1 |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
|
2 |
WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6 509): 1 383-1 387.
|
3 |
DECONTO R M, POLLARD D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 [J]. Nature, 2003, 421(6 920): 245-249.
|
4 |
SHEVENELL A E, KENNETT J P, LEA D W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion[J]. Science, 2004, 305(5 691): 1 766-1 770.
|
5 |
BARTOLI G, HÖNISCH B, ZEEBE R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26(4). DOI:10.1029/2010PA002055 .
|
6 |
O’DEA A, LESSIOS H A, COATES A G, et al. Formation of the isthmus of Panama[J]. Science Advances, 2016, 2(8).DOI: 10.1126/sciadv.1600883 .
|
7 |
TIAN J, SHEVENELL A, WANG P X, et al. Reorganization of Pacific Deep Waters linked to middle Miocene Antarctic cryosphere expansion: a perspective from the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284(3/4): 375-382.
|
8 |
HOLBOURN A, KUHNT W, SCHULZ M, et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion[J]. Nature, 2005, 438(7 067): 483-487.
|
9 |
HOLBOURN A, KUHNT W, SCHULZ M, et al. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 534-550.
|
10 |
LEVY R, HARWOOD D, FLORINDO F, et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3 453-3 458.
|
11 |
GASSON E, DECONTO R M, POLLARD D, et al. Dynamic Antarctic ice sheet during the early to mid-Miocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3 459-3 464.
|
12 |
MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5 752): 1 293-1 298.
|
13 |
LANGEBROEK P M, PAUL A, SCHULZ M. Simulating the sea level imprint on marine oxygen isotope records during the middle Miocene using an ice sheet-climate model[J]. Paleoceanography, 2010, 25(4). DOI:10.1029/2008PA001704 .
|
14 |
JOHN C M, KARNER G D, BROWNING E, et al. Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 455-467.
|
15 |
MA W T, TIAN J, LI Q Y, et al. Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: weathering and nutrient response to orbital change[J]. Geophysical Research Letters, 2011, 38(10). DOI:10.1029/2011GL047680 .
|
16 |
SOSDIAN S M, BABILA T L, GREENOP R, et al. Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey Event[J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-019-13792-0 .
|
17 |
FOSTER G L, LEAR C H, RAE J W B. The evolution of pCO2, ice volume and climate during the middle Miocene[J]. Earth and Planetary Science Letters, 2012, 341/342/343/344: 243-254.
|
18 |
GREENOP R, FOSTER G L, WILSON P A, et al. Middle Miocene climate instability associated with high-amplitude CO2 variability[J]. Paleoceanography, 2014, 29(9): 845-853.
|
19 |
RAITZSCH M, BIJMA J, BICKERT T, et al. Atmospheric carbon dioxide variations across the middle Miocene climate transition[J]. Climate of the Past, 2021, 17(2): 703-719.
|
20 |
BADGER M, LEAR C, PANCOST R, et al. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet[J]. Paleoceanography, 2013, 28: 42-53.
|
21 |
SUPER J R, THOMAS E, PAGANI M, et al. North Atlantic temperature and pCO2 coupling in the early-middle Miocene[J]. Geology, 2018, 46(6): 519-522.
|
22 |
KÜRSCHNER W M, KVACEK Z, DILCHER D L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 449-453.
|
23 |
LEUTERT T J, SEVASTI M, BERNASCONI S M, et al. Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition[J]. Climate of the Past, 2021, 17(5): 2 255-2 271.
|
24 |
LEAR C H, COXALL H K, FOSTER G L, et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry[J]. Paleoceanography, 2015, 30(11): 1 437-1 454.
|
25 |
LEUTERT T J, AUDERSET A, MARTÍNEZ-GARCÍA A, et al. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene[J]. Nature Geoscience, 2020, 13(9): 634-639.
|
26 |
DIESTER-HAASS L, BILLUPS K, GRÖCKE D R, et al. Mid-Miocene paleoproductivity in the Atlantic Ocean and implications for the global carbon cycle[J]. Paleoceanography, 2009, 24(1). DOI:10.1029/2008PA001605 .
|
27 |
VINCENT E, BERGER W H. Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis[M]//The carbon cycle and atmospheric CO2: natural variations archean to present. Washington, D.C.: American Geophysical Union, 2013: 455-468.
|
28 |
MA X L, TIAN J, MA W T, et al. Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion[J]. Earth and Planetary Science Letters, 2018, 484: 253-263.
|
29 |
KRAPP M, JUNGCLAUS J H. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model[J]. Climate of the Past, 2011, 7(4): 1 169-1 188.
|
30 |
STEINTHORSDOTTIR M, COXALL H K, de BOER A M, et al. The Miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4). DOI:10.1029/2020PA004037 .
|
31 |
MARSHALL J, SPEER K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3): 171-180.
|
32 |
TALLEY L. Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: schematics and transports[J]. Oceanography, 2013, 26(1): 80-97.
|
33 |
KAWABE M, FUJIO S. Pacific Ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389-403.
|
34 |
SCHLITZER R. Ocean data view[Z]. 2007.
|
35 |
WANG Jianing, MA Qiang, WANG Fan, et al. Advances in research of the deep western boundary current in the western Pacific Ocean[J]. Advances in Earth Science, 2022, 37(1): 26-36.
|
|
汪嘉宁, 马强, 王凡, 等. 西太平洋深层西边界流研究进展[J]. 地球科学进展, 2022, 37(1): 26-36.
|
36 |
WANG J N, WANG F, LU Y Y, et al. Pathways, volume transport, and seasonal variability of the lower deep limb of the Pacific meridional overturning circulation at the Yap-Mariana junction[J]. Frontiers in Marine Science, 2021, 8. DOI:10.3389/fmars.2021.672199 .
|
37 |
RUDNICK D L. Direct velocity measurements in the Samoan Passage[J]. Journal of Geophysical Research: Oceans, 1997, 102(C2): 3 293-3 302.
|
38 |
VOET G, GIRTON J B, ALFORD M H, et al. Pathways, volume transport, and mixing of abyssal water in the Samoan passage[J]. Journal of Physical Oceanography, 2015, 45(2): 562-588.
|
39 |
SIGMAN D M, BOYLE E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6 806): 859-869.
|
40 |
LEA D W, PAK D K, SPERO H J. Climate impact of late quaternary equatorial Pacific Sea surface temperature variations[J]. Science, 2000, 289(5 485): 1 719-1 724.
|
41 |
HERBERT T D, LAWRENCE K T, TZANOVA A, et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience, 2016, 9(11): 843-847.
|
42 |
LÜTHI D, le FLOCH M, BEREITER B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7 193): 379-382.
|
43 |
SIGMAN D M, HAIN M P, HAUG G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7 302): 47-55.
|
44 |
SIGMAN D M, FRIPIAT F, STUDER A S, et al. The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific[J]. Quaternary Science Reviews, 2021, 254. DOI:10.1016/j.quascirev.2020.106732 .
|
45 |
YU J M, ANDERSON R F, JIN Z D, et al. Responses of the deep ocean carbonate system to carbon reorganization during the last Glacial-Interglacial cycle[J]. Quaternary Science Reviews, 2013, 76: 39-52.
|
46 |
YU J, MENVIEL L, JIN Z D, et al. Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion[J]. Nature Geoscience, 2020, 13(9): 628-633.
|
47 |
MARZOCCHI A, JANSEN M F. Connecting Antarctic Sea ice to deep-ocean circulation in modern and glacial climate simulations[J]. Geophysical Research Letters, 2017, 44(12): 6 286-6 295.
|
48 |
MARZOCCHI A, JANSEN M F. Global cooling linked to increased glacial carbon storage via changes in Antarctic Sea ice[J]. Nature Geoscience, 2019, 12(12): 1 001-1 005.
|
49 |
HAIN M P, SIGMAN D M, HAUG G H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model[J]. Global Biogeochemical Cycles, 2010, 24(4). DOI:10.1029/2010GB003790 .
|
50 |
KARAS C, NÜRNBERG D, GUPTA A K, et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6): 434-438.
|
51 |
KNUDSON K P, RAVELO A C. North Pacific intermediate water circulation enhanced by the closure of the Bering Strait[J]. Paleoceanography, 2015, 30(10): 1 287-1 304.
|
52 |
CRAMER B S, TOGGWEILER J R, WRIGHT J D, et al. Ocean overturning since the late Cretaceous: inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 2009, 24(4). DOI:10.1029/2008PA001683 .
|
53 |
POORE H R, SAMWORTH R, WHITE N J, et al. Neogene overflow of northern component water at the Greenland-Scotland ridge[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6). DOI:10.1029/2005GC001085 .
|
54 |
ARSOUZE T, DUTAY J C, LACAN F, et al. Modeling the neodymium isotopic composition with a global ocean circulation model[J]. Chemical Geology, 2007, 239(1/2): 165-177.
|
55 |
ARSOUZE T, DUTAY J C, LACAN F, et al. Reconstructing the Nd oceanic cycle using a coupled dynamical-biogeochemical model[J]. Biogeosciences, 2009, 6(12): 2 829-2 846.
|
56 |
JEANDEL C, ARSOUZE T, LACAN F, et al. Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins[J]. Chemical Geology, 2007, 239(1/2): 156-164.
|
57 |
LACAN F, JEANDEL C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface[J]. Earth and Planetary Science Letters, 2005, 232(3/4): 245-257.
|
58 |
LACAN F, TACHIKAWA K, JEANDEL C. Neodymium isotopic composition of the oceans: a compilation of seawater data[J]. Chemical Geology, 2012, 300/301: 177-184.
|
59 |
ROBINSON S, IVANOVIC R, van de FLIERDT T, et al. Global continental and marine detrital εNd: an updated compilation for use in understanding marine Nd cycling[J]. Chemical Geology, 2021, 567. DOI:10.1016/j.chemgeo.2021.120119 .
|
60 |
SCHER H D, MARTIN E E. Timing and climatic consequences of the opening of Drake Passage[J]. Science, 2006, 312(5 772): 428-430.
|
61 |
van de FLIERDT T, GRIFFITHS A M, LAMBELET M, et al. Neodymium in the oceans: a global database, a regional comparison and implications for palaeoceanographic research[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2 081). DOI:10.1098/rsta.2015.0293 .
|
62 |
TACHIKAWA K, ARSOUZE T, BAYON G, et al. The large-scale evolution of neodymium isotopic composition in the global modern and Holocene Ocean revealed from seawater and archive data[J]. Chemical Geology, 2017, 457: 131-148.
|
63 |
GOLDSTEIN S L, HEMMING S R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 453-489.
|
64 |
LISIECKI L E. Atlantic overturning responses to obliquity and precession over the last 3 Myr[J]. Paleoceanography, 2014, 29(2): 71-86.
|
65 |
RAVELO A C, HILLAIRE-MARCEL C. Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography[M]//Developments in marine geology. Amsterdam: Elsevier, 2007: 735-764.
|
66 |
EILER J M. “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
|
67 |
TACHIKAWA K. Neodymium budget in the modern ocean and paleo-oceanographic implications[J]. Journal of Geophysical Research, 2003, 108(C8). DOI:10.1029/1999JC000285 .
|
68 |
HODELL D A, VENZ-CURTIS K A. Late Neogene history of deepwater ventilation in the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9). DOI:10.1029/2005GC001211 .
|
69 |
ABBOTT A N, HALEY B A, MCMANUS J. Bottoms up: sedimentary control of the deep North Pacific Ocean’s εNd signature[J]. Geology, 2015, 43(11): 1 035-1 038.
|
70 |
ABBOTT A N. A benthic flux from calcareous sediments results in non-conservative neodymium behavior during lateral transport: a study from the Tasman Sea[J]. Geology, 2019, 47(4): 363-366.
|
71 |
HALEY B A, DU J H, ABBOTT A N, et al. The impact of benthic processes on rare Earth element and neodymium isotope distributions in the oceans[J]. Frontiers in Marine Science, 2017, 4. DOI:10.3389/fmars.2017.00426 .
|
72 |
AMAKAWA H, SASAKI K, EBIHARA M. Nd isotopic composition in the central North Pacific[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4 705-4 719.
|
73 |
YU J M, ELDERFIELD H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 73-86.
|
74 |
LEA D W, MASHIOTTA T A, SPERO H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2 369-2 379.
|
75 |
HUNTINGTON K W, EILER J M, AFFEK H P, et al. Methods and limitations of ‘clumped’ CO2 isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(9): 1 318-1 329.
|
76 |
HOLBOURN A, KUHNT W, FRANK M, et al. Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover[J]. Earth and Planetary Science Letters, 2013, 365: 38-50.
|
77 |
TIAN J, MA X L, ZHOU J H, et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific-Atlantic comparison: high resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337[J]. Earth and Planetary Science Letters, 2018, 499: 185-196.
|
78 |
KENDER S, BOGUS K A, COBB T D, et al. Neodymium evidence for increased circumpolar deep water flow to the north Pacific during the middle Miocene climate transition[J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 672-682.
|
79 |
le HOUEDEC S, MEYNADIER L, ALLÈGRE C J. Seawater Nd isotope variation in the western Pacific Ocean since 80 Ma (ODP 807, Ontong Java Plateau)[J]. Marine Geology, 2016, 380: 138-147.
|
80 |
KENDER S, YU J M, PECK V L. Deep ocean carbonate ion increase during mid Miocene CO2 decline[J]. Scientific Reports, 2014, 4. DOI: 10.1038/srep04187 .
|
81 |
MONTES C, CARDONA A, JARAMILLO C, et al. Middle Miocene closure of the central American seaway[J]. Science, 2015, 348(6 231): 226-229.
|
82 |
HARZHAUSER M, PILLER W E. Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(1/2): 8-31.
|
83 |
HAMON N, SEPULCHRE P, LEFEBVRE V, et al. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)[J]. Climate of the Past, 2013, 9(6): 2 687-2 702.
|
84 |
FLOWER B P, KENNETT J P. The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 537-555.
|
85 |
WRIGHT J D, MILLER K G, FAIRBANKS R G. Early and middle Miocene stable isotopes: implications for deepwater circulation and climate[J]. Paleoceanography, 1992, 7(3): 357-389.
|
86 |
BUTZIN M, LOHMANN G, BICKERT T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26. DOI:10.1029/2009PA001901 .
|
87 |
THOMAS D J, VIA R K. Neogene evolution of Atlantic thermohaline circulation: perspective from Walvis Ridge, southeastern Atlantic Ocean[J]. Paleoceanography, 2007, 22(2).DOI:10.1029/2006PA001297 .
|
88 |
FRANK M. Radiogenic isotopes: tracers of past ocean circulation and erosional input[J]. Reviews of Geophysics, 2002, 40(1). DOI:10.1029/2000RG000094 .
|
89 |
KNORR G, LOHMANN G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5): 376-381.
|
90 |
GOLDNER A, HEROLD N, HUBER M. The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1[J]. Climate of the Past, 2014, 10(2): 523-536.
|
91 |
HALL I R, MCCAVE I N, ZAHN R, et al. Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: reflections of East Antarctic Ice Sheet growth[J]. Paleoceanography, 2003, 18(2). DOI:10.1029/2002PA000817 .
|
92 |
SHEVENELL A E, KENNETT J P, LEA D W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: a Southern Ocean perspective[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(2). DOI:10.1029/2007GC001736 .
|
93 |
HOLBOURN A, KUHNT W, LYLE M, et al. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling[J]. Geology, 2014, 42(1): 19-22.
|
94 |
KASBOHM J, SCHOENE B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum[J]. Science Advances, 2018, 4(9). DOI: 10.1126/sciadv.aat8223 .
|
95 |
COXALL H K, WILSON P A, PÄLIKE H, et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean[J]. Nature, 2005, 433(7 021): 53-57.
|
96 |
TIAN J, MA W T, LYLE M W, et al. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion[J]. Earth and Planetary Science Letters, 2014, 406: 72-80.
|