地球科学进展 ›› 2023, Vol. 38 ›› Issue (1): 17 -31. doi: 10.11867/j.issn.1001-8166.2022.076

综述与评述 上一篇    下一篇

中中新世气候转型期太平洋深层环流变化与碳循环
何志( ), 田军( )   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2022-07-27 修回日期:2022-09-19 出版日期:2023-01-10
  • 通讯作者: 田军 E-mail:2031689@tongji.edu.cn;tianjun@tongji.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“探索晚新生代太平洋中深层经向翻转流与气候演变冰期旋回的关系”(42030403)

Pacific Ocean Deep Circulation and Global Carbon Cycle During the Middle Miocene Climate Transition

Zhi HE( ), Jun TIAN( )   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2022-07-27 Revised:2022-09-19 Online:2023-01-10 Published:2023-02-02
  • Contact: Jun TIAN E-mail:2031689@tongji.edu.cn;tianjun@tongji.edu.cn
  • About author:HE Zhi (1998-), male, Huanggang City, Hubei Province, Master student. Research areas include paleoceanography and paleoclimatology. E-mail: 2031689@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Probing the relationship of the Pacific Meridional overturning circulation with the glacial/interglacial variability of climate change during the late Cenozoic”(42030403)

中中新世气候转型(14.2~13.9 Ma)是全球联动的一个快速气候变化事件,冰盖、洋流和碳循环均发生显著变化,厘清其驱动机制对理解新生代全球变冷有重要意义。对此已有研究提出2种假说:一种重视洋流重组,另一种则突出碳循环的重要性,但二者都无法完美解释中中新世气候转型的种种现象。实际上,冰盖—洋流—碳循环三者形成耦合的系统,共同造成地球气候变化。综合已有的地质记录,两类机制均导致深部大洋碳储库增大,大气pCO2降低,并进一步促进气候变冷和冰盖增长,表明不同子系统之间的耦合作用引起气候突变。相较于碳循环过程和冰盖变化,学术界对中中新世气候转型期间洋流变化的了解较少,特别是南大洋和太平洋深部水团。未来的研究应聚焦于深部太平洋的洋流变化,以便更全面地完善对中中新世气候转型的理解。

The Middle Miocene Climate Transition (MMCT, 14.2~13.9 Ma) was a global climate change event characterized by significant changes in ice sheets, ocean currents, and carbon cycles. Clarifying the driving mechanism is important for understanding the global cooling during the Cenozoic. Two hypotheses have been proposed to explain the mechanism of MMCT, one emphasizing the reorganization of ocean circulation and the other highlighting the importance of the carbon cycle. However, neither hypothesis can explain the various phenomena of the MMCT. The ice sheets, ocean circulation, and carbon cycle are crucial in the mechanism of the MMCT, and form a coupled system that causes climate change on Earth. With the help of these three elements and combined with geological records, these two mechanisms lead to an increase in deep ocean carbon storage and a decrease in atmospheric pCO2, which further promotes climate cooling and ice sheet growth. In comparison with that on carbon cycle processes and ice sheet changes, existing research regarding ocean circulation, particularly in the deep Southern Ocean and Pacific Ocean, during the MMCT period is insufficient. Consequently, future research should focus on the changes in ocean circulation in these key regions to improve our understanding of the forcing mechanism of MMCT.

中图分类号: 

图1 中中新世气候转型期间全球环境变化的地化记录
(a)全球底栖有孔虫δ 13C记录 2 ,浅灰色为原始数据,浅蓝色为10点局部加权回归散点平滑(LOESS Smooth)数据;(b)全球底栖有孔虫δ 18O 2 ,浅灰色为原始数据,浅绿色为10点局部加权回归散点平滑数据;(c)利用浮游有孔虫钙质壳体硼同位素δ 11B(圆形图标) 17 - 19 、深海沉积物不饱和烯酮碳稳定同位素δ 13C(菱形图标) 20 - 21 重建的大气 pCO 2;(d)Δ 47恢复的ODP747站BWT 23 ,利用底栖有孔虫壳体的Mg/Ca值恢复的ODP806 BWT 24 ,黑色误差线据代表95%置信区间;(e)利用浮游有孔虫钙质壳体Mg/Ca值 4 和Δ 47 25 恢复的ODP1171站SST,黑色误差线据代表95%置信区间;(c)中曲线为4次多项式拟合趋势;浅黄色柱为中中新世气候转型时间范围
Fig. 1 Geochemical records of global environmental change during Middle Miocene Climate Transition
(a) Global benthic foraminifera δ 13C records 2 , light gray is the original data, light blue is 10 points of locally weighted scatterplot smoothing (LOESS Smooth) data; (b) Global benthic foraminifera δ 18O records 2 , light gray is the original data, light green is 10 points of locally weighted scatterplot smoothing (LOESS Smooth) data; (c) Atmospheric pCO 2 reconstructed by the boron isotope of the calcium shell of planktonic foraminifera δ 11B 17 - 19 (circular icon) and the unsaturated alkenone carbon stable isotope of deep-sea sediments δ 13C 20 - 21 (diamond icon); (d) The bottom water temperature of the ODP747 23 station recovered by Δ 47 and the bottom water temperature of the ODP806 24 station recovered by the Mg/Ca ratio of the benthic foraminifera calcium shell and. The black error bars represent a 95% confidence interval; (e) The sea surface temperature of the ODP1171 station recovered by the Mg/Ca ratio of the benthic foraminifera calcium shell 4 and Δ47 25 , the black error bars represent a 95% confidence interval; The curve in (c) is a quadratic polynomial fitting trend. The light yellow column in the figure shows the time range of MMCT
图2 现代太平洋环流模式以及经向δ13CDIC 剖面(150°W
(a) 经向(150°W)太平洋海水δ 13C DIC剖面,带红点的数字代表本文在出现的站位;(b) 太平洋深层环流模式以及文章数据的站位分布,A到B代表(b)图δ 13C DIC剖面位置(150°W);数字与红点代表本文所用数据站位点,红色线条为LCDW,蓝色线条为UCDW,据参考文献[ 33 ]修改,(b)中带箭头的线条代表洋流流动方向,据参考文献[ 32 ]改绘。UCDW(Upper Circumpolar Deep Water):绕极上部深层水,LCDW(Lower Circumpolar Deep Water):绕极下部深层水,AABW(Antarctic Bottom Water):南极底层水,AAIW(Antarctic Intermediate Water):南极中层水,NPDW(North Pacific Deep Water):北太平洋深层水;数据来源于NOAA,由Ocean Data View软件绘制而成 34
Fig. 2 Modern Pacific circulation pattern and meridian δ13CDIC profile150°W
(a) Meridian sea water δ 13C DIC profile (150°W), the numbers and red dots represent the positions where they appear in this article; (b) The deep circulation pattern of the Pacific Ocean and the station distribution of the article data, A-B represent the position of figure (b) (δ 13C DIC profile, 150°W); The numbers and red dots represent the data station sites used in this article, the red lines represent LCDW, and the blue lines represent UCDW, modified after reference [ 33 ] and the lines with arrows in figure (b) represent the direction of the current flow. Redrawned according to the reference [ 32 ]. UCDW: Up Circumpolar Deep Water, LCDW: Lower Circumpolar Deep Water, AABW: Antarctic Bottom Water, AAIW: Antarctic Intermediate Water, NPDW: North Pacific Deep Water. The data is from NOAA, and the graph is drawn by Ocean Data View software 34
图3 中中新世气候转型期间多地化指标记录
(a)南海(ODP1146和ODP1148)底栖有孔虫δ 13C记录 7 - 8 ;(b)东太平洋(ODP1236、ODP1237)底栖有孔虫δ 13C记录 76 ;(c)东赤道太平洋IODP U1337站浮游有孔虫(红色)与底栖有孔虫(黑色)δ 13C记录 77 ;(d)南海(ODP1146和ODP1148)与东太平洋(ODP1236和ODP1237)站位底栖有孔虫δ 18O记录 7 76 ;(e)ODP1236站与ODP1237站底栖有孔虫δ 13C梯度Δδ 13C (1236-1237);(f)多站位鱼牙化石或沉积物碳酸盐组分ε Nd记录 28 76 78 - 79 ;(g)底栖有孔虫重建的[CO 3 2 - ]记录 80 ;(h)南大洋ODP1092站位浮游有孔虫δ 11B重建大气 pCO 2 19 ,浅色阴影为2σ置信区间;图中浅蓝色渐变表示东南极冰盖快速扩张的开始
Fig. 3 Multi-geochemical proxy record during the Miocene climate transition
(a) Benthic foraminifera δ 13C record of South China Sea (ODP1146 and ODP1148) 7 - 8 ; (b) Benthic foraminifera δ 13C record of Eastern Pacific(ODP1236 and ODP1237) 76 ; (c) East Equatorial Pacific IODP U1337 station planktonic foraminifera (red) and benthic foraminifera (black) δ 13C record 77 ; (d) Benthic foraminifera δ 18O record of South China Sea (ODP1146 and ODP1148) and Eastern Pacific (ODP1236 and ODP1237) 7 76 ; (e) Benthic foraminifera δ13C gradient Δδ13C(1236-1237) of ODP1236 and ODP1237 station;(f) Multi-station fish tooth fossil or sediment carbonate component εNd record 28 76 78 - 79 ; (g)[CO 3 2 - ] record reconstruct by Benthic foraminifera 80 ; (h) Atmospheric pCO2 reconstructed by the boron isotope of the calcium shell of planktonic foraminifera δ11B in Southern Ocean ODP1092 station 19 ; Light shading is a 2σ confidence interval; The light blue gradient in the figure indicates the beginning of rapid expansion of the East Antarctic Ice-sheet
图4 中中新世气候转型前后太平洋水体结构示意图(据参考文献[ 78 ]修改)
(a) MMCT之后太平洋水体结构剖面图;(b) MMCT之前太平洋水体结构剖面图;数字代表太平洋站位,圆圈和方块代表站位位置,箭头代表水体流动方向
Fig. 4 Schematic diagram of the structure of the Pacific ocean before and after the middle Miocene climate transitionmodified after reference 78 ])
(a) Schematic representing water mass structure in the Pacific Ocean after the middle Miocene climate transition; (b) Before the middle Miocene climate transition; The numbers in the figure represent the Pacific Station, the circles and squares represent the position of the Station, and the arrows represent the direction of water flow
1 ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
2 WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6 509): 1 383-1 387.
3 DECONTO R M, POLLARD D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 [J]. Nature, 2003, 421(6 920): 245-249.
4 SHEVENELL A E, KENNETT J P, LEA D W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion[J]. Science, 2004, 305(5 691): 1 766-1 770.
5 BARTOLI G, HÖNISCH B, ZEEBE R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26(4). DOI:10.1029/2010PA002055 .
6 O’DEA A, LESSIOS H A, COATES A G, et al. Formation of the isthmus of Panama[J]. Science Advances, 2016, 2(8).DOI: 10.1126/sciadv.1600883 .
7 TIAN J, SHEVENELL A, WANG P X, et al. Reorganization of Pacific Deep Waters linked to middle Miocene Antarctic cryosphere expansion: a perspective from the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284(3/4): 375-382.
8 HOLBOURN A, KUHNT W, SCHULZ M, et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion[J]. Nature, 2005, 438(7 067): 483-487.
9 HOLBOURN A, KUHNT W, SCHULZ M, et al. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 534-550.
10 LEVY R, HARWOOD D, FLORINDO F, et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3 453-3 458.
11 GASSON E, DECONTO R M, POLLARD D, et al. Dynamic Antarctic ice sheet during the early to mid-Miocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3 459-3 464.
12 MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5 752): 1 293-1 298.
13 LANGEBROEK P M, PAUL A, SCHULZ M. Simulating the sea level imprint on marine oxygen isotope records during the middle Miocene using an ice sheet-climate model[J]. Paleoceanography, 2010, 25(4). DOI:10.1029/2008PA001704 .
14 JOHN C M, KARNER G D, BROWNING E, et al. Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 455-467.
15 MA W T, TIAN J, LI Q Y, et al. Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: weathering and nutrient response to orbital change[J]. Geophysical Research Letters, 2011, 38(10). DOI:10.1029/2011GL047680 .
16 SOSDIAN S M, BABILA T L, GREENOP R, et al. Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey Event[J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-019-13792-0 .
17 FOSTER G L, LEAR C H, RAE J W B. The evolution of pCO2, ice volume and climate during the middle Miocene[J]. Earth and Planetary Science Letters, 2012, 341/342/343/344: 243-254.
18 GREENOP R, FOSTER G L, WILSON P A, et al. Middle Miocene climate instability associated with high-amplitude CO2 variability[J]. Paleoceanography, 2014, 29(9): 845-853.
19 RAITZSCH M, BIJMA J, BICKERT T, et al. Atmospheric carbon dioxide variations across the middle Miocene climate transition[J]. Climate of the Past, 2021, 17(2): 703-719.
20 BADGER M, LEAR C, PANCOST R, et al. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet[J]. Paleoceanography, 2013, 28: 42-53.
21 SUPER J R, THOMAS E, PAGANI M, et al. North Atlantic temperature and pCO2 coupling in the early-middle Miocene[J]. Geology, 2018, 46(6): 519-522.
22 KÜRSCHNER W M, KVACEK Z, DILCHER D L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 449-453.
23 LEUTERT T J, SEVASTI M, BERNASCONI S M, et al. Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition[J]. Climate of the Past, 2021, 17(5): 2 255-2 271.
24 LEAR C H, COXALL H K, FOSTER G L, et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry[J]. Paleoceanography, 2015, 30(11): 1 437-1 454.
25 LEUTERT T J, AUDERSET A, MARTÍNEZ-GARCÍA A, et al. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene[J]. Nature Geoscience, 2020, 13(9): 634-639.
26 DIESTER-HAASS L, BILLUPS K, GRÖCKE D R, et al. Mid-Miocene paleoproductivity in the Atlantic Ocean and implications for the global carbon cycle[J]. Paleoceanography, 2009, 24(1). DOI:10.1029/2008PA001605 .
27 VINCENT E, BERGER W H. Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis[M]//The carbon cycle and atmospheric CO2: natural variations archean to present. Washington, D.C.: American Geophysical Union, 2013: 455-468.
28 MA X L, TIAN J, MA W T, et al. Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion[J]. Earth and Planetary Science Letters, 2018, 484: 253-263.
29 KRAPP M, JUNGCLAUS J H. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model[J]. Climate of the Past, 2011, 7(4): 1 169-1 188.
30 STEINTHORSDOTTIR M, COXALL H K, de BOER A M, et al. The Miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4). DOI:10.1029/2020PA004037 .
31 MARSHALL J, SPEER K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3): 171-180.
32 TALLEY L. Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: schematics and transports[J]. Oceanography, 2013, 26(1): 80-97.
33 KAWABE M, FUJIO S. Pacific Ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389-403.
34 SCHLITZER R. Ocean data view[Z]. 2007.
35 WANG Jianing, MA Qiang, WANG Fan, et al. Advances in research of the deep western boundary current in the western Pacific Ocean[J]. Advances in Earth Science, 2022, 37(1): 26-36.
汪嘉宁, 马强, 王凡, 等. 西太平洋深层西边界流研究进展[J]. 地球科学进展, 2022, 37(1): 26-36.
36 WANG J N, WANG F, LU Y Y, et al. Pathways, volume transport, and seasonal variability of the lower deep limb of the Pacific meridional overturning circulation at the Yap-Mariana junction[J]. Frontiers in Marine Science, 2021, 8. DOI:10.3389/fmars.2021.672199 .
37 RUDNICK D L. Direct velocity measurements in the Samoan Passage[J]. Journal of Geophysical Research: Oceans, 1997, 102(C2): 3 293-3 302.
38 VOET G, GIRTON J B, ALFORD M H, et al. Pathways, volume transport, and mixing of abyssal water in the Samoan passage[J]. Journal of Physical Oceanography, 2015, 45(2): 562-588.
39 SIGMAN D M, BOYLE E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6 806): 859-869.
40 LEA D W, PAK D K, SPERO H J. Climate impact of late quaternary equatorial Pacific Sea surface temperature variations[J]. Science, 2000, 289(5 485): 1 719-1 724.
41 HERBERT T D, LAWRENCE K T, TZANOVA A, et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience, 2016, 9(11): 843-847.
42 LÜTHI D, le FLOCH M, BEREITER B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7 193): 379-382.
43 SIGMAN D M, HAIN M P, HAUG G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7 302): 47-55.
44 SIGMAN D M, FRIPIAT F, STUDER A S, et al. The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific[J]. Quaternary Science Reviews, 2021, 254. DOI:10.1016/j.quascirev.2020.106732 .
45 YU J M, ANDERSON R F, JIN Z D, et al. Responses of the deep ocean carbonate system to carbon reorganization during the last Glacial-Interglacial cycle[J]. Quaternary Science Reviews, 2013, 76: 39-52.
46 YU J, MENVIEL L, JIN Z D, et al. Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion[J]. Nature Geoscience, 2020, 13(9): 628-633.
47 MARZOCCHI A, JANSEN M F. Connecting Antarctic Sea ice to deep-ocean circulation in modern and glacial climate simulations[J]. Geophysical Research Letters, 2017, 44(12): 6 286-6 295.
48 MARZOCCHI A, JANSEN M F. Global cooling linked to increased glacial carbon storage via changes in Antarctic Sea ice[J]. Nature Geoscience, 2019, 12(12): 1 001-1 005.
49 HAIN M P, SIGMAN D M, HAUG G H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model[J]. Global Biogeochemical Cycles, 2010, 24(4). DOI:10.1029/2010GB003790 .
50 KARAS C, NÜRNBERG D, GUPTA A K, et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6): 434-438.
51 KNUDSON K P, RAVELO A C. North Pacific intermediate water circulation enhanced by the closure of the Bering Strait[J]. Paleoceanography, 2015, 30(10): 1 287-1 304.
52 CRAMER B S, TOGGWEILER J R, WRIGHT J D, et al. Ocean overturning since the late Cretaceous: inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 2009, 24(4). DOI:10.1029/2008PA001683 .
53 POORE H R, SAMWORTH R, WHITE N J, et al. Neogene overflow of northern component water at the Greenland-Scotland ridge[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6). DOI:10.1029/2005GC001085 .
54 ARSOUZE T, DUTAY J C, LACAN F, et al. Modeling the neodymium isotopic composition with a global ocean circulation model[J]. Chemical Geology, 2007, 239(1/2): 165-177.
55 ARSOUZE T, DUTAY J C, LACAN F, et al. Reconstructing the Nd oceanic cycle using a coupled dynamical-biogeochemical model[J]. Biogeosciences, 2009, 6(12): 2 829-2 846.
56 JEANDEL C, ARSOUZE T, LACAN F, et al. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins[J]. Chemical Geology, 2007, 239(1/2): 156-164.
57 LACAN F, JEANDEL C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface[J]. Earth and Planetary Science Letters, 2005, 232(3/4): 245-257.
58 LACAN F, TACHIKAWA K, JEANDEL C. Neodymium isotopic composition of the oceans: a compilation of seawater data[J]. Chemical Geology, 2012, 300/301: 177-184.
59 ROBINSON S, IVANOVIC R, van de FLIERDT T, et al. Global continental and marine detrital εNd: an updated compilation for use in understanding marine Nd cycling[J]. Chemical Geology, 2021, 567. DOI:10.1016/j.chemgeo.2021.120119 .
60 SCHER H D, MARTIN E E. Timing and climatic consequences of the opening of Drake Passage[J]. Science, 2006, 312(5 772): 428-430.
61 van de FLIERDT T, GRIFFITHS A M, LAMBELET M, et al. Neodymium in the oceans: a global database, a regional comparison and implications for palaeoceanographic research[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2 081). DOI:10.1098/rsta.2015.0293 .
62 TACHIKAWA K, ARSOUZE T, BAYON G, et al. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene Ocean revealed from seawater and archive data[J]. Chemical Geology, 2017, 457: 131-148.
63 GOLDSTEIN S L, HEMMING S R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 453-489.
64 LISIECKI L E. Atlantic overturning responses to obliquity and precession over the last 3 Myr[J]. Paleoceanography, 2014, 29(2): 71-86.
65 RAVELO A C, HILLAIRE-MARCEL C. Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography[M]//Developments in marine geology. Amsterdam: Elsevier, 2007: 735-764.
66 EILER J M. “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
67 TACHIKAWA K. Neodymium budget in the modern ocean and paleo-oceanographic implications[J]. Journal of Geophysical Research, 2003, 108(C8). DOI:10.1029/1999JC000285 .
68 HODELL D A, VENZ-CURTIS K A. Late Neogene history of deepwater ventilation in the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9). DOI:10.1029/2005GC001211 .
69 ABBOTT A N, HALEY B A, MCMANUS J. Bottoms up: sedimentary control of the deep North Pacific Ocean’s εNd signature[J]. Geology, 2015, 43(11): 1 035-1 038.
70 ABBOTT A N. A benthic flux from calcareous sediments results in non-conservative neodymium behavior during lateral transport: a study from the Tasman Sea[J]. Geology, 2019, 47(4): 363-366.
71 HALEY B A, DU J H, ABBOTT A N, et al. The impact of benthic processes on rare Earth element and neodymium isotope distributions in the oceans[J]. Frontiers in Marine Science, 2017, 4. DOI:10.3389/fmars.2017.00426 .
72 AMAKAWA H, SASAKI K, EBIHARA M. Nd isotopic composition in the central North Pacific[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4 705-4 719.
73 YU J M, ELDERFIELD H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 73-86.
74 LEA D W, MASHIOTTA T A, SPERO H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2 369-2 379.
75 HUNTINGTON K W, EILER J M, AFFEK H P, et al. Methods and limitations of ‘clumped’ CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(9): 1 318-1 329.
76 HOLBOURN A, KUHNT W, FRANK M, et al. Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover[J]. Earth and Planetary Science Letters, 2013, 365: 38-50.
77 TIAN J, MA X L, ZHOU J H, et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific-Atlantic comparison: high resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337[J]. Earth and Planetary Science Letters, 2018, 499: 185-196.
78 KENDER S, BOGUS K A, COBB T D, et al. Neodymium evidence for increased circumpolar deep water flow to the north Pacific during the middle Miocene climate transition[J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 672-682.
79 le HOUEDEC S, MEYNADIER L, ALLÈGRE C J. Seawater Nd isotope variation in the western Pacific Ocean since 80 Ma (ODP 807, Ontong Java Plateau)[J]. Marine Geology, 2016, 380: 138-147.
80 KENDER S, YU J M, PECK V L. Deep ocean carbonate ion increase during mid Miocene CO2 decline[J]. Scientific Reports, 2014, 4. DOI: 10.1038/srep04187 .
81 MONTES C, CARDONA A, JARAMILLO C, et al. Middle Miocene closure of the central American seaway[J]. Science, 2015, 348(6 231): 226-229.
82 HARZHAUSER M, PILLER W E. Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(1/2): 8-31.
83 HAMON N, SEPULCHRE P, LEFEBVRE V, et al. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)[J]. Climate of the Past, 2013, 9(6): 2 687-2 702.
84 FLOWER B P, KENNETT J P. The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 537-555.
85 WRIGHT J D, MILLER K G, FAIRBANKS R G. Early and middle Miocene stable isotopes: implications for deepwater circulation and climate[J]. Paleoceanography, 1992, 7(3): 357-389.
86 BUTZIN M, LOHMANN G, BICKERT T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26. DOI:10.1029/2009PA001901 .
87 THOMAS D J, VIA R K. Neogene evolution of Atlantic thermohaline circulation: perspective from Walvis Ridge, southeastern Atlantic Ocean[J]. Paleoceanography, 2007, 22(2).DOI:10.1029/2006PA001297 .
88 FRANK M. Radiogenic isotopes: tracers of past ocean circulation and erosional input[J]. Reviews of Geophysics, 2002, 40(1). DOI:10.1029/2000RG000094 .
89 KNORR G, LOHMANN G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5): 376-381.
90 GOLDNER A, HEROLD N, HUBER M. The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1[J]. Climate of the Past, 2014, 10(2): 523-536.
91 HALL I R, MCCAVE I N, ZAHN R, et al. Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: reflections of East Antarctic Ice Sheet growth[J]. Paleoceanography, 2003, 18(2). DOI:10.1029/2002PA000817 .
92 SHEVENELL A E, KENNETT J P, LEA D W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: a Southern Ocean perspective[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(2). DOI:10.1029/2007GC001736 .
93 HOLBOURN A, KUHNT W, LYLE M, et al. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling[J]. Geology, 2014, 42(1): 19-22.
94 KASBOHM J, SCHOENE B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum[J]. Science Advances, 2018, 4(9). DOI: 10.1126/sciadv.aat8223 .
95 COXALL H K, WILSON P A, PÄLIKE H, et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean[J]. Nature, 2005, 433(7 021): 53-57.
96 TIAN J, MA W T, LYLE M W, et al. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion[J]. Earth and Planetary Science Letters, 2014, 406: 72-80.
[1] 郑旻, 罗敏, 潘彬彬, 陈多福. 海洋沉积物溶解氧消耗研究进展[J]. 地球科学进展, 2023, 38(3): 236-255.
[2] 陆瑶, 黄良波, 贾珺杰, 高扬. 内陆水体初级生产力评估方法研究进展[J]. 地球科学进展, 2023, 38(1): 57-69.
[3] 汪嘉宁, 马强, 王凡, 刘彤, 张航, 张志祥. 西太平洋深层西边界流研究进展[J]. 地球科学进展, 2022, 37(1): 26-36.
[4] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[5] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[6] 高丽,任鹏飞,周放,郑嘉雯,任宏利. GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究[J]. 地球科学进展, 2020, 35(7): 715-730.
[7] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[8] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[9] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[10] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[11] 由德方, 王汝建, 肖文申. 北太平洋中部赫斯海隆(Hess Rise) 晚第四纪以来生源组分与粉尘输入的关系及其变化机制 *[J]. 地球科学进展, 2018, 33(11): 1203-1214.
[12] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[13] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[14] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
[15] 容新尧, 刘征宇, 段晚锁. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4): 382-395.
阅读次数
全文


摘要