地球科学进展 ›› 2023, Vol. 38 ›› Issue (1): 9 -16. doi: 10.11867/j.issn.1001-8166.2022.101

综述与评述 上一篇    下一篇

民航飞行 CO2 排放及其对气候变化影响研究综述
李耀辉 1( ), 于敬磊 2, 谷娟 1, 桑文军 1, 靳晓琳 1, 黄玉 1   
  1. 1.中国民用航空飞行学院航空气象学院,四川 广汉 618307
    2.中国民航科学技术研究院 民航发展规划研究院,北京 100028
  • 收稿日期:2022-09-27 修回日期:2022-11-29 出版日期:2023-01-10
  • 基金资助:
    国家重点研发计划项目“高海拔极端复杂环境下机场智能化运行技术”(2021YFB2601701);中国民用航空飞行学院科研项目“航空气象多源数据共享平台及高分辨数值模式系统建设”(09005001)

Review of Research on CO 2 Emissions from Civil Aviation Flights and Its Impact on Climate Change

Yaohui LI 1( ), Jinglei YU 2, Juan GU 1, Wenjun SANG 1, Xiaolin JIN 1, Yu HUANG 1   

  1. 1.College of Aviation Meteorology, Civil Aviation Flight University of China, Guanghan Sichuan 618307, China
    2.Civil Aviation Development Planning Institute, China Academy of Civil Aviation Science and Technology, Beijing 100028, China
  • Received:2022-09-27 Revised:2022-11-29 Online:2023-01-10 Published:2023-02-02
  • About author:LI Yaohui (1967), male, Lanzhou City, Gansu Province, Professor. Research areas include atmospheric physics and atmospheric environment. E-mail: li-yaohui@163.com
  • Supported by:
    the National Key Research and Development Program of China “Intelligent operation technology of airport in high altitude extremely complex environment”(2021YFB2601701);Scientific Research Project of Civil Aviation Flight University of China “Construction of aviation meteorological multi-source data sharing platform and high resolution numerical model system”(09005001)

碳排放是国际社会共同关注的热点,从碳减排到碳中和,已成为全球共同的目标。CO2是航空飞行排放中最丰富的气体,尽管在人类活动碳排放总量中占比不大,但其影响会成数倍增加,因此,全球性应对气候变化的共同行动使得航空运输业必须重视CO2排放。随着我国民航业快速发展,航空燃油消耗所产生的碳排放也在不断增长,这就给我国实现碳减排目标徒增压力,所以,民航飞行碳排放的气候变化效应问题就显得十分重要,且具有很强的科学性。国内外特别是国际上就这一课题进行了较多研究,形成了较丰富的成果。通过对相关主要成果的深入研阅和凝练,从碳排放测算、碳排放对气候变化的影响等方面评述了目前较为主流的航空飞行碳排放及其气候变化效应的研究进展和工作动态,并提出了未来的探索方向。通过对航空飞行排放影响的另一个角度的梳理总结,有助于未来更加全面地认识气候变化问题,以期为相关部门学者和科技工作者开展我国科学全面的减排对策研究提供参考。

Carbon emissions are major a focus of the international community, and carbon reduction and neutralization have become common global goals. CO2 is the most abundant gas emitted during aviation flight. Although it accounts for a small proportion of the total carbon emissions from human activities, its impact will increase considerably. The joint action of the global response to climate change has caused the aviation industry to pay attention to its CO2 emissions. With the rapid development of China’s civil aviation industry, the carbon emissions generated by aviation fuel consumption are also growing, which will increase the pressure on China to achieve its carbon emission reduction goal. Therefore, the effect of carbon emissions from civil aviation on climate change is an important topic for scientific research. Many studies have been conducted on this subject, especially internationally, with significant achievements. Here, we review the current mainstream research progress and work trends of aviation carbon emissions and their effects on climate change from the perspective of carbon emission measurement and the impact of carbon emissions on climate change, and propose future exploration. This review summarizes the impact of aviation emissions from a different perspective, which will help to gain a more comprehensive understanding of climate change in the future and provide a reference for scholars and scientists from relevant departments to conduct scientific and comprehensive research on emission reduction measures in China to more effectively cope with climate change.

中图分类号: 

表1 大气 3层解析模型 4推力下气体浓度及排放指数表
Table 1 Gas concentration and emission index under four thrusts of three layer analytical model
表2 较为成熟的碳排放计算方法
Table 2 Mature calculation methods of civil aviation carbon emissions
表3 不同污染物的排放量与航程关系
Table 3 The relations between pollution emissions and cruise range
1 ZHANG Zhimin. Empirical study on peak carbon mission in air transport industry [D]. Tianjin: Civil Aviation University of China, 2015.
张智敏. 我国航空运输业碳排放峰值实证研究[D]. 天津: 中国民航大学, 2015.
2 YUAN Zhiyi, LI Zhenyu, KANG Liping, et al. Review of studies on low-carbon emission measures and pathways in the Chinese transportation sector[J]. Progress in Climate Change Research, 2021,17(1): 27-35.
袁志逸,李振宇,康利平,等. 中国交通部门低碳排放措施和路径研究综述 [J]. 气候变化研究进展, 2021, 17(1): 27-35.
3 LEE D S, FAHEY D, FORSTER P M, et al. Aviation and global climate change in the 21st century[J]. Atmospheric Environment, 2009, 43: 3 520-3 537.
4 LEE D S, PITARI G, GREWE V, et al. Transport impacts on atmosphere and climate: aviation[J]. Atmospheric Environment, 2010, 44: 4 678-4 734.
5 LEE D S, FAHEY D W, SKOWRON A, et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018[J]. Atmospheric Environment, 2021,244. DOI:10.1016/j.atmosenv.2020.117834 .
6 DIEZ D M, DOMINICI F, ZARUBIAK D, et al. Statistical approaches for identifying air pollutant mixtures associated with aircraft departures at Los Angeles international airport[J]. Environmental Science & Technology, 2012, 46(15):8 229-8 235.
7 HUDDA N, GOULD T, HARTIN K, et al. Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind[J]. Environmental Science & Technology, 2014, 48(12). DOI: 10.1021/es5001566 .
8 SONG S K, SHON Z H. Emissions of greenhouse gases and air pollutants from commercial aircraft at international airportsin Korea[J]. Atmospheric Environment, 2012, 61. DOI: 10.1016/j.atmosenv.2012.07.035 .
9 SIMONETTI I, MALTAGLIATI S, MANFRIDA G. Air quality impact of a middle size airport within an urban context through EDMS simulation[J]. Transportation Research Part D: Transport & Environment, 2015, 40:144-154.
10 PENN S L, ARUNACHALAM S, TRIPODIS Y, et al. A comparison between monitoring and dispersion modeling approaches to assess the impact of aviation on concentrations of black carbon and nitrogen oxides at Los Angeles International Airport[J]. Science of the Total Environment, 2015, 527/528: 47-55.
11 ALLAIRE D, NOEL G, WILLCOX K, et al. Uncertainty quantification of an aviation environmental toolsuite [J]. Reliability Engineering & Systems Safety, 2014, 126(22):14-24.
12 BECKER K, NAM T, KIRBY M, et al. A Process for future aviation environmental impacts: a surrogate fleet analysis approach for next gen[C]// AIAA aviation technology, integration, and operations conference, 2013:74-86.
13 GENG Hong, JIA Haijuan, CHEN Jingjie. Evaluation method of carbon emission reduction efficiency of airlines based on DEA[J]. Environmental Engineering,2014,32(6):144-147.
14 ZHANG Xiuxiu. Evaluation of efficiency of airline carbon emissions based on DEA [D]. Dalian: Dalian Maritime University, 2014.
张秀秀. 基于DEA的航空公司碳排放效率评价研究[D]. 大连: 大连海事大学, 2014.
15 GONG Yanfeng, FAN Huanli, LIU Dan. Research on the transportation efficiency of chinese airlines under carbon emission constraints and technological heterogeneity[J]. Journal of Wuhan University of Technology (Information and Management Engineering Edition), 2018,40(3):289-294,299.
巩彦峰,范换利,刘丹.碳排放约束和技术异质下中国航空公司运输效率研究[J].武汉理工大学学报(信息与管理工程版),2018,40(3):289-294,299.
16 SHI Jie. Study on Carbon emission efficiency of China air transport industry—is based on the unexpected output SBM-DEA model [J]. Enterprise Economy, 2015(6): 125-129.
史洁. 中国航空运输行业碳排放效率研究——基于非期望产出SBM-DEA模型[J]. 企业经济, 2015(6):125-129.
17 KONG Lingqian. Calculation of aviation carbon emissions and analysis of influencing factors[D]. Dalian:Dalian Maritime University, 2017.
孔令乾. 航空碳排放测算及影响因素分析[D].大连:大连海事大学, 2017.
18 YAO Shixing. Empirical analysis of the factors affecting the carbon emissions of Chinese airlines [D]. Tianjin: Civil Aviation University of China, 2014.
姚石兴. 我国航空公司碳排放影响因素的实证分析[D]. 天津: 中国民航大学, 2014.
19 DONG Jiankang, ZONG Miao, CHEN Jingjie. A carbon emission prediction method for civil aviation industry based on STIRPAT model[J]. Environmental Engineering,2014,32(7):165-169.
董健康,宗苗,陈静杰.一种基于STIRPAT模型的民航业碳排放预测方法[J].环境工程,2014,32(7):165-169.
20 LIU Heng. The effect of carbon tax collection based on CGE Model on Chinese civil aviation industry [J]. Management observation, 2015(28): 17-32.
刘恒. 基于CGE模型的碳税征收对中国民航业的影响研究[J].管理观察, 2015(28):17-32.
21 XU Yaxi, HE Xing. Analysis of carbon asset management of Chinese civil aviation under low-carbon background [J]. China Economic and Trade Guide, 2012(6): 33-34.
许雅玺,何行.低碳背景下中国民航碳资产管理探析[J].中国经贸导刊,2012(6):33-34.
22 WANG Wei, GUO Rui. Research on aircraft carbon emission diffusion model and carbon reduction effect analysis [J]. Environmental Engineering, 2016,34(8): 174-177.
王维, 郭瑞. 航空器碳排放扩散模型研究及减碳效果分析[J]. 环境工程, 2016, 34(8):174-177.
23 LIU Fei, HAN Xiaolan, WEI Zhiqiang, et al. Aircraft carbon emission estimation method based on radar recording data[J]. Journal of Safety and Environment, 2019, 19(5): 1 761-1 766.
刘菲, 韩孝兰, 魏志强,等. 基于雷达记录数据的飞机碳排放估算方法[J]. 安全与环境学报, 2019, 19(5): 1 761-1 766.
24 ZHU Jialin, HU Rong, ZHANG Junfeng, et al. Research on airport carbon emission measurement and time evolution characteristics[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2019,43(1): 102-107.
朱佳琳, 胡荣, 张军锋, 等. 机场碳排放测算与时间演化特征研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(1): 102-107.
25 KALIVODA M T. Methodologies for estimating emissions from air traffic—future emissions [Z]. Perchtoldsdorf, 1997.
26 SCHULTE P, SCHLAGER H, ZIEREIS H, et al. NO x emission indices of subsonic long-range jet aircraft at cruise altitude: in situ measurementa and predictions[J]. Journal of Geophysical Research, 1997, 102(17):431-442.
27 GRAVER B M, FREY H C. Estimation of air carrier emissions at raleigh-durham international airport,department of civil, construction, and environmental engineering[D]. NC State: North Carolina State University,2009.
28 ZHU Xiulian, CHEN Fan, CUI Qing, et al. Experience and enlightenment of regional air pollution control in foreign airports[J]. Environmental Impact Assessment, 2019,41(5): 33-35.
祝秀莲,陈帆,崔青,等. 国外机场区域大气污染控制经验启示[J]. 环境影响评价,2019,41(5):33-35.
29 ZAPOROZHETS O, SYNYLO K. Improvements on aircraft engine emission and emission inventory asesessment inside the airport area[J]. Energy, 2017, 140(2): 1 350-1 357.
30 WINTHER M, KOUSGAARD U, ELLERMANN T, et al. Emissions of NO X, particle mass and particle numbers from aircraft main engines, APU’s and handling equipment at Copenhagen Airport[J]. Atmospheric Environment, 2015, 100: 218-229.
31 POSTORINO M N, MANTECCHINI L. A transport carbon footprint methodology to assess airport carbon emissions[J]. Journal of Air Transport Management, 2014. DOI:10.1016/j.jairtraman.2014.03.001 .
32 DEFRA. 2008 Guidelines to Defra’s GHG conversion factors: methodology paper for transport emission factors[Z]. Department of Energy & Climate Change, 2008.
33 HÖHNE N, ELZEN M D, ESCALANTE D. Regional GHG reduction targets based on effort sharing:a comparison of studies[J]. Climate Policy, 2014,14(1):122-147.
34 WU C L, SONG X Y, WANG T. Core dimensions of the construction safety climate for a standardized safety-climate measurement[J]. Journal of Construction Engineering and Management, 2015, 141(8). DOI:10.1061/(ASCE)CO.1943-7862.0000996 .
35 HERMWILLE L. Offsetting for international aviation: the state of play of market-based measures under ICAO[Z]. Wuppertal Institute for Climate, Environment and Energy, 2016.
36 XIA Qing. Impact assessment of aircraft engine emission on airport atmospheric environment [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
夏卿.飞机发动机排放对机场大气环境影响评估研究[D]. 南京:南京航空航天大学, 2009.
37 SONG Hanbing, HAN Xiaolan, CAO Ge, et al. Estimation method of aircraft engine emissions based on flight path data [J]. Journal of Safety and Environment, 2020, 20(4): 1 488-1 493.
宋寒冰,韩孝兰,曹格,等. 基于飞行航迹数据的飞机发动机排放量估算方法[J]. 安全与环境学报,2020,20(4):1 488-1 493.
38 XIA Qing, ZUO Hongfu, YANG Junli. Evaluation of LTO cycle emissions from aircraft in China’s Civil Aviation Airports [J]. Acta Scientiae Circumstantiae, 2008, 28(7):1 469-1 474.
夏卿, 左洪福, 杨军利. 中国民航机场飞机起飞着陆(LTO)循环排放量估算[J]. 环境科学学报, 2008, 28(7):1 469-1 474.
39 WANG Ruining, HUANG Cheng, REN Hongjuan, et al. Air pollutant emission inventory from LTO cycles of aircraft in civil aviation airports in the Yangtze River Delta Region,China [J]. Journal of Environmental Science, 2018,38(11): 4 472-4 479.
王瑞宁,黄成,任洪娟,等. 长三角地区民航飞机起飞着陆(LTO)循环大气污染物排放清单[J].环境科学学报, 2018, 38(11):4 472-4 479.
40 WEI Zhiqiang, DIAO Huazhi, HAN Bo. Study on pollutant emission calculation of civil aircraft in cruise phase[J]. Science, Technology and Engineering,2014,14(19):122-127.
魏志强,刁华智,韩博. 民用飞机巡航阶段污染物排放量计算研究[J]. 科学技术与工程,2014,14(19):122-127.
41 WEI Zhiqiang, ZHANG Wenxiu, HAN Bo. Optimization method of aircraft cruise performance parameters considering aircraft emissions [J]. Journal of Aeronautics,2016,37(11):3 485-3 493.
魏志强,张文秀,韩博. 考虑飞机排放因素的飞机巡航性能参数优化方法[J]. 航空学报,2016,37(11):3 485-3 493.
42 HU Rong, FENG Huilin, LIU Bowen, et al. Effect and mechanism of aircraft pollutant reduction in point aggregation system[J]. Transportation Systems Engineering and Information Technology, 2021, 21(5):165-173.
胡荣, 冯慧琳, 刘博文, 等. 点汇聚系统的航空器污染物减排效应与机理[J]. 交通运输系统工程与信息, 2021, 21(5):165-173.
43 SUN Jianzhong, ZUO Hongfu, LIU Pengpeng, et al. Estimation method of aero-engine pollutant emission [J]. Journal of Transportation Engineering, 2012 (2): 53-61.
孙见忠, 左洪福, 刘鹏鹏, 等. 航空发动机污染物排放量估算方法[J]. 交通运输工程学报, 2012(2): 53-61.
44 DAI Ping, WANG Fengyun. A review of research on the impact of aviation activities on global climate [J]. Air Traffic Management, 2011(9):15-16.
戴平, 王峰云. 航空活动对全球气候影响研究综述[J]. 空中交通管理, 2011(9): 15-16.
45 COSTAS V, VLADIMIR K, FERDENANT M, et al. On the effects of aviation on carbon-methane cycles and climate change during the period 2015-2100[J]. Atmospheric Pollution Research, 2021, 12(1): 184-194.
46 LARSSON J, KAMB A, NASSEN J, et al. Measuring greenhouse gas emissions from international air travel of a country’s residents methodological development and application for Sweden[J]. Environmental Impact Assessment Review, 2018, 72: 137-144.
47 GREWE V, GANGOLI R A, GRÖNSTEDT T, et al. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-24091-y .
[1] 韩瑞玲. 基于空域资源时空优化配置的航空碳减排研究[J]. 地球科学进展, 2023, 38(3): 309-319.
[2] 陈少鹏, 段跃芳. 中国农业碳效应研究的现状、热点与趋势[J]. 地球科学进展, 2023, 38(1): 86-98.
[3] 韩瑞玲,路紫,姚海芳. 航空碳排放环境损害评估方法的动态化转换、应用与比较研究[J]. 地球科学进展, 2019, 34(7): 688-696.
[4] 赵燕慧, 路紫. 航线网络碳排放模型及外部性要素分析[J]. 地球科学进展, 2018, 33(1): 103-111.
[5] 杨占红, 罗宏, 薛婕, 张保留. 中印两国碳排放形势及目标比较研究[J]. 地球科学进展, 2016, 31(7): 764-773.
[6] 李平星,曹有挥. 产业转移背景下区域工业碳排放时空格局演变——以泛长三角为例[J]. 地球科学进展, 2013, 28(8): 939-947.
[7] 王勤花, 张志强, 曲建升. 家庭生活碳排放研究进展分析[J]. 地球科学进展, 2013, 28(12): 1305-1312.
[8] 张志强,曾静静,曲建升. 世界主要国家碳排放强度历史变化趋势及相关关系研究[J]. 地球科学进展, 2011, 26(8): 859-869.
[9] 于宇,宋金明,李学刚,袁华茂,李宁,段丽琴. 长江口海域表层沉积物中磷的形态分布及环境意义[J]. 地球科学进展, 2011, 26(8): 870-880.
[10] 樊杰,李平星. 基于城市化的中国能源消费前景分析及对碳排放的相关思考[J]. 地球科学进展, 2011, 26(1): 57-65.
[11] 樊杰,李平星,梁育填. 个人终端消费导向的碳足迹研究框架——支撑我国环境外交的碳排放研究新思路[J]. 地球科学进展, 2010, 25(1): 61-68.
[12] 彭琴,董云社,齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883.
[13] AbhineetyGoel,Dr.R.B.Singh. 以减少碳损失为目标的印度大城市可持续林业:以德里地区为例[J]. 地球科学进展, 2006, 21(2): 144-150.
阅读次数
全文


摘要