地球科学进展 ›› 2023, Vol. 38 ›› Issue (11): 1186 -1199. doi: 10.11867/j.issn.1001-8166.2023.075

研究简报 上一篇    下一篇

国际地球参考框架 ITRF2020简介与评析
明锋 1 , 2( ), 杨元喜 1 , 2, 曾安敏 1 , 2, 李文浩 3   
  1. 1.地理信息工程国家重点实验室, 陕西 西安 710054
    2.西安测绘研究所三室, 陕西 西安 710054
    3.南京工业大学 测绘科学与技术学院, 江苏 南京 211800
  • 收稿日期:2023-06-25 修回日期:2023-08-05 出版日期:2023-11-10
  • 基金资助:
    国家自然科学基金基础科学中心项目(42388102);国家自然科学基金重点项目(41931076);国家自然科学基金面上项目(42074006)

Introduction and Review of the International Terrestrial Reference Frame ITRF2020

Feng MING 1 , 2( ), Yuanxi YANG 1 , 2, Anmin ZENG 1 , 2, Wenhao LI 3   

  1. 1.State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China
    2.Room 3, Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China
    3.School of Surveying and Mapping Science and Technology, Nanjing University of Technology, Nanjing 211800, China
  • Received:2023-06-25 Revised:2023-08-05 Online:2023-11-10 Published:2023-11-24
  • About author:MING Feng, Assistant professor. Research area includes dynamic geodetic data processing research. E-mail: fengmingchyjs@outlook.com
  • Supported by:
    the National Natural Science Foundation of China(42388102┣41931076);Grant 42074006┫

国际地球自转与参考系统服务组织于2022年4月发布了最新的国际地球参考框架ITRF2020(the International Terrestrial Reference Frame 2020)。由于采用了更长的时间序列、更加完善的处理模型和更加优化的处理策略,ITRF2020的精度要优于ITRF2014。相对于ITRF2014,ITRF2020在原点和尺度参数实现策略上有显著改进,并第一次明确给出了季节性信号的原点、尺度和定向,即: 采用分段对准策略改进了原点和尺度参数实现方法; 分别给出了在地球质量中心和地球形状中心框架下的季节性信号的原点、尺度和定向实现,以及地球质量中心和地球形状中心框架下的谐波参数模型。此外,参与ITRF2020构建的各独立技术的数据处理也有显著进步。首先详细介绍了ITRF2020的4种空间大地测量技术数据处理进展以及技术间组合的技术进步,然后对ITRF2020基准实现进行简要分析,最后对其存在的不足进行初步分析与讨论。

The International Earth Rotation and Reference Systems Service (IERS) released the updated International Terrestrial Reference Frame ITRF2020 in April 2022 (the International Terrestrial Reference Frame 2020). The accuracy of ITRF2020 is better than that of ITRF2014 because of the adoption of a longer time series, better processing models, and more optimized processing strategies. Compared with ITRF2014, ITRF2020 has significant improvements in the strategies for implementation of origin and scale parameters, and for the first time it explicitly provides the origin, scale, and orientation of seasonal signals; that is, the strategy of segmented alignment is adopted to improve the origin and scale parameter realization; the origin, scale, and orientation realizations of seasonal signals in the Center of Mass (CM) and Center of Figure (CF) frames, as well as the harmonic parameter models in the CM and CF frames, are given. In addition, there have been significant technological advances in data processing for each of the independent techniques involved in the construction of ITRF2020. In this paper, we first introduce in detail the progress of data processing within the four space geodetic technologies and the technical progress of the inter-technology combinations, then briefly analyze the ITRF2020 implementation, and finally provide a preliminary analysis and discussion of its shortcomings.

中图分类号: 

表1 ITRF2020各技术输入数据 26
Table 1 ITRF2020 input data for each technology 26
表2 参与 ITRF2020构建的 7SLR分析中心
Table 2 The seven SLR analysis centers participating in the ITRF2020
表3 ILRSA“核心站点”坐标残差对比 33
Table 3 Comparison of residuals of ILRSA “core sites” coordinates 33
表4 ILRSA相对于 ITRF2014ITRF2020的尺度 34
Table 4 Scale of ILRSA relative to ITRF2014 and ITRF2020 34
表5 IVS各分析中心基本概况
Table 5 Basic overview of IVS analysis centers
图1 IVS分段测段组合过程
Fig. 1 IVS session measurement combination process
表6 IGS参与 ITRF2020构建的 10个分析中心
Table 6 10 analysis centers where IGS participated in the ITRF2020 build
表7 IDS参与 ITRF2020构建的分析中心
Table 7 Analysis centers for IDS participation in the ITRF2020
表8 并置站不同空间技术解间及空间技术解与地面连接之间的差异超过 5 mm的统计结果
Table 8 Statistics of the differences between different space technology solutions and ground connections of the concurrently addressed stations over 5 mm
图2 并置站周年信号加上半周年信号后总的信号振幅
(a)并置站WTZR-8834-WEUC;(b)并置站HRAO-7501-HBKA;(c) 并置站GRAS-7835-GR3B;(d) 并置站7232-7378-7501-HBKA
Fig. 2 Signal amplitudes of anniversary and half-anniversary of the co-located stations
(a) Co-located station WTZR-8834-WEUC; (b) Co-located station HRAO-7501-HBKA; (c) Co-located station GRAS-7835-GR3B; (d) Co-located station 7232-7378-7501-HBKA
表9 并置站周年振幅最大差异统计 (mm)
Table 9 Statistics of the maximum difference in annual amplitudes of the co-located stations
表10 并置站周年振幅平均差异统计 (mm)
Table 10 Average variance statistics of annual amplitudes of the co-located stations
1 BOCK Y, MELGAR D. Physical applications of GPS geodesy: a review[J]. Reports on Progress in Physics, 2016, 79(10). DOI:10.1088/0034-4885/79/10/106801 .
2 CHENG Pengfei, WEN Hanjiang, LIU Huanling, et al. Research situation and future development of satellite geodesy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 48-54.
程鹏飞, 文汉江, 刘焕玲, 等. 卫星大地测量学的研究现状及发展趋势[J]. 武汉大学学报(信息科学版), 2019, 44(1): 48-54.
3 YAO Yibin, YANG Yuanxi, SUN Heping, et al. Geodesy discipline: progress and perspective[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1 243-1 251.
姚宜斌, 杨元喜, 孙和平, 等. 大地测量学科发展现状与趋势[J]. 测绘学报, 2020, 49(10): 1 243-1 251.
4 LARSON K M. GPS seismology[J]. Journal of Geodesy, 2009, 83(3): 227-233.
5 SHAN Xinjian, YIN Hao, LIU Xiaodong, et al. High-rate real-time GNSS seimology and early warning of earthquakes[J].Chinese Journal of Geophysics, 2019, 62(8): 3 043-3 052.
单新建, 尹昊, 刘晓东, 等.高频GNSS实时地震学与地震预警研究现状[J].地球物理学报, 2019, 62(8): 3 043-3 052.
6 ZHANG Qin, BAI Zhengwei, HUANG Guanwen, et al. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1 985-2 000.
张勤, 白正伟, 黄观文, 等. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1 985-2 000.
7 WANG Guoquan, BAO Yan. GNSS landslide monitoring aligned to regional reference frames[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2 107-2 116.
王国权, 鲍艳. 基于区域参考框架的GNSS滑坡监测[J]. 测绘学报, 2022, 51(10): 2 107-2 116.
8 DZURISIN D. Volcano geodesy: challenges and opportunities for the 21st century[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1 770): 1 547-1 566.
9 LARSON K M, CERVELLI P, LISOWSKI M, et al. Volcano monitoring using the global positioning system: filtering strategies[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B9): 19 453-19 464.
10 WHITE A M, GARDNER W P, BORSA A A, et al. A review of GNSS/GPS in hydrogeodesy: hydrologic loading applications and their implications for water resource research[J]. Water Resources Research, 2022, 58(7). DOI:10.1029/2022WR032078 .
11 ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 172-1 191.
张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1 172-1 191.
12 YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952.
姚宜斌, 赵庆志. GNSS对流层水汽监测研究进展与展望[J]. 测绘学报, 2022, 51(6): 935-952.
13 YAO Yibin, GAO Xin. Research progress and prospect of monitoring ionosphere by GNSS technique[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1 728-1 739.
姚宜斌, 高鑫. GNSS电离层监测研究进展与展望[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1 728-1 739.
14 BLEWITT G, ALTAMIMI Z, DAVIS J, et al. Geodetic observations and global reference frame contributions to understanding sea-level rise and variability[M]// Church J A, WOODWORTH P L, AARUP T, et al. Stanley wilson understanding sea-level rise and variability. 2010. DOI:10.1002/9781444323276.ch9 .
15 XU Tianhe, MU Dapeng, YAN Haoming, et al. The causes of contemporary sea level rise over recent two decades: progress and challenge[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 294-1 305.
徐天河, 穆大鹏, 闫昊明, 等. 近20年海平面变化成因研究进展及挑战[J]. 测绘学报, 2022, 51(7): 1 294-1 305.
16 PLAG H P, Pearlman M. Global geodetic observing system[M]. Berlin, Germany: Springer, 2009.
17 JIANG Weiping, LI Zhao, WEI Na, et al. Progress and thoughts on establishment of geodetic coordinate frame[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 259-1 270.
姜卫平, 李昭, 魏娜, 等. 大地测量坐标框架建立的进展与思考[J]. 测绘学报, 2022, 51(7): 1 259-1 270.
18 SUN Fuping, JIA Yanfeng, ZHU Xinhui, et al. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1 688-1 700.
孙付平, 贾彦锋, 朱新慧, 等. 毫米级地球参考框架动态维持技术研究进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1 688-1 700.
19 U. N. United Nations General Assembly. Sixty-Ninth Session, Agenda Item 9, Report of the Economic and Social Council, A/69 /L.53[EB/OL].2015,Geneva.(2023-02-01)[2023-11-08]. , 2023-2-1.
20 ALTAMIMI Z, SILLARD P, BOUCHER C. ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10). DOI:10.1029/2001JB000561 .
21 ALTAMIMI Z, COLLILIEUX X, LEGRAND J, et al. ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B9). DOI:10.1029/2007JB004949 .
22 ALTAMIMI Z, COLLILIEUX X, MÉTIVIER L. ITRF2008: an improved solution of the international terrestrial reference frame[J]. Journal of Geodesy, 2011, 85(8): 457-473.
23 ALTAMIMI Z, REBISCHUNG P, MÉTIVIER L, et al. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6 109-6 131.
24 ALTAMIMI Z, REBISCHUNG P, COLLILIEUX X, et al. ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions[J]. Journal of Geodesy, 2023, 97(5). DOI:10.1007/s00190-023-01738-w .
25 MING Feng, ZENG Anmin. Evaluatioii and analysis of the international terrestrial reference frame 2014[J]. Geomatic Science and Engineering, 2019(1): 12-21.
明锋, 曾安敏. 国际地球参考框架ITRF2014评析[J]. 测绘科学与工程, 2019(1): 12-21.
26 ALTAMIMI Z, PAUL Rebischung, XAVIER Collilieux, et al. ITRF2020: an overview of its features and results[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1.
27 LUCERI V, PIRRI M, RODRÍGUEZ J, et al. Systematic errors in SLR data and their impact on the ILRS products[J]. Journal of Geodesy, 2019, 93(11): 2 357-2 366.
28 APPLEBY G, RODRÍGUEZ J, ALTAMIMI Z. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993-2014[J]. Journal of Geodesy, 2016, 90(12): 1 371-1 388.
29 RODRÍGUEZ J, APPLEBY G, OTSUBO T. Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: impact on key parameters of the terrestrial reference frame[J]. Journal of Geodesy, 2019, 93(12): 2 553-2 568.
30 EXERTIER P, BELLI A, LEMOINE J M. Time biases in laser ranging observations: a concerning issue of Space Geodesy[J]. Advances in Space Research, 2017, 60(5): 948-968.
31 ILRS. ILRS_Data_Handling_File.snx[EB/OL]. (2023-02-01)[2023-11-08]..
32 DAVIES P, BLEWITT G. Methodology for global geodetic time series estimation: a new tool for geodynamics[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B5): 11 083-11 100.
33 PAVLIS E, LUCERI V. The ILRS contribution to ITRF2020[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1.
34 PAVLIS E, LUCERI V, BASONI A, et al. ITRF2020: the ILRS Contribution and Operational Implementation[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1., 2023.
35 HELLMERS H, MODIRI S, BACHMANN S, et al. Combined IVS contribution to the ITRF2020[M]// International association of geodesy symposia. Cham: Springer International Publishing, 2022: 3-13.
36 IVS. IVS-AC_ITRF2020[EB/OL]. (2023-2-1)[2023-11-08]..
37 BEHREND D, THOMAS C, GIPSON J, et al. On the organization of CONT17[J]. Journal of Geodesy, 2020, 94(10): 1-13.
38 RIES J C, DESAI S. Update to the conventional model for rotational deformation[C]// AGU Fall Meeting Abstracts. 2017: G14 A-07.
39 DESAI S D, SIBOIS A E. Evaluating predicted diurnal and semidiurnal tidal variations in polar motion with GPS-based observations[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 5 237-5 256.
40 GIRDIUK A, SCHINDELEGGER M, KRÁSNÁ H, et al. Assessing recent high-frequency earth rotation models with very long baseline interferometry[C]. Alicante, Spain: Journées 2017 des Systèmes de Référence et de la Rotation Terrestre, 2017.
41 ITRF. IVS_contribution-to-ITRF2020[EB/OL].(2023-02-01)[2023-11-08]. .
42 PAUL Rebischung. IGS contribution to ITRF2020[EB/OL]. (2023-02-01)[2023-11-08]., 2023-2-1.
43 REBISCHUNG P, ALTAMIMI Z, RAY J, et al. The IGS contribution to ITRF2014[J]. Journal of Geodesy, 2016, 90(7): 611-630.
44 ITRF. IDS-contribution-to-ITRF2020_v1[EB/OL]. (2023-02-01)[2023-11-08]. .
45 MOREAUX G, LEMOINE F G, CAPDEVILLE H, et al. The international DORIS service contribution to ITRF2020[J]. Advances in Space Research, 2023, 72(1): 65-91.
46 DOBSLAW H, BERGMANN-WOLF I, DILL R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06[J]. Geophysical Journal International, 2017, 211(1): 263-269.
47 ŠTĚPÁNEK P, FILLER V. DORIS Alcatel ground antenna: evaluation of the phase center variation models[J]. Advances in Space Research, 2023, 72(1): 23-36.
48 GLASER S, KÖNIG R, NEUMAYER K H, et al. On the impact of local ties on the datum realization of global terrestrial reference frames[J]. Journal of Geodesy, 2019, 93(5): 655-667.
49 ITRF. ITRF2020-Tie-Residuals.dat[EB/OL]. (2023-02-01)[2023-11-08]. .
50 ITRF. ITRF2014-Tie-Residuals.dat[EB/OL]. (2023-02-01)[2023-11-08]. .
51 XU Qifeng. The precision of modern GPS relative positioning[J]. Bulletin of Surveying and Mapping, 2003(5): 6-8.
许其凤. 现代GPS相对定位的精度[J]. 测绘通报, 2003(5): 6-8.
52 DONG D, FANG P, BOCK Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4). DOI:10.1029/2001JB000573 .
53 CHEN Q, DAM T V, SNEEUW N, et al. Singular spectrum analysis for modeling seasonal signals from GPS time series[J]. Journal of Geodynamics, 2013, 72: 25-35.
54 ZHOU Jiangcun, SUN Heping. Loading effect on high precision GPS observation[J]. Advance in Earth Science, 2007, 22(10): 1 036-1 040.
周江存, 孙和平. 高精度GPS观测中的负荷效应[J]. 地球科学进展, 2007, 22(10): 1 036-1 040.
55 JIA Lulu, XIANG Longwei, WANG Hansheng. Effects of crustal structure for estimation of vertical load deformation on the solid Earth using GRACE in China Mainland[J]. Advances in Earth Science, 2014, 29(7): 828-834.
贾路路, 相龙伟, 汪汉胜. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响[J]. 地球科学进展, 2014, 29(7): 828-834.
56 GRUSZCZYNSKA M. Investigation of time_changeable seasonal components in the GPS height time series: a case study for Central Europe[J]. Acta Geodynamica et Geomaterialia, 2016: 281-289. DOI:10.13168/AGG.2016.0010 .
[1] 陈俊勇. 空间大地测量技术对确定地面坐标框架、地形变与地球重力场的贡献和进展——出席2005年国际大地测量协会(IAG) 科学大会札记[J]. 地球科学进展, 2005, 20(10): 1053-1058.
[2] 赖锡安,徐菊生,王庆廷,张国安. 空间大地测量测定板块运动新进展[J]. 地球科学进展, 2002, 17(4): 576-581.
阅读次数
全文


摘要