1 |
WANG K C, DICKINSON R. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 2012, 50(12). DOI:10.1029/2011RG000373 .
|
2 |
FISHER J B, MELTON F, MIDDLETON E, et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources[J]. Water Resources Research, 2017, 53(4): 2 618-2 626.
|
3 |
YANG Dawen, XU Zongxue, LI Zhe, et al. Progress and prospect of hydrological sciences[J]. Progress in Geography, 2018, 37(1): 36-45.
|
|
杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018, 37(1): 36-45.
|
4 |
CHEN Fahu, FU Bojie, XIA Jun, et al. Important progress and prospect of basic research on physical geography and living environment in China in recent 70 years[J]. Science China: Earth Sciences, 2019, 49(11): 1 659-1 696.
|
|
陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学, 2019, 49(11): 1 659-1 696.
|
5 |
LIU Yuanbo, QIU Guoyu, ZHANG Hongsheng, et al. Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: review and perspectives[J]. Science China: Earth Sciences, 2022, 52(3): 381-399.
|
|
刘元波, 邱国玉, 张宏昇, 等. 陆域蒸散的测算理论方法: 回顾与展望[J]. 中国科学:地球科学, 2022, 52(3): 381-399.
|
6 |
BALDOCCHI D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany, 2008, 56(1). DOI:10.1071/BT07151 .
|
7 |
BALDOCCHI D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method[J]. Global Change Biology, 2014, 20(12): 3 600-3 609.
|
8 |
YU Guirui, ZHANG Leiming, SUN Xiaomin. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 2014, 33(7): 903-917.
|
|
于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J]. 地理科学进展, 2014, 33(7): 903-917.
|
9 |
PAPALE D. Ideas and perspectives: enhancing the impact of the FLUXNET network of eddy covariance sites[J]. Biogeosciences, 2020, 17(22): 5 587-5 598.
|
10 |
MAUDER M, FOKEN T, CUXART J. Surface-energy-balance closure over land: a review[J]. Boundary-Layer Meteorology, 2020, 177(2): 395-426.
|
11 |
HILL T, CHOCHOLEK M, CLEMENT R. The case for increasing the statistical power of eddy covariance ecosystem studies: why, where and how?[J]. Global Change Biology, 2017, 23(6): 2 154-2 165.
|
12 |
XIONG Y J, CHEN X H, TANG L, et al. Comparison of surface renewal and Bowen ratio derived evapotranspiration measurements in an arid vineyard[J]. Journal of Hydrology, 2022, 613. DOI:10.1016/j.jhydrol.2022.128474 .
|
13 |
SCHASCHKE C. A dictionary of chemical engineering[M]. Oxford: Oxford University Press, 2014.
|
14 |
KERMANI A, SHEN L. Surface age of surface renewal in turbulent interfacial transport[J]. Geophysical Research Letters, 2009, 36(10). DOI:10.1029/2008GL037050 .
|
15 |
HIGBIE R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Transactions of American Institute of Chemical Engineers, 1935, 31: 365-390.
|
16 |
GAO W, SHAW R H. Observation of organized structure in turbulent flow within and above a forest canopy[J]. Boundary-Layer Meteorology, 1989, 47(1): 349-377.
|
17 |
PAW U K T, QIU J, SU H B, et al. Surface renewal analysis: a new method to obtain scalar fluxes[J]. Agricultural and Forest Meteorology, 1995, 74(1/2): 119-137.
|
18 |
ZHAO Jianhua, ZHANG Feng, LIANG Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019, 36(6): 1 419-1 430.
|
|
赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019, 36(6): 1 419-1 430.
|
19 |
van ATTA C W. Effect of coherent structures on structure functions of temperature in the atmospheric boundary layer [J]. Archives of Mechanics, 1977, 29(1): 161-171.
|
20 |
SNYDER R L, SPANO D, PAW U K T. Surface renewal analysis for sensible and latent heat flux density[J]. Boundary-Layer Meteorology, 1996, 77(3/4): 249-266.
|
21 |
SNYDER R L, PAW U K T, SPANO D, et al. Surface renewal estimates of evapotranspiration. theory[J]. Acta Horticulturae, 1997, 449(1): 49-56.
|
22 |
PAW U K T, SNYDER R L, SPANO D, et al. Surface renewal estimates of scalar exchange[M]// Agronomy monographs. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015: 455-483.
|
23 |
SPANO D, SNYDER R L, DUCE P, et al. Estimating sensible and latent heat flux densities from grapevine canopies using surface renewal[J]. Agricultural and Forest Meteorology, 2000, 104(3): 171-183.
|
24 |
SHAPLAND T M, SNYDER R L, PAW U K T, et al. Thermocouple frequency response compensation leads to convergence of the surface renewal alpha calibration[J]. Agricultural and Forest Meteorology, 2014, 189: 36-47.
|
25 |
SUVOČAREV K, CASTELLVÍ F, REBA M L, et al. Surface renewal measurements of H, λE and CO2 fluxes over two different agricultural systems[J]. Agricultural and Forest Meteorology, 2019, 279. DOI:10.1016/j.agrformet.2019.107763 .
|
26 |
PARRY C K, SHAPLAND T M, WILLIAMS L E, et al. Comparison of a stand-alone surface renewal method to weighing lysimetry and eddy covariance for determining vineyard evapotranspiration and vine water stress[J]. Irrigation Science, 2019, 37(6): 737-749.
|
27 |
CHEN W J, NOVAK M D, BLACK T A, et al. Coherent eddies and temperature structure functions for three contrasting surfaces. part I: ramp model with finite microfront time [J]. Boundary-Layer Meteorology, 1997, 84(1): 99-123.
|
28 |
CHEN W J, NOVAK M D, BLACK T A, et al. Coherent eddies and temperature structure functions for three contrasting surfaces. part II: renewal model for sensible heat flux[J]. Boundary-Layer Meteorology, 1997, 84(1): 125-147.
|
29 |
CASTELLVÍ F, SNYDER R L. A comparison between latent heat fluxes over grass using a weighing lysimeter and surface renewal analysis[J]. Journal of Hydrology, 2010, 381(3/4): 213-220.
|
30 |
CASTELLVÍ F. Combining surface renewal analysis and similarity theory: a new approach for estimating sensible heat flux[J]. Water Resources Research, 2004, 40(5). DOI:10.1029/2003WR002677 .
|
31 |
CASTELLVÍF, MARTÍNEZ-COB A. Estimating sensible heat flux using surface renewal analysis and the flux variance method: a case study over olive trees at Sástago (NE of Spain)[J]. Water Resources Research, 2005, 41(9). DOI:10.1029/2005WR004035 .
|
32 |
CASTELLVÍ F, SNYDER R L. On the performance of surface renewal analysis to estimate sensible heat flux over two growing rice fields under the influence of regional advection[J]. Journal of Hydrology, 2009, 375(3/4): 546-553.
|
33 |
CASTELLVÍ F, SNYDER R L. Sensible heat flux estimates using surface renewal analysis a study case over a peach orchard[J]. Agricultural and Forest Meteorology, 2009, 149(9): 1 397-1 402.
|
34 |
CASTELLVÍF, MARTÍNEZ-COB A, PÉREZ-COVETA O. Estimating sensible and latent heat fluxes over rice using surface renewal[J]. Agricultural and Forest Meteorology, 2006, 139(1/2): 164-169.
|
35 |
CASTELLVÍ F, GAVILÁN P, GONZÁLEZ-DUGO M P. Combining the bulk transfer formulation and surface renewal analysis for estimating the sensible heat flux without involving the parameter[J]. Water Resources Research, 2014, 50(10): 8 179-8 190.
|
36 |
SHAPLAND T M, MCELRONE A J, SNYDER R L, et al. Structure function analysis of two-scale scalar ramps. part I: theory and modelling[J]. Boundary-Layer Meteorology, 2012, 145(1): 5-25.
|
37 |
SHAPLAND T M, MCELRONE A J, SNYDER R L, et al. Structure function analysis of two-scale scalar ramps. part II: ramp characteristics and surface renewal flux estimation[J]. Boundary-Layer Meteorology, 2012, 145(1): 27-44.
|
38 |
SHAPLAND T M, SNYDER R L, SMART D R, et al. Estimation of actual evapotranspiration in winegrape vineyards located on hillside terrain using surface renewal analysis[J]. Irrigation Science, 2012, 30(6): 471-484.
|
39 |
POZNÍKOVÁ G, FISCHER M, van KESTEREN B, et al. Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: a comparison of micrometeorological methods[J]. Agricultural Water Management, 2018, 209: 249-263.
|
40 |
SUVOČAREV K, SHAPLAND T M, SNYDER R L, et al. Surface renewal performance to independently estimate sensible and latent heat fluxes in heterogeneous crop surfaces[J]. Journal of Hydrology, 2014, 509: 83-93.
|
41 |
PARRY C K, KUSTAS W P, KNIPPER K R, et al. Comparison of vineyard evapotranspiration estimates from surface renewal using measured and modelled energy balance components in the GRAPEX project[J]. Irrigation Science, 2019, 37(3): 333-343.
|
42 |
ZHAO X S, LIU Y B, TANAKA H, et al. A comparison of flux variance and surface renewal methods with eddy covariance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 345-350.
|
43 |
MARUYAMA T, ITO K, TAKIMOTO H. Abnormal data rejection range in the Bowen ratio and inverse analysis methods for estimating evapotranspiration[J]. Agricultural and Forest Meteorology, 2019, 269: 323-334.
|
44 |
FENG Fangguan. Comparing evapotranspiration estimates by the Bowen ratio energy balance and surface renewal methods [D]. Guangzhou: Sun Yat-sen University, 2021.
|
|
冯房观. 基于波文比与高频温度的蒸散发观测方法对比研究[D]. 广州:中山大学, 2021.
|
45 |
HU Y G, BUTTAR N A, TANNY J, et al. Surface renewal application for estimating evapotranspiration: a review[J]. Advances in Meteorology, 2018, 2018. DOI:10.1155/2018/1690714 .
|
46 |
BUTTAR N A. Sensible and latent heat flux estimation in tea fields using surface renewal and flux variance methods [D]. Zhenjiang: Jiangsu University, 2019.
|
47 |
WANG J Z, BUTTAR N A, HU Y G, et al. Estimation of sensible and latent heat fluxes using surface renewal method: case study of a tea plantation[J]. Agronomy, 2021, 11(1). DOI:10.3390/agronomy11010179 .
|
48 |
HU H J, LU Y Z, HU Y G, et al. Evaluation of two surface renewal methods for calculating the sensible heat flux over a tea field ecosystem in hilly terrain[J]. Agronomy, 2023, 13(5). DOI:10.3390/agronomy13051302 .
|