地球科学进展 ›› 2023, Vol. 38 ›› Issue (11): 1097 -1106. doi: 10.11867/j.issn.1001-8166.2023.069

综述与评述    下一篇

基于高频温度与表面更新理论的蒸散发观测新方法研究进展
熊育久 1 , 2( ), 王旭 3 , 4, 吴陈彬 1   
  1. 1.中山大学 土木工程学院,广东 珠海 519082
    2.广东省华南地区水安全调控工程技术研究中心,广东 广州 510275
    3.中国林业科学研究院热带林业研究所,广东 广州 510520
    4.南岭北江源森林生态系统国家定位观测研究站,广东 广州 510520
  • 收稿日期:2023-07-09 修回日期:2023-09-08 出版日期:2023-11-10
  • 基金资助:
    国家自然科学基金面上项目(42071395);国家重点研发计划项目(021YFE0117100)

Review of Surface Renewal, a New Method for Measuring Evapotranspiration based on High Frequency Temperature

Yujiu XIONG 1 , 2( ), Xu WANG 3 , 4, Chenbin WU 1   

  1. 1.School of Civil Engineering, Sun Yat-Sen University, Zhuhai Guangdong 519082, China
    2.Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, Guangzhou 510275, China
    3.Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
    4.Beijiangyuan Forest Ecosystem National Observation and Research Station, Nanling Mts. China, Guangzhou 510520, China
  • Received:2023-07-09 Revised:2023-09-08 Online:2023-11-10 Published:2023-11-24
  • About author:XIONG Yujiu, Professor, research areas include ecohydrology and remote sensing of environment. E-mail: xiongyuj@mail.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42071395);The National Key Research and Development Program of China(2021YFE0117100)

精准的蒸散发观测是解释和理解水与能量交换过程及其机理的重要途经,亦可为蒸散发遥感产品验证提供数据支持。基于表面更新理论的高频温度法对蒸散发物理过程的描述,不同于经典的涡动相关法,是一种新兴的蒸散发观测手段,其观测精度媲美涡动相关系统,且高频温度观测系统成本较低(低于波文比系统),在欧美等地获得推广应用。通过梳理高频温度法理论基础与国外近30年的研究进展,结合国内初步观测与研究成果,探讨了高频温度法应用中面临的问题与挑战,为推动国内蒸散发观测方法多源化并从多角度理解蒸散发过程及其机理提供方法支撑。

Evapotranspiration (ET) encompasses water loss through transpiration and evaporation from soil and water surfaces. Accurate observation of ET is essential for comprehending the ET process, and mechanism, as well as water-energy nexus and land-atmosphere feedback. ET serves as a pivotal link between the hydrological cycle and energy processes. In-situ measurements provide fundamental datasets for validating remotely sensed ET products. The surface renewal theory differs from the commonly used eddy covariance method in describing the physical ET process. Unlike the expensive sonic anemometers in the eddy covariance system, the surface renewal method is cost-effective because it uses a fine- diameter thermocouple to record high-frequency air temperature and estimate the sensible heat flux through coherent structures. The surface renewal method for measuring ET, with an accuracy comparable to that of the eddy covariance system, and it has been widely applied for ET measurements in America and Europe. Recognizing the substantial potential of this method, this paper reviews the theory of surface renewal and research advancements in the method made over the past 30 years. Additionally, preliminary studies related to ET measurements in China using the surface renewal method are also presented. By summarizing this progress and exploring the challenges in the application of the surface renewal method, we can enhance our understanding and promote a variety of domestic ET observation methods.

中图分类号: 

图1 水汽通量表面更新过程示意图
(a)植被冠层及大气近地层结构;(b)当 Tc> Ta时水汽分子运动方向与加热过程( TcTa分别为冠层温度和气温);(c)图(b)中高频温度随时间斜坡式变化
Fig. 1 A schematic showing the process of surface renewal
(a) The atmospheric boundary layer structure over a canopy; (b) Movement of an air parcel and its warming stages when Tc> Ta; (c) An idealized temperature ramp with time for panel (b)
图2 描述表面更新理论的2种不同温度变化概念模型(据参考文献[ 29 ]修改)
(a):具有温度静止期( Lq 17 ;(b):具有微峰期( Lf 27
Fig. 2 A schematic showing differences between the two surface renewal analysis modelsmodified after reference 29 ])
(a): Assuming there is a quiescent period Lq 17 ; (b): Assuming there is a finite microfront period Lf 27
图3 高频温度法求解显热通量时小尺度(scale I)与大尺度(scale II)的三角波理论(据参考文献[ 36 ]修改)
Fig. 3 A schematic showing the two-scale ramp modelmodified after reference 36 ])
图4 直径为76.2 μmE型微丝热电偶传感器(美国Campbell公司产品FW3
Fig. 4 Type E fine wire thermocouple with a diameter of 76.2 μmFW3Campbell Scientific Inc.
图5 高频温度观测系统在中国的应用状况
(a)观测站及其省份分布;(b)~(e)10 Hz高频温度1分钟内观测数据。(b)和(c)分别为西北干旱区银川市郊葡萄园2018年8月24日白天(14:30)和夜间(23:30)观测数据,(d)和(e)分别为南方湿润区珠海市草地2021年10月5日白天(14:30)和夜间(23:30)观测数据;白天大气不稳定、夜间稳定(图2);传感器均为FW3热电偶
Fig. 5 Current application of surface renewal method in China
(a) Locations of the observation systems and their spatial distribution; FW3 measured air temperature at 10 Hz versus time in one minute starting at 14:30 (b) and 23:30 (c), respectively on August 24, 2018 at a vineyard near Yinchuan City. Panels (d) and (e) are similar to (b) and (c) but for a grass land at Zhuhai City on October 5, 2021; The atmosphere is unstable during the day and stable at night; The sensors are FW3 thermocouples
1 WANG K C, DICKINSON R. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 2012, 50(12). DOI:10.1029/2011RG000373 .
2 FISHER J B, MELTON F, MIDDLETON E, et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources[J]. Water Resources Research, 2017, 53(4): 2 618-2 626.
3 YANG Dawen, XU Zongxue, LI Zhe, et al. Progress and prospect of hydrological sciences[J]. Progress in Geography, 2018, 37(1): 36-45.
杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018, 37(1): 36-45.
4 CHEN Fahu, FU Bojie, XIA Jun, et al. Important progress and prospect of basic research on physical geography and living environment in China in recent 70 years[J]. Science China: Earth Sciences, 2019, 49(11): 1 659-1 696.
陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学, 2019, 49(11): 1 659-1 696.
5 LIU Yuanbo, QIU Guoyu, ZHANG Hongsheng, et al. Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: review and perspectives[J]. Science China: Earth Sciences, 2022, 52(3): 381-399.
刘元波, 邱国玉, 张宏昇, 等. 陆域蒸散的测算理论方法: 回顾与展望[J]. 中国科学:地球科学, 2022, 52(3): 381-399.
6 BALDOCCHI D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany, 2008, 56(1). DOI:10.1071/BT07151 .
7 BALDOCCHI D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method[J]. Global Change Biology, 2014, 20(12): 3 600-3 609.
8 YU Guirui, ZHANG Leiming, SUN Xiaomin. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 2014, 33(7): 903-917.
于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J]. 地理科学进展, 2014, 33(7): 903-917.
9 PAPALE D. Ideas and perspectives: enhancing the impact of the FLUXNET network of eddy covariance sites[J]. Biogeosciences, 2020, 17(22): 5 587-5 598.
10 MAUDER M, FOKEN T, CUXART J. Surface-energy-balance closure over land: a review[J]. Boundary-Layer Meteorology, 2020, 177(2): 395-426.
11 HILL T, CHOCHOLEK M, CLEMENT R. The case for increasing the statistical power of eddy covariance ecosystem studies: why, where and how?[J]. Global Change Biology, 2017, 23(6): 2 154-2 165.
12 XIONG Y J, CHEN X H, TANG L, et al. Comparison of surface renewal and Bowen ratio derived evapotranspiration measurements in an arid vineyard[J]. Journal of Hydrology, 2022, 613. DOI:10.1016/j.jhydrol.2022.128474 .
13 SCHASCHKE C. A dictionary of chemical engineering[M]. Oxford: Oxford University Press, 2014.
14 KERMANI A, SHEN L. Surface age of surface renewal in turbulent interfacial transport[J]. Geophysical Research Letters, 2009, 36(10). DOI:10.1029/2008GL037050 .
15 HIGBIE R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Transactions of American Institute of Chemical Engineers, 1935, 31: 365-390.
16 GAO W, SHAW R H. Observation of organized structure in turbulent flow within and above a forest canopy[J]. Boundary-Layer Meteorology, 1989, 47(1): 349-377.
17 PAW U K T, QIU J, SU H B, et al. Surface renewal analysis: a new method to obtain scalar fluxes[J]. Agricultural and Forest Meteorology, 1995, 74(1/2): 119-137.
18 ZHAO Jianhua, ZHANG Feng, LIANG Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019, 36(6): 1 419-1 430.
赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019, 36(6): 1 419-1 430.
19 van ATTA C W. Effect of coherent structures on structure functions of temperature in the atmospheric boundary layer [J]. Archives of Mechanics, 1977, 29(1): 161-171.
20 SNYDER R L, SPANO D, PAW U K T. Surface renewal analysis for sensible and latent heat flux density[J]. Boundary-Layer Meteorology, 1996, 77(3/4): 249-266.
21 SNYDER R L, PAW U K T, SPANO D, et al. Surface renewal estimates of evapotranspiration. theory[J]. Acta Horticulturae, 1997, 449(1): 49-56.
22 PAW U K T, SNYDER R L, SPANO D, et al. Surface renewal estimates of scalar exchange[M]// Agronomy monographs. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015: 455-483.
23 SPANO D, SNYDER R L, DUCE P, et al. Estimating sensible and latent heat flux densities from grapevine canopies using surface renewal[J]. Agricultural and Forest Meteorology, 2000, 104(3): 171-183.
24 SHAPLAND T M, SNYDER R L, PAW U K T, et al. Thermocouple frequency response compensation leads to convergence of the surface renewal alpha calibration[J]. Agricultural and Forest Meteorology, 2014, 189: 36-47.
25 SUVOČAREV K, CASTELLVÍ F, REBA M L, et al. Surface renewal measurements of H, λE and CO2 fluxes over two different agricultural systems[J]. Agricultural and Forest Meteorology, 2019, 279. DOI:10.1016/j.agrformet.2019.107763 .
26 PARRY C K, SHAPLAND T M, WILLIAMS L E, et al. Comparison of a stand-alone surface renewal method to weighing lysimetry and eddy covariance for determining vineyard evapotranspiration and vine water stress[J]. Irrigation Science, 2019, 37(6): 737-749.
27 CHEN W J, NOVAK M D, BLACK T A, et al. Coherent eddies and temperature structure functions for three contrasting surfaces. part I: ramp model with finite microfront time [J]. Boundary-Layer Meteorology, 1997, 84(1): 99-123.
28 CHEN W J, NOVAK M D, BLACK T A, et al. Coherent eddies and temperature structure functions for three contrasting surfaces. part II: renewal model for sensible heat flux[J]. Boundary-Layer Meteorology, 1997, 84(1): 125-147.
29 CASTELLVÍ F, SNYDER R L. A comparison between latent heat fluxes over grass using a weighing lysimeter and surface renewal analysis[J]. Journal of Hydrology, 2010, 381(3/4): 213-220.
30 CASTELLVÍ F. Combining surface renewal analysis and similarity theory: a new approach for estimating sensible heat flux[J]. Water Resources Research, 2004, 40(5). DOI:10.1029/2003WR002677 .
31 CASTELLVÍF, MARTÍNEZ-COB A. Estimating sensible heat flux using surface renewal analysis and the flux variance method: a case study over olive trees at Sástago (NE of Spain)[J]. Water Resources Research, 2005, 41(9). DOI:10.1029/2005WR004035 .
32 CASTELLVÍ F, SNYDER R L. On the performance of surface renewal analysis to estimate sensible heat flux over two growing rice fields under the influence of regional advection[J]. Journal of Hydrology, 2009, 375(3/4): 546-553.
33 CASTELLVÍ F, SNYDER R L. Sensible heat flux estimates using surface renewal analysis a study case over a peach orchard[J]. Agricultural and Forest Meteorology, 2009, 149(9): 1 397-1 402.
34 CASTELLVÍF, MARTÍNEZ-COB A, PÉREZ-COVETA O. Estimating sensible and latent heat fluxes over rice using surface renewal[J]. Agricultural and Forest Meteorology, 2006, 139(1/2): 164-169.
35 CASTELLVÍ F, GAVILÁN P, GONZÁLEZ-DUGO M P. Combining the bulk transfer formulation and surface renewal analysis for estimating the sensible heat flux without involving the parameter[J]. Water Resources Research, 2014, 50(10): 8 179-8 190.
36 SHAPLAND T M, MCELRONE A J, SNYDER R L, et al. Structure function analysis of two-scale scalar ramps. part I: theory and modelling[J]. Boundary-Layer Meteorology, 2012, 145(1): 5-25.
37 SHAPLAND T M, MCELRONE A J, SNYDER R L, et al. Structure function analysis of two-scale scalar ramps. part II: ramp characteristics and surface renewal flux estimation[J]. Boundary-Layer Meteorology, 2012, 145(1): 27-44.
38 SHAPLAND T M, SNYDER R L, SMART D R, et al. Estimation of actual evapotranspiration in winegrape vineyards located on hillside terrain using surface renewal analysis[J]. Irrigation Science, 2012, 30(6): 471-484.
39 POZNÍKOVÁ G, FISCHER M, van KESTEREN B, et al. Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: a comparison of micrometeorological methods[J]. Agricultural Water Management, 2018, 209: 249-263.
40 SUVOČAREV K, SHAPLAND T M, SNYDER R L, et al. Surface renewal performance to independently estimate sensible and latent heat fluxes in heterogeneous crop surfaces[J]. Journal of Hydrology, 2014, 509: 83-93.
41 PARRY C K, KUSTAS W P, KNIPPER K R, et al. Comparison of vineyard evapotranspiration estimates from surface renewal using measured and modelled energy balance components in the GRAPEX project[J]. Irrigation Science, 2019, 37(3): 333-343.
42 ZHAO X S, LIU Y B, TANAKA H, et al. A comparison of flux variance and surface renewal methods with eddy covariance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 345-350.
43 MARUYAMA T, ITO K, TAKIMOTO H. Abnormal data rejection range in the Bowen ratio and inverse analysis methods for estimating evapotranspiration[J]. Agricultural and Forest Meteorology, 2019, 269: 323-334.
44 FENG Fangguan. Comparing evapotranspiration estimates by the Bowen ratio energy balance and surface renewal methods [D]. Guangzhou: Sun Yat-sen University, 2021.
冯房观. 基于波文比与高频温度的蒸散发观测方法对比研究[D]. 广州:中山大学, 2021.
45 HU Y G, BUTTAR N A, TANNY J, et al. Surface renewal application for estimating evapotranspiration: a review[J]. Advances in Meteorology, 2018, 2018. DOI:10.1155/2018/1690714 .
46 BUTTAR N A. Sensible and latent heat flux estimation in tea fields using surface renewal and flux variance methods [D]. Zhenjiang: Jiangsu University, 2019.
47 WANG J Z, BUTTAR N A, HU Y G, et al. Estimation of sensible and latent heat fluxes using surface renewal method: case study of a tea plantation[J]. Agronomy, 2021, 11(1). DOI:10.3390/agronomy11010179 .
48 HU H J, LU Y Z, HU Y G, et al. Evaluation of two surface renewal methods for calculating the sensible heat flux over a tea field ecosystem in hilly terrain[J]. Agronomy, 2023, 13(5). DOI:10.3390/agronomy13051302 .
[1] 龚咏琪, 于海鹏, 周洁, 任钰, 魏韵, 程姗岭, 杨耀先, 罗红羽. 东亚干旱半干旱区水汽来源研究进展[J]. 地球科学进展, 2023, 38(2): 168-182.
[2] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[3] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[4] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[5] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[6] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[7] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[8] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[9] 张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述[J]. 地球科学进展, 2012, 27(12): 1295-1307.
[10] 王国华,赵文智. 遥感技术估算干旱区蒸散发研究进展[J]. 地球科学进展, 2011, 26(8): 848-858.
[11] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[12] 刘波,翟建青,高超,姜彤,王艳君. 基于实测资料对日蒸散发估算模型的比较[J]. 地球科学进展, 2010, 25(9): 974-980.
[13] 田苗,王鹏新,孙威. 基于地表温度与植被指数特征空间反演地表参数的研究进展[J]. 地球科学进展, 2010, 25(7): 698-705.
[14] 郑宁,张劲松,孟平,黄辉,高峻,贾长荣,任迎丰. 基于闪烁仪观测低丘山地人工混交林通量印痕与源区分布[J]. 地球科学进展, 2010, 25(11): 1175-1186.
[15] 朱治林, 孙晓敏, 贾媛媛, 温学发, 张仁华, 袁国富, 唐新斋. 基于大孔径闪烁仪(LAS)测定农田显热通量的不确定性分析[J]. 地球科学进展, 2010, 25(11): 1199-1207.
阅读次数
全文


摘要