地球科学进展 ›› 2023, Vol. 38 ›› Issue (11): 1107 -1120. doi: 10.11867/j.issn.1001-8166.2023.072

综述与评述 上一篇    下一篇

城市洪涝灾害协同治理:研究进展与应用案例
徐宗学 1 , 2( ), 叶陈雷 1 , 2, 廖如婷 1 , 2   
  1. 1.北京师范大学 水科学研究院,北京 100875
    2.城市水循环与海绵城市技术 北京市重点实验室,北京 100875
  • 收稿日期:2023-03-07 修回日期:2023-10-01 出版日期:2023-11-10
  • 基金资助:
    国家自然科学基金重点项目(52239003)

Integrated Management Technology for Urban Flooding/Waterlogging Disaster: Research Progress and Case Study

Zongxue XU 1 , 2( ), Chenlei YE 1 , 2, Ruting LIAO 1 , 2   

  1. 1.College of Water Sciences, Beijing Normal University, Beijing 100875, China
    2.Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China
  • Received:2023-03-07 Revised:2023-10-01 Online:2023-11-10 Published:2023-11-24
  • About author:XU Zongxue, Professor, research areas include hydrology and water resources. E-mail: zxxu@bnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52239003)

对汇流时间短、暴雨时程分配集中的城市地区而言,采用海绵城市技术与水工程群联合调度的协同治理模式,是应对城市洪涝问题、优化城市水资源配置,以及减缓城市洪涝灾害的有效手段。系统梳理总结了我国海绵城市建设发展历程及研究进展,结合水循环机理分析了海绵城市技术在防洪排涝中的功能;通过总结城市水工程群调度典型措施及应用研究现状,分析了联排联调技术在防洪排涝中的作用。在此基础上,以福州市主城区为案例,定量分析了海绵城市技术与水工程群调度协同治理对减小城市洪涝灾害的作用。

In urban areas with infrequent rainstorms and rapid flow routing, an integrated approach combining sponge city technology and coordinated hydraulic structure management proves effective in mitigating urban flooding/waterlogging disasters, optimizing urban water resource distribution, and curbing flood cascades. This paper provides a summary of the history and research advancements of sponge city construction in China, along with an analysis of the flood prevention and drainage capabilities of sponge city technology. Subsequently, typical measures and research progress in urban hydraulic structure scheduling are summarized, and the functions of the combined use of sponge city measures and hydraulic structure scheduling in flood prevention and drainage are analyzed. Building upon this analysis and investigation, the study focuses on the downtown area of Fuzhou City to examine the roles played by the integrated use of sponge city technology and hydraulic structure scheduling in urban flooding/waterlogging prevention and mitigation.

中图分类号: 

图1 我国海绵城市建设发展历程
Fig. 1 The development process of sponge city construction in China
图2 典型低影响开发设施
Fig. 2 Typical Low Impact DevelopmentLIDfacilities
图3 城市防洪排涝协同治理体系(部分图片来自网络)
Fig. 3 Urban flood control and drainage collaborative governance systemsome of the pictures are from the Internet
图4 福州晋安河片区概况
Fig. 4 Overview of Jin’an River drainage district
表1 模型主要参数取值
Table 1 The main parameter values of model
图5 不同措施下的洪涝特征
Fig. 5 Flooding characteristics under different measures
图6 水深分布模拟识别
Fig. 6 Water depth distribution simulation and identification
图7 流速分布模拟识别
Fig. 7 Flow velocity distribution simulation and identification
1 CHENG Xiaotao, LIU Changjun, LI Changzhi, et al. Evolution characteristics of flood risk under changing environment and strategy of urban resilience improvement[J]. Journal of Hydraulic Engineering, 2022, 53(7): 757-768, 778.
程晓陶, 刘昌军, 李昌志, 等. 变化环境下洪涝风险演变特征与城市韧性提升策略[J]. 水利学报, 2022, 53(7): 757-768, 778.
2 XU Zongxue, CHENG Tao, REN Meifang. When will “the city looks at the sea” stop-also on the function and role of sponge city[J]. China Flood & Drought Management, 2017, 27(5):64-66, 95.
徐宗学, 程涛, 任梅芳. “城市看海” 何时休: 兼论海绵城市功能与作用[J]. 中国防汛抗旱, 2017, 27(5):64-66, 95.
3 ZHANG Shuhan, ZHENG Fandong, DI Suchuang, et al. Thoughts on urban waterlogging control in Beijing from the rainstorm and flood of “2021.7.20” in Zhengzhou[J]. China Flood & Drought Management, 2021, 31(9): 5-11.
张书函, 郑凡东, 邸苏闯, 等. 从郑州 “2021.7.20” 暴雨洪涝思考北京的城市内涝防治[J]. 中国防汛抗旱, 2021, 31(9): 5-11.
4 CHEN Yin, WANG Yangui, CHEN Kang. Planning and management framework of river system connectivity in the construction of sponge city[J]. China Flood & Drought Management, 2020, 30(7): 10-15.
陈吟, 王延贵, 陈康. 海绵城市建设中水系连通性规划与治理框架[J]. 中国防汛抗旱, 2020, 30(7): 10-15.
5 XU Zongxue, YE Chenlei. Simulation of urban flooding/waterlogging processes: principle, models and prospects[J]. Journal of Hydraulic Engineering, 2021, 52(4): 381-392.
徐宗学, 叶陈雷. 城市暴雨洪涝模拟: 原理、模型与展望[J]. 水利学报, 2021, 52(4): 381-392.
6 TANG Jianguo. Upgrading and construcing ways of urban rainwater drainage system[J]. Water & Wastewater Engineering, 2021, 47(5): 1-6.
唐建国.城市雨水排水系统提标改造与建设途径[J].给水排水, 2021, 57(5): 1-6.
7 XIA Jun, SHI Wei, WANG Qiang, et al. Discussion of several hydrological issues regarding sponge city construction[J]. Water Resources Protection, 2017, 33(1):1-8.
夏军, 石卫, 王强, 等. 海绵城市建设中若干水文学问题的研讨[J]. 水资源保护, 2017, 33(1): 1-8.
8 YANG Yingxue, ZHOU Feixiang, REN Xiyan, et al. Study on effective supervision mechanism of systematically promoting sponge cities construction for all cities in China[J]. Water & Wastewater Engineering, 2021, 57(3): 79-84.
杨映雪,周飞祥,任希岩,等. 系统化全域推进海绵城市建设的长效管控机制研究[J]. 给水排水, 2021, 57(3): 79-84.
9 CHEN Na, REN Anzhi, MA Bo, et al. Stormwater management path in Fenghuang, Hunan[J]. Journal of Geographical Sciences, 2021, 76(1): 153-166.
陈娜,任安之,马伯,等.湖南省凤凰县城雨洪管控路径[J].地理学报, 2021, 76(1): 153-166.
10 WANG Jiabiao, ZHAO Jianshi, SHEN Ziyan, et al. Discussion about the two rainfall control approaches in sponge city construction[J]. Journal of Hydraulic Engineering, 2017, 48(12): 1 490-1 498.
王家彪,赵建世,沈子寅,等.关于海绵城市两种降雨控制模式的讨论[J]. 水利学报, 2017, 48(12): 1 490-1 498.
11 REN Nanqi, ZHANG Jianyun, WANG Xiuheng. Promoting the sponge city construction widely to eliminate urban waterlogging and create livable environment[J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3 481-3 483.
任南琪, 张建云, 王秀蘅. 全域推进海绵城市建设, 消除城市内涝, 打造宜居环境[J]. 环境科学学报, 2020, 40(10): 3 481-3 483.
12 HUANG Guoru. Discrimination of relationship between urban storm waterlogging prevention and sponge city construction[J]. China Flood & Drought Management, 2018, 28(2): 8-14.
黄国如. 城市暴雨内涝防控与海绵城市建设辨析[J]. 中国防汛抗旱, 2018, 28(2): 8-14.
13 CHE Wu, ZHAO Yang, LI Junqi, et al. Explanation of sponge city development technical guide: basic concepts and comprehensive goals[J]. China Water & Wastewater, 2015, 31(8): 1-5.
车伍, 赵杨, 李俊奇, 等. 海绵城市建设指南解读之基本概念与综合目标[J]. 中国给水排水, 2015, 31(8): 1-5.
14 Yepeng MAI. Study on control effect of rainwater runoff of low impact development measures based on multi-scale experiment, monitoring and model simulation[D]. Guangzhou: South China University of Technology,2021.
麦叶鹏. 基于多尺度试验、监测和模型模拟的低影响开发措施雨水径流控制效应研究[D]. 广州: 华南理工大学,2021.
15 BAEK S S, LIGARAY M, PYO J, et al. A novel water quality module of the SWMM model for assessing Low Impact Development (LID) in urban watersheds[J]. Journal of Hydrology, 2020, 586. DOI:10.1016/j.jhydrol.2020.124886 .
16 JIA Haifeng, YAO Hairong, TANG Ying, et al. LID-BMPs planning for urban runoff control and case study[J]. Advances in Water Science, 2014, 25(2): 260-267.
贾海峰, 姚海蓉, 唐颖, 等. 城市降雨径流控制LID-BMPs规划方法及案例[J]. 水科学进展, 2014, 25(2): 260-267.
17 LI J K, ZHAO R S, LI Y J, et al. Simulation and optimization of layered bioretention facilities by HYDRUS-1D model and response surface methodology[J]. Journal of Hydrology, 2020, 586. DOI:10.1016/j.jhydrol.2020.124813 .
18 LISENBEE W A, HATHAWAY J M, WINSTON R J. Modeling bioretention hydrology: quantifying the performance of DRAINMOD-Urban and the SWMM LID module[J]. Journal of Hydrology, 2022, 612. DOI:10.1016/j.jhydrol.2022.128179 .
19 SUI X X, van de VEN F H M. The influence of Low Impact Development (LID) on basin runoff in a half-urbanized catchment: a case study in San Antonio, Texas[J]. Journal of Hydrology, 2023, 616. DOI:10.1016/j.jhydrol.2022.128793 .
20 YANG B Y, ZHANG T, LI J Z, et al. Optimal designs of LID based on LID experiments and SWMM for a small-scale community in Tianjin, North China[J]. Journal of Environmental Management, 2023, 334. DOI:10.1016/j.jenvman.2023.117442 .
21 WU Yingying, SHE Dunxian, XIA Jun, et al. Impact of LID on urban rainfall and runoff process[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(5): 833-842.
吴盈盈, 佘敦先, 夏军, 等. 典型LID措施对城市降雨径流过程影响[J]. 南水北调与水利科技, 2021, 19(5): 833-842.
22 LIAO Ruting, XU Zongxue, YE Chenlei, et al. Simulation of urban waterlogging processes based on SWMM and InfoWorks ICM model: a case study of Dahongmen drainage area in Beijing City[J/OL]. Water Resources Protection, 2022:1-16. [2023-01-17]. .
廖如婷, 徐宗学, 叶陈雷, 等. 基于SWMM和InfoWorks ICM模型的城市暴雨内涝过程模拟——以北京市大红门排水区为例[J/OL]. 水资源保护, 2022: 1-16. [2023-01-17]. .
23 HU Jinhui, HAN Mingyang, WU Zexin, et al. Low-impact development design and evaluation of residential areas based on SWMM and LISFLOOD-FP Models[J]. Water Resources and Power, 2023, 41(9): 68-72.
胡金辉, 韩铭洋, 吴泽新, 等. 基于SWMM和LISFLOOD-FP模型的居住区低影响开发模拟评价[J]. 水电能源科学, 2023, 41(9): 68-72.
24 ZHANG Binhong, LI Jiake, LI Yajiao. Progress in the permeable pavement technology for Low-Impact Development (LID)[J]. Journal of Water Resources and Water Engineering, 2017, 28(4): 137-144.
张彬鸿, 李家科, 李亚娇. 低影响开发(LID)透水铺装技术研究进展[J]. 水资源与水工程学报, 2017, 28(4): 137-144.
25 LI Jiake, LIU Zengchao, HUANG Ningjun, et al. Advance in the study on bioretention technology for low-impact development[J]. Arid Zone Research, 2014, 31(3): 431-439.
李家科, 刘增超, 黄宁俊, 等. 低影响开发(LID)生物滞留技术研究进展[J]. 干旱区研究, 2014, 31(3): 431-439.
26 ZHANG Wenqing, HOU Jingming, WANG Junhui, et al. Optimization design method of LID facilities coupling NSGA-Ⅱ algorithm and high-precision hydrodynamic model[J]. Journal of Water Resources and Water Engineering, 2022, 33(4):133-142.
张文晴, 侯精明, 王俊珲, 等. 耦合NSGA-Ⅱ算法与高精度水动力模型的LID设施优化设计方法研究[J]. 水资源与水工程学报, 2022, 33(4): 133-142.
27 YU Yang, ZHOU Yongchao, GUO Zhiyong, et al. A new LID spatial allocation optimization system at neighborhood scale: Integrated SWMM with PICEA-g using MATLAB as the platform.[J]. The Science of the Total Environment,2022,831. DOI:10.2139/ssrn.4023904 .
28 YU Qian, LI Na, WANG Shan, et al. Study on comprehensive benefit assessment systems for low impact development practices[J]. Journal of Hydroelectric Engineering, 2020, 39(12): 94-103.
俞茜, 李娜, 王杉, 等. 低影响开发设施的综合效益评估指标体系研究[J]. 水力发电学报, 2020, 39(12): 94-103.
29 JIANG Chunbo, LI Jiake, GAO Jiayu, et al. Advances in research of optimal rainwater infrastructure configuration in sponge city construction[J]. Journal of Hydroelectric Engineering, 2021, 40(3): 19-29.
蒋春博, 李家科, 高佳玉, 等. 海绵城市建设雨水基础设施优化配置研究进展[J]. 水力发电学报, 2021, 40(3): 19-29.
30 ZHAN Lili, SHI Xiufang, PAN Xingyao, et al. Monitoring technology and application of sponge city[J]. Beijing Water, 2022(2): 42-46.
詹莉莉, 史秀芳, 潘兴瑶, 等. 海绵城市监测技术及方案研究综述[J]. 北京水务, 2022(2): 42-46.
31 ZHANG Jianyun, WANG Yintang, HU Qingfang, et al. Discussion and views on some issues of the sponage city construction in China[J]. Advances in Water Science, 2016, 27(6):793-799.
张建云, 王银堂, 胡庆芳, 等. 海绵城市建设有关问题讨论[J]. 水科学进展, 2016, 27(6):793-799.
32 ZHAO Xiaowei, LI Yongkun, YANG Zhongshan, et al. Analysis of flood evolution and operation mode in mega city[J]. Journal of China Hydrology, 2022, 42(3): 1-7, 13.
赵小伟, 李永坤, 杨忠山, 等. 超大型城市洪涝演变规律与调度模式分析[J]. 水文, 2022, 42(3): 1-7, 13.
33 WANG Changge, YANG Dawei, ZHAO Xiyue. Analysis of rainstorm and flood control in Beijing central area on July 20, 2016[J]. Beijing Water, 2019(5): 5-9.
王长革, 杨大为, 赵羲月. 北京市中心城区2016年“7·20”暴雨洪水调度分析[J]. 北京水务, 2019(5): 5-9.
34 LIU Zengmei, XIONG Saimin, LEI Yong, et al. Study on design standard matching between municipal drainage and water conservancy drainage in urban local flood control[J]. Water Resources Protection, 2022, 38(1): 125-132.
刘曾美, 熊腮敏, 雷勇, 等. 城镇内涝防治中市政排水与水利排涝的标准衔接研究[J]. 水资源保护, 2022, 38(1): 125-132.
35 ZHONG Yixuan, LIAO Xiaolong, YI Ling, et al. Research on the coordination of the urban drainage system and sewage system design standards based on Copula method[J]. China Rural Water and Hydropower, 2021(9): 15-21, 27.
钟逸轩, 廖小龙, 易灵, 等. 基于Copula方法的城市排水排涝设计标准协调性研究[J]. 中国农村水利水电, 2021(9): 15-21, 27.
36 LI Yuanyuan, YANG Huihui, HE Jun. Study on key technology of flood and waterlogging “joint drainage and joint commissioning” project design in plain river network area of the Pearl river delta [J]. Water Resources Planning and Design, 2021(11): 65-69.
李媛媛, 杨辉辉, 何俊. 珠三角平原河网区洪涝 “联排联调” 工程设计关键技术研究[J]. 水利规划与设计, 2021(11): 65-69.
37 WU Yuming, HE Lei. Research on scale and dispatching of the estuary sluice stations in small urban watersheds[J]. Journal of Municipal Technology, 2022, 40(10): 165-172, 179.
吴玉明, 何雷. 城市小流域河道河口闸站规模及调度研究[J]. 市政技术, 2022, 40(10): 165-172, 179.
38 CHENG Tao, HUANG Bensheng, QIU Jing, et al. Optimization of overall layout of sponge city facilities for flooding alleviation effect[J]. Journal of Hydroelectric Engineering, 2021, 40(7): 32-46.
程涛, 黄本胜, 邱静, 等. 基于洪涝削减效果的海绵措施优化布局研究[J]. 水力发电学报, 2021, 40(7): 32-46.
39 LI Changwen, HUANG Yan, YAN Lingzhi. Study on characteristics of over-standard flood disaster in Changjiang River Basin under changing environment[J]. Yangtze River, 2022, 53(3): 29-43.
李昌文, 黄艳, 严凌志. 变化环境下长江流域超标准洪水灾害特点研究[J]. 人民长江, 2022, 53(3): 29-43.
40 CHEN Qiuling, LIN Kairong, CHEN Wenlong, et al. Study on storm flood control in multi-scale sponge city system[J]. Journal of Hydraulic Engineering, 2022, 53(7): 862-875.
陈秋伶, 林凯荣, 陈文龙, 等. 多尺度海绵城市系统雨洪控制研究[J]. 水利学报, 2022, 53(7): 862-875.
41 WU Yuming, YU Lulu, GAO Jiao. Research on the plan of joint commissioning of rows and rows in the main urban area of Nanjing[J]. Water & Wastewater Engineering, 2022, 58(): 26-29, 33.
吴玉明,余露露,高姣.南京主城区联排联调方案研究[J].给水排水,2022,58(): 26-29, 33.
42 YE Chenlei, XU Zongxue, LEI Xiaohui, et al. Rapid simulations of storm water runoff in urban community scale: case study of a community compound in Fuzhou City[J]. Journal of Hydroelectric Engineering, 2021, 40(10): 81-94.
叶陈雷, 徐宗学, 雷晓辉, 等. 城市社区尺度降雨径流快速模拟: 以福州市一排水小区为例[J]. 水力发电学报, 2021, 40(10): 81-94.
43 SONG Xiaomeng, ZHANG Jianyun, HE Ruimin, et al. Urban flood and waterlogging and causes analysis in Beijing[J]. Advances in Water Science, 2019, 30(2): 153-165.
宋晓猛, 张建云, 贺瑞敏, 等. 北京城市洪涝问题与成因分析[J]. 水科学进展, 2019, 30(2): 153-165.
44 ZHANG Jianyun, WANG Yintang, LIU Cuishan, et al. Discussion on the standards of urban flood and waterlogging prevention in China[J]. Journal of Hydroelectric Engineering, 2017, 36(1): 1-6.
张建云, 王银堂, 刘翠善, 等. 中国城市洪涝及防治标准讨论[J]. 水力发电学报, 2017, 36(1): 1-6.
45 MOORE R J. The probability-distributed principle and runoff production at point and basin scales[J]. Hydrological Sciences Journal, 1985, 30(2): 273-297.
46 MOORE R J. The PDM rainfall-runoff model[J]. Hydrology and Earth System Sciences, 2007, 11(1): 483-499.
47 YE Chenlei, XU Zongxue, LEI Xiaohui, et al. Influences of sponge reconstruction of Jin’an River drainage district in Fuzhou City on urban flooding/waterlogging[J]. Water Resources Protection, 2023, 39(1): 83-92.
叶陈雷, 徐宗学, 雷晓辉, 等. 福州晋安河片区海绵改造对城市内涝的影响[J]. 水资源保护, 2023, 39(1): 83-92.
48 YE Chenlei, XU Zongxue. Simulation of fluvial/pluvial flooding processes in a typical urban area considering role of Low Impact Development (LID) measures and joint operation for hydraulic structures: case study in Fuzhou City[J]. Journal of Hydraulic Engineering, 2022, 53(7): 833-844.
叶陈雷, 徐宗学. 水工程调度与低影响开发协同作用下典型城市片区洪涝过程模拟: 以福州市为例[J]. 水利学报, 2022, 53(7): 833-844.
49 XU Zongxue, YE Chenlei. From“looking at sea in city”to“looking at river in city”: simulation and risk analysis of flood and waterlogging process in Fuzhou City under extreme rainstorm scenarios[J]. China Flood & Drought Management, 2021, 31(9): 12-20.
徐宗学, 叶陈雷. 从“城市看海”到“城市看江”: 极端暴雨情景下福州市洪涝过程模拟与风险分析[J]. 中国防汛抗旱, 2021, 31(9): 12-20.
[1] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[2] 葛全胜, 丁玲玲, 郑景云, 郝志新. 利用雨雪分寸重建福州前汛期雨季起始日期的方法研究[J]. 地球科学进展, 2011, 26(11): 1200-1207.
阅读次数
全文


摘要