiler data based on imaging principles[J]. Remote Sensing, 2021, 13(21). DOI:10.3390/rs13214401 .
25 LI S B, ZHAO J H, ZHANG H M, et al. Automatic detection of pipelines from sub-bottom profiler sonar images[J]. IEEE Journal of Oceanic Engineering, 2022, 47(2): 417-432.
26 LU B L, QU Z, CHEN C. A case study on geophysical techniques for the marine submerged pipeline[C]// 4th international conference on environmental and engineering geophysics.Chengdu,2010:802-809.
27 LIU Enbin, WEN Zhaorong, GUO Bingyan, et al. Detection and recognition methods of gas pipelines based on acoustic signal feature analysis[J]. Journal of Safety Science and Technology, 2022, 18(4): 61-68.
刘恩斌, 温櫂荣, 郭冰燕, 等. 基于声信号特征分析的燃气管道探测识别方法[J]. 中国安全生产科学技术, 2022, 18(4): 61-68.
28 MISSIAEN T, MURPHY S, LONCKE L, et al. Very high-resolution seismic mapping of shallow gas in the Belgian coastal zone[J]. Continental Shelf Research, 2002, 22(16): 2 291-2 301.
29 ROBERTS H H, FENG D, JOYE S B. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(21/22/23): 2 040-2 054.
30 HU Y, LIU Y P, DING J X, et al. Regional archaeological underwater survey method: applications and implications[J]. Archaeological Prospection, 2022. DOI: 10.1002/arp.1876 .
31 FERENTINOS G, FAKIRIS E, CHRISTODOULOU D, et al. Optimal sidescan sonar and subbottom profiler surveying of ancient wrecks: the ‘Fiskardo’ wreck, Kefallinia Island, Ionian Sea[J]. Journal of Archaeological Science, 2020, 113. DOI:10.1016/j.jas.2019.105032 .
32 LIU Wenjie. A summary of the application of marine geophysical techniques in underwater archaeology—taking the underwater archaeological investigation of Dingyuan Ship Site as an example[J]. Identification and Appreciation to Cultural Relics, 2021(16): 161-163.
刘文杰. 海洋物探技术在水下考古中的应用综述: 以定远舰遗址水下考古调查为例[J]. 文物鉴定与鉴赏, 2021(16): 161-163.
33 ØDEGÅRD Ø, LUDVIGSEN M, LÅGSTAD P A. Using synthetic aperture sonar in marine archaeological surveys-some first experiences[C]// 2013 MTS/IEEE OCEANS-Bergen. Bergen, Norway: IEEE, 2013: 1-7.
34 ØDEGÅRD Ø, HANSEN R E, SINGH H, et al. Archaeological use of Synthetic Aperture Sonar on deepwater wreck sites in Skagerrak[J]. Journal of Archaeological Science, 2018, 89: 1-13.
35 SAEBO T O, HANSEN R E, LORENTZEN O J. Using an interferometric synthetic aperture sonar to inspect the Skagerrak World War II chemical munitions dump site[C]// OCEANS 2015-MTS/IEEE Washington. Washington, D. C.: IEEE, 2015.
36 GRØN O, BOLDREEL L O, CVIKEL D, et al. Detection and mapping of shipwrecks embedded in sea-floor sediments[J]. Journal of Archaeological Science: Reports, 2015, 4: 242-251.
37 CVIKEL D, GRØN O, BOLDREEL L O. Detecting the Ma’agan Mikhael B shipwreck[J]. Underwater Technology, 2017, 34(2): 93-98.
38 GERAGA M, CHRISTODOULOU D, ELEFTHERAKIS D, et al. Atlas of shipwrecks in inner Ionian Sea (Greece): a remote sensing approach[J]. Heritage, 2020, 3(4): 1 210-1 236.
39 GRØN O. Some problems with modelling the positions of prehistoric hunter-gatherer settlements on the basis of landscape topography[J]. Journal of Archaeological Science: Reports, 2018, 20: 192-199.
40 XIAO Xi, ZHOU Peng, ZHANG Yiming, et al. Research and application of fracture identification method based on diffraction information extraction technology[J]. Oil Geophysical Prospecting, 2021, 56(5): 1 130-1 136, 1 179.
肖曦, 周鹏, 张益明, 等. 基于绕射信息提取技术的断裂识别方法及应用[J]. 石油地球物理勘探, 2021, 56(5): 1 130-1 136, 1 179.
41 LI Jiguang. Application of diffracted wave imaging technology in channel sand reservoir prediction[J]. Complex Hydrocarbon Reservoirs, 2017, 10(1): 27-30.
李继光. 绕射波成像技术在河道砂体储层预测中的应用[J]. 复杂油气藏, 2017, 10(1): 27-30.
42 PAN Guofu. Research on the acoustic characteristics of seabed sediments in the northern South China Sea[D]. Shanghai: Tongji University, 2003.
潘国富. 南海北部海底浅部沉积物声学特性研究[D]. 上海: 同济大学, 2003.
43 BULL J M, QUINN R, DIX J K. Reflection coefficient calculation from marine high resolution seismic reflection (chirp) data and application to an archaeological case study[J]. Marine Geophysical Researches, 1998, 20(1): 1-11.
44 QUINN R, BULL J M, DIX J K. Imaging wooden artefacts using Chirp sources[J]. Archaeological Prospection, 1997, 4(1): 25-35.
45 LIN Zhaobin. Research of sub-bottom profiler in detecting underwater cultural relics[D]. Xiamen: Third Institute of Oceanography (TIO) of the Ministry of Natural Resources, 2018.
林兆彬. 浅地层剖面系统在水下文物探测中的应用研究[D]. 厦门: 国家海洋局第三海洋研究所, 2018.
46 CAPRETTI C, MACCHIONI N, PIZZO B, et al. The characterization of waterlogged archaeological wood: the three Roman ships found in Naples (Italy)[J]. Archaeometry, 2008, 50(5): 855-876.
47 WANG Yali. Study on deterioration of waterlogged archaeological wood salvaged from Nanao No.1 shipwreck by Scanning Electron Micros-copy (SEM)[J]. Journal of Central South University of Forestry & Technology, 2013, 33(6): 48-54.
王亚丽. 利用扫描电镜研究“南澳Ⅰ号”出水古木材的降解[J]. 中南林业科技大学学报, 2013, 33(6): 48-54.
48 Kilic A G.Evaluation of the physical condition of a group of waterlogged woods from the shipwreck Yenikapi 35[J]. Art-Sanat,2018,9:13-21.
49 BAO Chunlei. Evaluation of wood degradation and analysis of sulfur and iron compounds of the Huaguangjiao Ⅰ shipwreck[J]. Sciences of Conservation and Archaeology, 2021, 33(5): 60-70.
包春磊. “华光礁Ⅰ号”沉船木材降解评价及硫铁化合物分析[J]. 文物保护与考古科学, 2021, 33(5): 60-70.
50 CUI Yong. Brief summery on excavation of Nanhai NO.1 shipwreck[J]. Study on Natural and Cultural Heritage, 2019, 4(10): 14-20.
崔勇. “南海Ⅰ号”沉船发掘纪略[J]. 自然与文化遗产研究, 2019, 4(10): 14-20.
51 ARNOTT S H L, DIX J K, BEST A I, et al. Imaging of buried archaeological materials: the reflection properties of archaeological wood[J]. Marine Geophysical Researches, 2005, 26(2/3/4): 135-144.
52 PLETS R M K, DIX J K, ADAMS J R, et al. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK[J]. Journal of Archaeological Science, 2009, 36(2): 408-418.]
53 PLETS R M K, DIX J K, ADAMS J R, et al. 3D reconstruction of a shallow archaeological site from high-resolution acoustic imagery: the Grace Dieu [J]. Applied Acoustics, 2008, 69(5): 399-411.
54 WILKEN D, WUNDERLICH T, HOLLMANN H, et al. Imaging a medieval shipwreck with the new PingPong 3D marine reflection seismic system[J]. Archaeological Prospection, 2019, 26(3): 211-223.
55 KIM Y J, CHEONG S, LEE C, et al. Application of pseudo-3D Chirp sub-bottom profiler survey: a case study of ancient wooden shipwreck site, west coast of Korea[J]. Exploration Geophysics, 2021, 52(1): 109-121.
56 BOLDREEL L O, GRØN O, CVIKEL D. Synthetic 3D recording of a shipwreck embedded in seafloor sediments: distinguishing internal details[J]. Heritage, 2021, 4(2): 541-553.
57 KE Dan, HAN Shaoyang, HOU Huiqun, et al. Application of 3D visualization technology to mineral resources exploration[J]. World Nuclear Geoscience, 2005, 22(2): 108-113.
柯丹, 韩绍阳, 侯惠群, 等. 三维可视化技术在矿产资源勘探领域中的应用探讨[J]. 世界核地质科学, 2005, 22(2): 108-113.
58 WANG Jian, NIE Jiangtao. Application of 3D visualization model construction in mineral resources exploration[J]. Acta Mineralogica Sinica, 2015, 35(): 935-936.
王健, 聂江涛. 三维可视化模型构建在矿产资源勘查中的应用[J]. 矿物学报, 2015, 35(): 935-936.
59 DOVE I A, LEVENTER A, METCALF M J, et al. Marine geological investigation of Edward VIII Gulf, Kemp Coast, East Antarctica[J]. Antarctic Science, 2020, 32(3): 210-222.
60 GERAGA M, PAPATHEODOROU G, AGOURIDIS C, et al. Palaeoenvironmental implications of a marine geoarchaeological survey conducted in the SW Argosaronic Gulf, Greece[J]. Journal of Archaeological Science: Reports, 2017, 12: 805-818.
61 NIE Zheng. Archaeology of shipwrecks—some thoughts on the theory of underwater archaeology[J]. Underwater Archaeology,2021(00):1-11.
聂政.沉船考古——水下考古学理论的一点思考[J].水下考古,2021(00):1-11.
[1] 柳本立,牛百成,屈建军. 多组复合指纹示踪法及其应用[J]. 地球科学进展, 2019, 34(10): 1092-1098.
[2] 陈科贵, 陈旭, 张家浩. 复合渗透率测井评价方法在砂砾岩稠油油藏的应用 *——以克拉玛依油田某区八道湾组为例[J]. 地球科学进展, 2015, 30(7): 773-779.
[3] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[4] 孙书勤,张成江,黄润秋. 板块汇聚边缘玄武岩大地构造环境的Th、Nb、Zr判别[J]. 地球科学进展, 2006, 21(6): 593-598.
[5] 王云飞,朱育新,尹宇,潘红玺. 地表水酸化的研究进展及其湖泊酸化的环境信息研究[J]. 地球科学进展, 2001, 16(3): 421-426.
阅读次数
全文


摘要