地球科学进展 ›› 2023, Vol. 38 ›› Issue (11): 1173 -1185. doi: 10.11867/j.issn.1001-8166.2023.067

“事件沉积与灾害历史”专栏 上一篇    下一篇

1 100年来小兴安岭火灾演化历史及其对环境变化的响应
张璐 1( ), 王伟 3, 贾国栋 2, 伊凯 1, 张振卿 2( )   
  1. 1.天津师范大学 地理与环境科学学院,天津 300387
    2.天津师范大学 京津冀生态文明发展研究院,天津 300387
    3.中水北方勘测设计研究有限责任公司,天津 300222
  • 收稿日期:2023-05-15 修回日期:2023-09-07 出版日期:2023-11-10
  • 通讯作者: 张振卿 E-mail:zl1965774519@163.com;zhangzq@tjnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41871098)

Fire Evolution History of the Xiaoxing’an Mountains and Its Response to Environmental Change During the Past 1 100 Years

Lu ZHANG 1( ), Wei WANG 3, Guodong JIA 2, Kai YI 1, Zhenqing ZHANG 2( )   

  1. 1.School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China
    2.Academy of Eco-civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin 300387, China
    3.Beifang Investigation, Design & Research CO. LTD, Tianjin 300222, China
  • Received:2023-05-15 Revised:2023-09-07 Online:2023-11-10 Published:2023-11-24
  • Contact: Zhenqing ZHANG E-mail:zl1965774519@163.com;zhangzq@tjnu.edu.cn
  • About author:ZHANG Lu, Master student, research area includes palaeoenvironmental charcoal research. E-mail: zl1965774519@163.com
  • Supported by:
    the National Natural Science Foundation of China(41871098)

为揭示小兴安岭地区火灾长期演化规律,基于一个典型泥炭沉积柱芯的大(>125 μm)、中(50~125 μm)、小(<50 μm)3种炭屑组分记录,分别重建了近1 100年来局地、局域和区域火灾演化历史,并结合区域已有气候、植被和人类活动资料,探讨了其对环境变化的响应机理。研究结果表明,相对暖干的气候条件易引发火灾,但火灾频率和强度分别受草本植物和木本植物相对比例的控制。受此环境条件影响,1 100~900 cal a BP采样泥炭地的局地、局域和区域火灾频率和强度较低,900~570 cal a BP达到最高,随后570~200 cal a BP显著降低。近200 cal a BP来,受人类活动和气温升高的共同驱动,采样地局域和区域火灾频率显著上升,而采样地局地火灾频率和强度相对较低,主要受湿度增加和乔木植物减少的制约。

To reveal the long-term evolution of fire in the Xiaoxing’an Mountains, the historical fire records for the past 1100 years were reconstructed at the local, neighboring, and regional scale based on the analysis of large (>125 μm), medium (50~125 μm) and small (<50 μm) charcoal found in a representative peat core. Based on this, in combination with data on the existing climate, vegetation, and human activities in the study area, the mechanism of response to environmental changes is discussed. Our findings indicate that relatively warm and dry climatic conditions were conducive to fire occurrence. Fire frequencies and intensities were controlled by herbaceous and woody plants, respectively. Affected by such environmental conditions, the local, neighboring, and regional fire regimes during 1 100~900 Cal a BP exhibited much lower frequencies and intensities. Subsequently, fire regimes during 900~570 Cal a BP reached the highest frequencies and intensities. Thereafter, the fire frequencies and intensities decreased significantly during periods 570~200 Cal a BP. In the past 200 Cal a BP, increasing fire frequencies in neighboring and regional areas around the sampling site were attributed to the combined effects of strengthened human activities and rising temperatures. However, the relatively low frequencies and intensities of local fires at the sampling site were primarily constrained by unfavorable conditions of increased climatic humidity and reduced prevalence of woody plants.

中图分类号: 

图1 黑龙江省小兴安岭YH泥炭柱芯采样点位置图
Fig. 1 The map showing the location of peat core YH in Xiaoxing’an Mountains of Heilongjiang Province
图2 YH泥炭柱芯的总炭屑与不同粒径炭屑累积速率随年龄、深度变化
柱芯年龄—深度模型中蓝色数据点为AMS 14C实测数据,绿色代表柱芯顶部默认采样时间(-60 cal a BP);红线代表非贝叶斯沉积模型计算的线性回归结果;2条灰色曲线指示回归结果的95%置信区间;S1、S2和S3为不同粒径炭屑累积速率整体趋势的3个阶段
Fig. 2 The variation of accumulation rates of total charcoal and different particle sizes charcoal along with age and depth of peat core YH
The blue data points are the measured data of AMS 14C in the core-age and depth model. Green represents the default sampling time at the top of the core (-60 cal a BP); The red line represents the linear regression results calculated by the Non-Bayesian deposition model; The two gray curves indicate the 95% confidence interval for the regression results; S1, S2 and S3 are the three stages of the overall trend of the accumulation rate of charcoal of different particle sizes
图3 YH泥炭柱芯的大炭屑与不同形态炭屑累积速率随年龄和深度变化
P1、P2、P3和P4为长圆比的峰值
Fig. 3 The variation of accumulation rates of large charcoal and different morphology charcoal with age and depth of peat core YH
P1, P2, P3 and P4 are the peaks of the accumulation rate of charcoal in long leaves and round leaves
图4 基于YH泥炭柱芯的大、中和小炭屑记录的局地、局域和区域古火灾演化历史
(a)、(d)和(g)中黑线标识炭屑背景(C back),灰色矩形标识插值炭屑累积速率(C int);(b)、(e)和(h)中正黑线和负黑线代表识别与噪声相关的可变性(C thresholds),黑色矩形标识炭屑峰值(C peak),第95百分位标准用“+”表示(C peaks ID);(c)、(f)和(i)中黑色曲线标识火灾频率
Fig. 4 Evolution history of localneighboring and regional paleofires based on largemedium and small charcoal records of YH peat core
(a), (d) and (g): The black line identifies the CHAR background(C back), and the gray rectangle identifies the interpolated charcoal accumulation rate (C int); (b), (e) and (h): The positive and negative black lines represent the identification of noise-related variability (C thresholds), the black rectangle identifies the CHAR peak (C peak), and the 95th percentile criterion is denoted by “+” (C peaks ID); (c), (f) and (i): The black curve identifies the fire frequency
图5 小兴安岭采样泥炭地局地、局域和区域火灾演化及其对环境变化的响应
(a) 大炭屑累积速率;(b) 局地火灾频率;(c) 局地草本/木本值(大炭屑长圆比);(d) 中炭屑累积速率;(e) 局域火灾频率;(f) 小炭屑累积速率;(g) 区域火灾频率;(h) 区域草本/木本值 29 (基于YH柱芯孢粉数据);(i) YH柱芯孢粉浓度 29 ;(j) 呼伦湖沉积物孢粉记录的年均降水量 44 ;(k) 金川泥炭地碳纤维δ 18O记录的温度代用曲线 45 ;(l) 黑龙江省历史人口数量 46 ;黑色条带代表火灾高发期,灰色条带代表火灾低发期
Fig. 5 Localneighboring and regional fire evolution in sampled peatlands of the Xiaoxing’an Mountains and its response to environmental change
(a) Accumulation rate of large charcoal; (b) Local fire frequency; (c) Local herbaceous and woody ratio (The long-round ratio of large charcoal); (d) Accumulation rate of medium charcoal; (e) Neighboring fire frequency; (f) Accumulation rate of small charcoal; (g) Regional fire frequency; (h) Regional Herbaceous and woody ratio (based on YH core pollen data) 29 ; (i) YH peat core pollen concentration 29 ; (j) The annual precipitation recorded by sediment pollen in Hulun Lake 44 ; (k) Temperature proxy curves recorded by carbon fiber δ 18O in Jinchuan peatland 45 ; (l) Historical population of Heilongjiang Province 46 ; The black strip represents the high incidence period of fire, and the gray represents the low incidence period of fire
1 BOWMAN D M J S, BALCH J K, ARTAXO P, et al. Fire in the earth system[J]. Science, 2009, 324(5 926): 481-484.
2 MARLON J R, BARTLEIN P J, DANIAU A L, et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls[J]. Quaternary Science Reviews, 2013, 65: 5-25.
3 IPCC. Climate change 2022: impacts, adaptation and vulnerability[M]. Cambridge: Cambridge University Press, 2023.
4 NIKLASSON M, ZIN E, ZIELONKA T, et al. A 350-year tree-ring fire record from Białowieża Primeval Forest, Poland: implications for Central European lowland fire history[J]. Journal of Ecology, 2010, 98(6): 1 319-1 329.
5 CHRISTOPOULOU A, FULÉ P Z, ANDRIOPOULOS P, et al. Dendrochronology-based fire history of Pinus nigra forests in Mount Taygetos, Southern Greece[J]. Forest Ecology and Management, 2013, 293: 132-139.
6 TAN Zhihai, HUANG Chunchang, PANG Jiangli, et al. Charcoal recorded Holocene fire history in the northern part of the Longdong Loess Plateau[J]. Quaternary Sciences, 2008, 28(4): 733-738.
谭志海, 黄春长, 庞奖励, 等. 陇东黄土高原北部全新世野火历史的木炭屑记录[J]. 第四纪研究, 2008, 28(4): 733-738.
7 TAN Zhihai, HUANG Chunchang, PANG Jiangli, et al. Wildfire history and human land use over Weihe River Basin since Holocene: evidence from charcoal records[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1 297-1 306.
谭志海, 黄春长, 庞奖励, 等. 渭河流域全新世以来野火历史与人类土地利用的炭屑记录[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1 297-1 306.
8 ZHAO Yajuan, HOU Guangliang, Chongyi E, et al. Charcoal concentration reflect of environment change and human activities in Xiadawu Relic, Qinghai-Tibet Plateau[J]. Journal of Earth Environment, 2016, 7(1): 19-26.
赵亚娟, 候光良, 鄂崇毅, 等. 青藏高原下大武地区炭屑浓度所反映的环境演变与人类活动[J]. 地球环境学报, 2016, 7(1): 19-26.
9 LEYS B, CARCAILLET C, DEZILEAU L, et al. A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica[J]. Quaternary Research, 2013, 79(3): 337-349.
10 ZHANG Z Q, ZHONG J J, LV X G, et al. Climate, vegetation, and human influences on late-Holocene fire regimes in the Sanjiang plain, northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 1-8.
11 MENG Meng, Dongmei JIE, LI Nannan, et al. The Holocene fire evolution based on charcoal of Gushantun peatland in the Changbai Mountain, northeast China[J]. Acta Micropalaeontologica Sinica, 2019, 36(1): 70-78.
蒙萌, 介冬梅, 李楠楠, 等. 全新世以来长白山区孤山屯泥炭地炭屑记录与古火演化历史[J]. 微体古生物学报, 2019, 36(1): 70-78.
12 MENG M, JIE D M, LI D H, et al. Fire history and its drivers based on peatland charcoal analysis in the Changbai Mountains, northeast China, during the last 13000 years[J]. International Journal of Wildland Fire, 2020, 29(9): 841-854.
13 ZHANG Rui, CHI Yunping, XIE Yuanyun, et al. Paleofire events recorded by charcoal in Harbin loess since the middle-late Pleistocene with driving mechanism[J]. Acta Ecologica Sinica, 2022, 42(24): 10 317-10 328.
张瑞, 迟云平, 谢远云, 等. 哈尔滨黄土炭屑记录的中晚更新世以来古火活动及其驱动机制[J]. 生态学报, 2022, 42(24): 10 317-10 328.
14 CLARK J S, ROYALL P D. Particle-size evidence for source areas of charcoal accumulation in Late Holocene sediments of eastern North American lakes[J]. Quaternary Research, 1995, 43(1): 80-89.
15 LI Nannan. Response of vegetation dynamics to climate change since the Younger Dryas in the Longgang Region, northeastern China[D]. Changchun: Northeast Normal University, 2020.
李楠楠. 中国东北龙岗地区新仙女木事件以来植被动态对气候变化的响应[D]. 长春: 东北师范大学, 2020.
16 FAN Yunfeng. Histories of vegetation, climate and forest fire over the last 15400 years in the Yilong Lake catchment of southern Yunnan[D]. Kunming: Yunnan Normal University, 2022.
范云峰. 滇南异龙湖流域过去15400年植被、气候和森林火灾史[D]. 昆明: 云南师范大学, 2022.
17 CHU Guoqiang, GU Zhaoyan, XU Bing, et al. Varvechronology and radiometric dating (137Cs, 210Pb) from the Sihailongwan Maar, northeastern China[J]. Quaternary Sciences, 2005, 25(2): 202-207.
储国强, 顾兆炎, 许冰, 等. 东北四海龙湾玛珥湖沉积物纹层计年与137Cs、210Pb测年[J]. 第四纪研究, 2005, 25(2): 202-207.
18 LI Xiaoqiang, ZHAO Hongli, YAN Minhua, et al. Fire variations and relationship among fire and vegetation and climate during Holocene at Sanjiang Plain, northeast China[J]. Scientia Geographica Sinica, 2005, 25(2): 177-182.
李小强, 赵宏丽, 闫敏华,等. 东北三江平原全新世火演化及其与植被和气候的关系[J]. 地理科学, 2005, 25(2): 177-182.
19 TAN Zhihai, LONG Yanxia, FAN Huichen, et al. Records of charcoal and black carbon in Holocene loess-paleosol profiles from Guanzhong Basin[J]. Chinese Journal of Soil Science, 2016, 47(3): 518-524.
谭志海, 龙艳侠, 范汇晨, 等. 史前关中盆地土壤剖面的黑碳与炭屑记录[J]. 土壤通报, 2016, 47(3): 518-524.
20 WU Li, ZHANG Mengcui, JI Chao, et al. Charcoal recorded fire environment change during the Holocene from the sediment of the Chaohu Lake, east China[J]. Scientia Geographica Sinica, 2016, 36(12): 1 920-1 928.
吴立, 张梦翠, 计超, 等. 全新世巢湖沉积物炭屑记录的火环境变化[J]. 地理科学, 2016, 36(12): 1 920-1 928.
21 DU Jianfeng, WANG Ninglian, LI Jianyong, et al. Charcoal records of Holocene loess-soil sequences and palaeoenvironmental significance in the Luoyang Basin[J]. Quaternary Sciences, 2022, 42(2): 383-396.
杜建峰, 王宁练, 李建勇, 等. 洛阳盆地全新世炭屑记录及其古环境意义[J]. 第四纪研究, 2022, 42(2): 383-396.
22 WU Jing, LIU Qiang. Pollen-recorded vegetation and climate changes from Moon Lake since Late Glacial[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(5): 947-954.
伍婧, 刘强. 晚冰期以来月亮湖孢粉记录反映的古植被与古气候演化[J]. 地球科学(中国地质大学学报), 2012, 37(5): 947-954.
23 HIGUERA P E, BRUBAKER L B, ANDERSON P M, et al. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska[J]. Ecological Monographs, 2009, 79(2): 201-219.
24 ZHAO Zengyou, SHI Shengqiang, YIN Jianjun, et al. Fire history can be obtained from the charcoal record on the southwest plateau of Guizhou[J]. Acta Ecologica Sinica, 2019, 39(2): 509-517.
赵增友, 石胜强, 殷建军, 等. 黔西高原MIS3-MIS2期炭屑记录与火灾模式研究[J]. 生态学报, 2019, 39(2): 509-517.
25 PANG Yang, ZHOU Bin, XU Xiangchun, et al. Holocene fire history and its influencing factors in the monsoon region of East China[J]. Quaternary Sciences, 2022, 42(2): 368-382.
庞洋, 周斌, 徐向春, 等. 中国东部季风区全新世火历史及其影响因素[J]. 第四纪研究, 2022, 42(2): 368-382.
26 AN Z S. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 171-187.
27 REN Ping, CHEN Wenbin. Evaluation of the service value of Lesser Khingan Mountains forest ecosystem[J]. Forest Research, 2020, 52(2): 1-4.
任平,陈文斌. 小兴安岭森林生态系统服务价值评估[J]. 林业科技情报, 2020, 52(2): 1-4.
28 WANG Aixiang, PAN Qiang, SHI Lei. Analysis of climate change characteristics in the past 30 years in the Xiaoxing’an Mountains forest area and its surrounding areas[J]. Advances in Meteorological Science and Technology, 2022, 12(4): 54-59.
王爱香, 潘蔷, 石磊. 近30年小兴安岭林区及周边区域的气候变化特征分析[J]. 气象科技进展, 2022, 12(4): 54-59.
29 HAN D X, GAO C Y, LIU H X, et al. Vegetation dynamics and its response to climate change during the past 2000 years along the Amur River Basin, Northeast China[J]. Ecological Indicators, 2020, 117. DOI:10.1016/j.ecolind.2020.106577 .
30 REIMER P J, BARD E, BAYLISS A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1 869-1 887.
31 BLAAUW M, CHRISTEN J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457-474.
32 LI Xiaoqiang, ZHOU Xinying, SHANG Xue, et al. Different-(kPa/℃) size method of charcoal analysis in loess and its significance in the study of fire variation[J]. Journal of Lake Sciences, 2006, 18(5): 540-544.
李小强, 周新郢, 尚雪, 等. 黄土炭屑分级统计方法及其在火演化研究中的意义[J]. 湖泊科学, 2006, 18(5): 540-544.
33 LI Yiyin, HOU Shufang, ZHAO Pengfei. Comparison of different quantification methods for microfossil charcoal concentration and the implication for human activities[J]. Quaternary Sciences, 2010, 30(2): 356-363.
李宜垠, 侯树芳, 赵鹏飞. 微炭屑的几种统计方法比较及其对人类活动的指示意义[J]. 第四纪研究, 2010, 30(2): 356-363.
34 WANG Zisha, MIAO Yunfa, ZHAO Yongtao, et al. Characteristics of microcharcoal in the lake surface sediments in the northern margin of Qaidam Basin of China and its environmental significance[J]. Journal of Desert Research, 2020, 40(4): 10-17.
王梓莎, 苗运法, 赵永涛, 等. 柴达木盆地北缘湖泊表层沉积物炭屑特征及其环境意义[J]. 中国沙漠, 2020, 40(4): 10-17.
35 CLARK J S, HUSSEY T C. Estimating the mass flux of charcoal from sedimentary records: effects of particle size, morphology, and orientation[J]. The Holocene, 1996, 6(2): 129-144.
36 HIGUERA P E, BRUBAKER L B, ANDERSON P M, et al. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change[J]. PLoS ONE, 2008, 3(3). DOI:10.1371/journal.pone.0001744 .
37 HIGUERA P E, PETERS M E, BRUBAKER L B, et al. Understanding the origin and analysis of sediment-charcoal records with a simulation model[J]. Quaternary Science Reviews, 2007, 26(13/14): 1 790-1 809.
38 TAN Z H, HAN Y M, CAO J J, et al. Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China[J]. Quaternary Science Reviews, 2015, 109: 76-87.
39 GARDNER J J, WHITLOCK C. Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies[J]. The Holocene, 2001, 11(5): 541-549.
40 PETERS M E, HIGUERA P E. Quantifying the source area of macroscopic charcoal with a particle dispersal model[J]. Quaternary Research, 2007, 67(2): 304-310.
41 HUANG C C, PANG J L, CHEN S E, et al. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(1/2): 28-44.
42 THEVENON F, ANSELMETTI F S. Charcoal and fly-ash particles from Lake Lucerne sediments (Central Switzerland) characterized by image analysis: anthropologic, stratigraphic and environmental implications[J]. Quaternary Science Reviews, 2007, 26(19/20/21): 2 631-2 643.
43 CARTER V A, MORAVCOVÁ A, CHIVERRELL R C, et al. Holocene-scale fire dynamics of central European temperate spruce-beech forests[J]. Quaternary Science Reviews, 2018, 191: 15-30.
44 WEN R L, XIAO J L, CHANG Z G, et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China[J]. Boreas, 2010, 39(2): 262-272.
45 HONG Y T, WANG Z G, JIANG H B, et al. A 6000-year record of changes in drought and precipitation in northeastern China based on a δ13C time series from peat cellulose[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 111-119.
46 CONG J X, GAO C Y, ZHANG Y, et al. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China[J]. Scientific Reports, 2016, 6(1): 1-9.
47 ZHANG Jianping, Houyuan LÜ. Preliminary study of charcoal morphology and its environmental significance[J]. Quaternary sciences, 2006, 26(5): 857-863.
张健平, 吕厚远. 现代植物炭屑形态的初步分析及其古环境意义[J]. 第四纪研究, 2006, 26(5): 857-863.
48 LI Cheng, LI Ge, LI Rencheng, et al. Study on the ratio of microcharcoal particles to phytoliths derived from plant combustion[J]. Acta Micropalaeontologica Sinica, 2019, 36(1): 79-86.
李成, 李戈, 李仁成, 等. 植物燃烧微炭屑与植硅体的比值研究[J]. 微体古生物学报, 2019, 36(1): 79-86.
49 ZHANG Xiaomei, JIN Heling, LIU Bing,et al. Effective moisture variation in the Kobq Desert since the last glacial maximum and its response to global change[J]. Advances in Earth Science, 2022, 37(12): 1 232-1 244.
张小梅, 靳鹤龄, 刘冰, 等. 末次盛冰期以来库布齐沙漠有效湿度变化及其对全球变化的响应[J]. 地球科学进展, 2022, 37(12): 1 232-1 244.
50 ZHANG Yu, MA Lichun, WANG Kai. Research progress of quaternary environmental evolution in Lop Nor Playa[J]. Advances in Earth Science, 2022, 37(2): 149-164.
张瑜, 马黎春, 王凯. 罗布泊干盐湖第四纪环境演变研究进展[J]. 地球科学进展, 2022,37(2): 149-164.
51 ZHONG Jingjing. The charcoal record of fire history from the Sanjiang Peatlands during the period from mid- to late-Holocene [D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2013.
钟静静. 三江平原中晚全新世火演化的泥炭炭屑记录[D]. 长春: 中国科学院东北地理与农业生态研究所, 2013.
52 ZHAO Zengyou, YUAN Daoxian, SHI Shengqiang, et al. MIS3b vegetation and climate changes based on pollen and charcoal on Qianxi Plateau[J]. Acta Ecologica Sinica, 2012, 32(15): 4 811-4 818.
赵增友, 袁道先, 石胜强, 等. 孢粉、炭屑揭示的黔西高原MIS3b期间古植被、古气候演变[J]. 生态学报, 2012, 32(15): 4 811-4 818.
53 van BELLEN S, GARNEAU M, ALI A A, et al. Did fires drive Holocene carbon sequestration in boreal ombrotrophic peatlands of eastern Canada?[J]. Quaternary Research, 2012, 78(1): 50-59.
[1] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[2] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[3] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 2014(6): 662-673.
[4] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[5] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[6] 邬建国, 何春阳, 张庆云, 于德永, 黄甘霖, 黄庆旭. 全球变化与区域可持续发展耦合模型及调控对策[J]. 地球科学进展, 2014, 29(12): 1315-1324.
[7] 贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1): 51-61.
[8] 占长林,曹军骥,韩永明,安芷生. 古火灾历史重建的研究进展[J]. 地球科学进展, 2011, 26(12): 1248-1259.
[9] 陈晓宏,涂新军,谢平,李艳. 水文要素变异的人类活动影响研究进展[J]. 地球科学进展, 2010, 25(8): 800-811.
[10] 史威,李世杰,马春梅,朱诚,张蕾. 中坝和中堡岛遗址文化堆积连续性的自然及人类活动因素[J]. 地球科学进展, 2010, 25(5): 523-532.
[11] 王革丽,吕达仁,杨培才. 人类活动对大气臭氧层的影响[J]. 地球科学进展, 2009, 24(3): 331-337.
[12] 肖生春,肖洪浪. 黑河流域水环境演变及其驱动机制研究进展[J]. 地球科学进展, 2008, 23(7): 748-755.
[13] 赵哈林,大黑俊哉,周瑞莲,李玉霖,左小安,黄刚. 人类活动与气候变化对科尔沁沙质草地植被的影响[J]. 地球科学进展, 2008, 23(4): 408-414.
[14] 王芳,葛全胜. “地球系统过程与人类活动”2006年联合学术会议简报[J]. 地球科学进展, 2007, 22(4): 433-433.
[15] 张强;韩永翔;宋连春. 全球气候变化及其影响因素研究进展综述[J]. 地球科学进展, 2005, 20(9): 990-998.
阅读次数
全文


摘要