1 |
BOCK Y, MELGAR D. Physical applications of GPS geodesy: a review[J]. Reports on Progress in Physics, 2016, 79(10). DOI:10.1088/0034-4885/79/10/106801 .
|
2 |
CHENG Pengfei, WEN Hanjiang, LIU Huanling, et al. Research situation and future development of satellite geodesy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 48-54.
|
|
程鹏飞, 文汉江, 刘焕玲, 等. 卫星大地测量学的研究现状及发展趋势[J]. 武汉大学学报(信息科学版), 2019, 44(1): 48-54.
|
3 |
YAO Yibin, YANG Yuanxi, SUN Heping, et al. Geodesy discipline: progress and perspective[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1 243-1 251.
|
|
姚宜斌, 杨元喜, 孙和平, 等. 大地测量学科发展现状与趋势[J]. 测绘学报, 2020, 49(10): 1 243-1 251.
|
4 |
LARSON K M. GPS seismology[J]. Journal of Geodesy, 2009, 83(3): 227-233.
|
5 |
SHAN Xinjian, YIN Hao, LIU Xiaodong, et al. High-rate real-time GNSS seimology and early warning of earthquakes[J].Chinese Journal of Geophysics, 2019, 62(8): 3 043-3 052.
|
|
单新建, 尹昊, 刘晓东, 等.高频GNSS实时地震学与地震预警研究现状[J].地球物理学报, 2019, 62(8): 3 043-3 052.
|
6 |
ZHANG Qin, BAI Zhengwei, HUANG Guanwen, et al. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1 985-2 000.
|
|
张勤, 白正伟, 黄观文, 等. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1 985-2 000.
|
7 |
WANG Guoquan, BAO Yan. GNSS landslide monitoring aligned to regional reference frames[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2 107-2 116.
|
|
王国权, 鲍艳. 基于区域参考框架的GNSS滑坡监测[J]. 测绘学报, 2022, 51(10): 2 107-2 116.
|
8 |
DZURISIN D. Volcano geodesy: challenges and opportunities for the 21st century[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1 770): 1 547-1 566.
|
9 |
LARSON K M, CERVELLI P, LISOWSKI M, et al. Volcano monitoring using the global positioning system: filtering strategies[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B9): 19 453-19 464.
|
10 |
WHITE A M, GARDNER W P, BORSA A A, et al. A review of GNSS/GPS in hydrogeodesy: hydrologic loading applications and their implications for water resource research[J]. Water Resources Research, 2022, 58(7). DOI:10.1029/2022WR032078 .
|
11 |
ZHANG Kefei, LI Haobo, WANG Xiaoming, et al. Recent progresses and future prospectives of ground-based GNSS water vapor sounding[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 172-1 191.
|
|
张克非, 李浩博, 王晓明, 等. 地基GNSS大气水汽探测遥感研究进展和展望[J]. 测绘学报, 2022, 51(7): 1 172-1 191.
|
12 |
YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952.
|
|
姚宜斌, 赵庆志. GNSS对流层水汽监测研究进展与展望[J]. 测绘学报, 2022, 51(6): 935-952.
|
13 |
YAO Yibin, GAO Xin. Research progress and prospect of monitoring ionosphere by GNSS technique[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1 728-1 739.
|
|
姚宜斌, 高鑫. GNSS电离层监测研究进展与展望[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1 728-1 739.
|
14 |
BLEWITT G, ALTAMIMI Z, DAVIS J, et al. Geodetic observations and global reference frame contributions to understanding sea-level rise and variability[M]// Church J A, WOODWORTH P L, AARUP T, et al. Stanley wilson understanding sea-level rise and variability. 2010. DOI:10.1002/9781444323276.ch9 .
|
15 |
XU Tianhe, MU Dapeng, YAN Haoming, et al. The causes of contemporary sea level rise over recent two decades: progress and challenge[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 294-1 305.
|
|
徐天河, 穆大鹏, 闫昊明, 等. 近20年海平面变化成因研究进展及挑战[J]. 测绘学报, 2022, 51(7): 1 294-1 305.
|
16 |
PLAG H P, Pearlman M. Global geodetic observing system[M]. Berlin, Germany: Springer, 2009.
|
17 |
JIANG Weiping, LI Zhao, WEI Na, et al. Progress and thoughts on establishment of geodetic coordinate frame[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1 259-1 270.
|
|
姜卫平, 李昭, 魏娜, 等. 大地测量坐标框架建立的进展与思考[J]. 测绘学报, 2022, 51(7): 1 259-1 270.
|
18 |
SUN Fuping, JIA Yanfeng, ZHU Xinhui, et al. Advances in dynamic maintenance technology of mm-level terrestrial reference frame[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1 688-1 700.
|
|
孙付平, 贾彦锋, 朱新慧, 等. 毫米级地球参考框架动态维持技术研究进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1 688-1 700.
|
19 |
U. N. United Nations General Assembly. Sixty-Ninth Session, Agenda Item 9, Report of the Economic and Social Council, A/69 /L.53[EB/OL].2015,Geneva.(2023-02-01)[2023-11-08]. , 2023-2-1.
|
20 |
ALTAMIMI Z, SILLARD P, BOUCHER C. ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10). DOI:10.1029/2001JB000561 .
|
21 |
ALTAMIMI Z, COLLILIEUX X, LEGRAND J, et al. ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B9). DOI:10.1029/2007JB004949 .
|
22 |
ALTAMIMI Z, COLLILIEUX X, MÉTIVIER L. ITRF2008: an improved solution of the international terrestrial reference frame[J]. Journal of Geodesy, 2011, 85(8): 457-473.
|
23 |
ALTAMIMI Z, REBISCHUNG P, MÉTIVIER L, et al. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6 109-6 131.
|
24 |
ALTAMIMI Z, REBISCHUNG P, COLLILIEUX X, et al. ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions[J]. Journal of Geodesy, 2023, 97(5). DOI:10.1007/s00190-023-01738-w .
|
25 |
MING Feng, ZENG Anmin. Evaluatioii and analysis of the international terrestrial reference frame 2014[J]. Geomatic Science and Engineering, 2019(1): 12-21.
|
|
明锋, 曾安敏. 国际地球参考框架ITRF2014评析[J]. 测绘科学与工程, 2019(1): 12-21.
|
26 |
ALTAMIMI Z, PAUL Rebischung, XAVIER Collilieux, et al. ITRF2020: an overview of its features and results[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1.
|
27 |
LUCERI V, PIRRI M, RODRÍGUEZ J, et al. Systematic errors in SLR data and their impact on the ILRS products[J]. Journal of Geodesy, 2019, 93(11): 2 357-2 366.
|
28 |
APPLEBY G, RODRÍGUEZ J, ALTAMIMI Z. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993-2014[J]. Journal of Geodesy, 2016, 90(12): 1 371-1 388.
|
29 |
RODRÍGUEZ J, APPLEBY G, OTSUBO T. Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: impact on key parameters of the terrestrial reference frame[J]. Journal of Geodesy, 2019, 93(12): 2 553-2 568.
|
30 |
EXERTIER P, BELLI A, LEMOINE J M. Time biases in laser ranging observations: a concerning issue of Space Geodesy[J]. Advances in Space Research, 2017, 60(5): 948-968.
|
31 |
ILRS. ILRS_Data_Handling_File.snx[EB/OL]. (2023-02-01)[2023-11-08]..
|
32 |
DAVIES P, BLEWITT G. Methodology for global geodetic time series estimation: a new tool for geodynamics[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B5): 11 083-11 100.
|
33 |
PAVLIS E, LUCERI V. The ILRS contribution to ITRF2020[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1.
|
34 |
PAVLIS E, LUCERI V, BASONI A, et al. ITRF2020: the ILRS Contribution and Operational Implementation[EB/OL]. (2023-02-01)[2023-11-08]. , 2023-2-1., 2023.
|
35 |
HELLMERS H, MODIRI S, BACHMANN S, et al. Combined IVS contribution to the ITRF2020[M]// International association of geodesy symposia. Cham: Springer International Publishing, 2022: 3-13.
|
36 |
IVS. IVS-AC_ITRF2020[EB/OL]. (2023-2-1)[2023-11-08]..
|
37 |
BEHREND D, THOMAS C, GIPSON J, et al. On the organization of CONT17[J]. Journal of Geodesy, 2020, 94(10): 1-13.
|
38 |
RIES J C, DESAI S. Update to the conventional model for rotational deformation[C]// AGU Fall Meeting Abstracts. 2017: G14 A-07.
|
39 |
DESAI S D, SIBOIS A E. Evaluating predicted diurnal and semidiurnal tidal variations in polar motion with GPS-based observations[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 5 237-5 256.
|
40 |
GIRDIUK A, SCHINDELEGGER M, KRÁSNÁ H, et al. Assessing recent high-frequency earth rotation models with very long baseline interferometry[C]. Alicante, Spain: Journées 2017 des Systèmes de Référence et de la Rotation Terrestre, 2017.
|
41 |
ITRF. IVS_contribution-to-ITRF2020[EB/OL].(2023-02-01)[2023-11-08]. .
|
42 |
PAUL Rebischung. IGS contribution to ITRF2020[EB/OL]. (2023-02-01)[2023-11-08]., 2023-2-1.
|
43 |
REBISCHUNG P, ALTAMIMI Z, RAY J, et al. The IGS contribution to ITRF2014[J]. Journal of Geodesy, 2016, 90(7): 611-630.
|
44 |
ITRF. IDS-contribution-to-ITRF2020_v1[EB/OL]. (2023-02-01)[2023-11-08]. .
|
45 |
MOREAUX G, LEMOINE F G, CAPDEVILLE H, et al. The international DORIS service contribution to ITRF2020[J]. Advances in Space Research, 2023, 72(1): 65-91.
|
46 |
DOBSLAW H, BERGMANN-WOLF I, DILL R, et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06[J]. Geophysical Journal International, 2017, 211(1): 263-269.
|
47 |
ŠTĚPÁNEK P, FILLER V. DORIS Alcatel ground antenna: evaluation of the phase center variation models[J]. Advances in Space Research, 2023, 72(1): 23-36.
|
48 |
GLASER S, KÖNIG R, NEUMAYER K H, et al. On the impact of local ties on the datum realization of global terrestrial reference frames[J]. Journal of Geodesy, 2019, 93(5): 655-667.
|
49 |
ITRF. ITRF2020-Tie-Residuals.dat[EB/OL]. (2023-02-01)[2023-11-08]. .
|
50 |
ITRF. ITRF2014-Tie-Residuals.dat[EB/OL]. (2023-02-01)[2023-11-08]. .
|
51 |
XU Qifeng. The precision of modern GPS relative positioning[J]. Bulletin of Surveying and Mapping, 2003(5): 6-8.
|
|
许其凤. 现代GPS相对定位的精度[J]. 测绘通报, 2003(5): 6-8.
|
52 |
DONG D, FANG P, BOCK Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4). DOI:10.1029/2001JB000573 .
|
53 |
CHEN Q, DAM T V, SNEEUW N, et al. Singular spectrum analysis for modeling seasonal signals from GPS time series[J]. Journal of Geodynamics, 2013, 72: 25-35.
|
54 |
ZHOU Jiangcun, SUN Heping. Loading effect on high precision GPS observation[J]. Advance in Earth Science, 2007, 22(10): 1 036-1 040.
|
|
周江存, 孙和平. 高精度GPS观测中的负荷效应[J]. 地球科学进展, 2007, 22(10): 1 036-1 040.
|
55 |
JIA Lulu, XIANG Longwei, WANG Hansheng. Effects of crustal structure for estimation of vertical load deformation on the solid Earth using GRACE in China Mainland[J]. Advances in Earth Science, 2014, 29(7): 828-834.
|
|
贾路路, 相龙伟, 汪汉胜. 地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响[J]. 地球科学进展, 2014, 29(7): 828-834.
|
56 |
GRUSZCZYNSKA M. Investigation of time_changeable seasonal components in the GPS height time series: a case study for Central Europe[J]. Acta Geodynamica et Geomaterialia, 2016: 281-289. DOI:10.13168/AGG.2016.0010 .
|