地球科学进展 ›› 2023, Vol. 38 ›› Issue (3): 236 -255. doi: 10.11867/j.issn.1001-8166.2023.001

综述与评述 上一篇    下一篇

海洋沉积物溶解氧消耗研究进展
郑旻 1( ), 罗敏 1 , 2( ), 潘彬彬 1, 陈多福 1   
  1. 1.上海深渊科学工程技术研究中心,上海海洋大学 海洋科学学院,上海 201306
    2.青岛海洋科学 与技术试点国家实验室 海洋地质过程与环境功能实验室,山东 青岛 266061
  • 收稿日期:2022-08-08 修回日期:2022-12-07 出版日期:2023-03-10
  • 通讯作者: 罗敏 E-mail:fsl_a@sina.com;mluo@shou.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“马里亚纳海沟和新不列颠海沟深渊海底沉积物孔隙水溶解有机质特征及来源”(42176069);上海市青年科技启明星计划“深渊海底沉积物溶解有机质荧光光谱特征研究”(21QA1403700)

Research Progress of Oxygen Consumption in Marine Sediments

Min ZHENG 1( ), Min LUO 1 , 2( ), Binbin PAN 1, Duofu CHEN 1   

  1. 1.Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
    2.Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
  • Received:2022-08-08 Revised:2022-12-07 Online:2023-03-10 Published:2023-03-21
  • Contact: Min LUO E-mail:fsl_a@sina.com;mluo@shou.edu.cn
  • About author:ZHENG Min (1994-), male, Shanghai City, Master student. Research area includes early diagenesis of marine sediments. E-mail: fsl_a@sina.com
  • Supported by:
    the National Natural Science Foundation of China “Characteristics and sources of dissolved organic matter in seafloor sediments of the Mariana and New Britain Trenches”(42176069);Shanghai S & T Youth Rising-star Program “Fluorescence spectrum characteristics of dissolved organic matter in hadal sediments”(21QA1403700)

海底沉积物—水界面的耗氧通量是海底沉积物有机质矿化速率的重要表征参数,因此,开展沉积物耗氧特征的研究有助于了解整个海洋的碳循环过程。目前,海洋沉积物耗氧测量的主流方法包括溶解氧浓度微剖面法、底栖培养箱法以及涡度协方差技术。其中,新兴的涡度协方差技术是一种非侵入式且能反映较大范围内溶解氧通量的测试方法,具有很强的应用前景。从全球来看,大部分海域的海底耗氧通量主要受水深和初级生产力的控制,海底扩散耗氧通量和总耗氧通量均随着水深的增加而显著降低,且海底扩散耗氧通量与总耗氧通量的比值随水深增大逐渐趋近于1,这主要是由底栖生物量及其对海底耗氧的贡献随水深增大而显著降低引起的。尽管海底耗氧观测已开展了逾半个世纪,但海底原位数据仍然十分匮乏,尤其是在深海和一些极端海洋环境,且目前大量实测数据依然以短时间内的单点监测为主。在全球变暖和人类活动对海洋环境和生态系统影响日益增长的大背景下,开展高精度、长时序的海底原位耗氧观测将是今后重要的发展趋势。

Benthic O2 uptake is a robust proxy for organic matter mineralization in marine sediments. Therefore, studying sediment oxygen consumption is conducive to understanding the global marine carbon cycle. Three approaches are commonly used to measure oxygen consumption at the SWI: oxygen microprofiling, benthic incubation, and the eddy covariance technique. The emerging eddy covariance technique is a non-invasive approach that can measure benthic O2 flux on a relatively large scale, and thus has wide application. Globally, benthic oxygen consumption is controlled by water depth and primary productivity in surface water. In addition, benthic diffusive oxygen uptake and total oxygen uptake decreased significantly and their ratios approached 1 with increasing water depth. This was mainly caused by the substantial decrease in benthic biomass and resulting benthic oxygen consumption with increasing water depth. Despite more than half a century of observations of benthic oxygen consumption, in-situ data remain scarce, especially in deep-sea and extreme marine environments. A large amount of measured data are still single-point observations within a short time period. Against the background of global warming and the increasing impact of human activities on marine environments and ecosystems, it is necessary to conduct high-precision and long-term in situ observations of benthic oxygen consumption globally.

中图分类号: 

图1 海底沉积物有机质早期成岩过程示意图(据参考文献[ 7 ]修改)
Fig. 1 The schematic diagram of key early diagenetic processes of organic matter in marine sedimentsmodified after reference 7 ])
图2 溶解氧微剖面法示意图
(a)微剖面法应用示意图;(b)福斯湾实测的氧气微剖面 18 ,红色标记为溶解氧浓度测量值,蓝色虚线代表沉积物—水界面处的溶解氧浓度梯度,黄色背景为PROFILE软件模拟计算的单位体积耗氧速率剖面
Fig. 2 The schematic diagram of oxygen micro-profiling
(a) The schematic diagram of application of micro-profiling; (b) Micro-profiling of O 2 at Golfe de Fos 18 , red dots indicate the measured value of Dissolved Oxygen (DO) concentration, blue dotted line indicates the Dissolved Oxygen (DO) concentration gradient at the sediment-water interface, yellow background indicates the volume-specific Dissolved Oxygen (DO) consumption calculated by PROFILE
图3 非原位与原位测量的扩散耗氧通量和氧气穿透深度比值与水深相关图 9
Fig. 3 Relationship between the ratios of Diffusive Oxygen UptakeDOUto Oxygen Penetration DepthOPDmeasured ex-situ and in-situ and water depths 9
图4 培养箱法测量总耗氧通量示意图
(a)培养箱法应用示意图;(b)测量结果示意图
Fig. 4 The schematic diagram of Total Oxygen UptakeTOUmeasurement by a benthic chamber
(a) The schematic diagram of benthic chamber incubation; (b) Schematic diagram of measurement results
图5 海底沉积物耗氧组成
Fig. 5 Components of sediments oxygen consumption
图6 总耗氧通量和扩散耗氧通量与水深关系图(据参考文献[ 7 ]修改)
(a)总耗氧通量和扩散耗氧通量分别与水深关系;(b)总耗氧通量和扩散耗氧通量的比值与水深关系
Fig. 6 Relationship between Total Oxygen UptakeTOU),Diffusive Oxygen UptakeDOUand water depthsmodified after reference 7 ])
(a) Total Oxygen Uptake (TOU) and Diffusive Oxygen Uptake (DOU) plotted against the water depth; (b) The ratio between Total Oxygen Uptake (TOU) and Diffusive Oxygen Uptake (DOU) plotted against water depth
图7 涡度协方差技术示意图
Fig. 7 The schematic diagram of the eddy covariance system
图8 生物扰动示意图
(a)氧化沉积物因氧化铁呈棕色,还原沉积物因铁硫化物而呈深灰色;受生物扰动之前(a)与之后(c)沉积物照片 10 ;受生物扰动之前(b)与之后(d)溶解氧浓度剖面 78
Fig. 8 The schematic diagram of bioturbation
(a) Oxic sediment is brown due to iron oxides. Reducing sediment is dark gray due to iron sulfide;The photographs of sediments (a) before and (c) after bioturbation 10 ; The O 2 profile of sediments (b) before and (d) after bioturbation 78
图9 陆架边缘海沉积物耗氧通量特征
(a)太平洋和(b)大西洋陆架边缘海海底沉积物耗氧通量与水深相关图;数据来源于参考文献[ 10 ]中的汇总数据,均为原位观测数据,并剔除了最小含氧带的数据
Fig. 9 Characteristics of O2 uptake in the shelf sediments
Relationship between O 2 uptake in the shelf sediments and water depths in the Pacific (a) and Atlantic(b). Data from reference [ 10 ], all the data were measured in-situ, and the data of minimum oxygen zone were excluded
图10 浅水陆架区温度与沉积物耗氧的关系
(a)单位面积暗环境耗氧和净光合作用速率随温度的变化关系 96 (测于埃及太阳湖);(b)耗氧速率与温度的关系(据参考文献[ 98 ]修改,测于丹麦奥胡斯湾)
Fig. 10 Relationship between temperature and sediments O2 uptake in the shallow water shelf
(a) Areal rates of dark O 2 consumption and net photosynthesis with increasing temperatures 96 (measured in Solar Lake, Egypt); (b) Temperature dependence of oxygen consumption rates (modified after reference [ 98 ], measured in Aarhus Bay, Denmark)
图11 深远海沉积物耗氧通量特征
(a)太平洋和(b)大西洋深远海海底沉积物耗氧通量与水深相关图;(c)太平洋和(d)大西洋深远海沉积物耗氧通量与净初级生产量相关图;数据来源于参考文献[ 10 ]中的汇总数据,均为原位观测数据,并剔除了最小含氧带的数据
Fig. 11 Characteristics of O2 uptake in the deep-sea sediments
Relationship between O 2 uptake in the deep-sea sediments and water depths in the Pacific (a) and Atlantic (b);Relationship between O 2 uptake in the deep-sea sediments and the net primary production in the Pacific (c) and Atlantic (d). Data from reference [ 10 ], all the data were measured in-situ, and the data of minimum oxygen zone were excluded
图12 东北太平洋深远海沉积物201010月至20141月海底总耗氧通量和颗粒有机碳通量观测数据 10 109
测于4 000 m水深海底观测站MData measured at 4 000 m water-depth observation station M
Fig. 12 Benthic Total Oxygen UptakeTOUand Particulate Organic CarbonPOCflux in the deep-ocean of the Northeast Pacific from October 2010 to January 2014 10 109
图13 最小含氧带海底沉积物耗氧通量特征
(a)一般海域与最小含氧带海域海底总耗氧通量与水深相关图;(b)海底总耗氧通量与海底溶解氧浓; 数据来源于参考文献[ 10 ]中的汇总数据,均为原位观测数据度相关图
Fig. 13 Characteristics of O2 uptake in the Oxygen Minimum ZoneOMZsediments
(a) The Total Oxygen Uptake (TOU) versus water depth in normal and Oxygen Minimum Zone (OMZ) areas; (b) The Total Oxygen Uptake (TOU) versus benthic O 2 concentration;Data from reference [ 10 ], all the data were measured in-situ
表1 深渊海沟轴部及邻近深海平原参考站位的扩散耗氧通量、总耗氧通量以及上覆水净初级生产力数据汇总表(数据来自参考文献[ 20 31 125 - 126 ])
Table 1 Compilation of Diffusive Oxygen UptakeDOU), Total Oxygen UptakeTOU), and Net Primary ProductionNPPof overlying water from hadal trench and abyssal sitesdata from references2031125-126])
图14 深渊海沟海底沉积物耗氧通量特征
深渊海沟海底沉积物扩散耗氧通量与(a)沉积物总有机碳含量、(b)沉积物叶绿素 a含量以及(c)上覆水中净初级生产力的相关图 126
Fig. 14 Characteristics of O2 uptake in the hadal trenches sediments
Benthic O 2 uptake in hadal trenches as a function of the (a) Total Organic Carbon (TOC), (b) Chl a, and (c) estimated Net Primary Productivity (NPP) 126
表2 克马德克海沟与阿塔卡马海沟轴部不同站位氧气穿透深度和扩散耗氧通量(数据来自参考文献[ 126 ])
Table 2 Oxygen Penetration DepthOPDand Diffusive Oxygen UptakeDOUat the investigated sites in the Kermadec and the Atacama trenchesdata from reference 126 ])
表3 海底冷泉区沉积物总耗氧通量与甲烷氧化过程速率数据表(数据来自参考文献[ 138 142 - 144 ])
Table 3 The benthic Total Oxygen UptakeTOUand methane oxidation rate at cold seepsdata from references138142-144])
图15 冷泉区沉积物耗氧通量特征
(a)培养箱内溶解氧溶度和甲烷浓度的变化(根据参考文献[ 138 ]修改),实心和空心分别代表冷泉区和非冷泉区甲烷浓度,实线和虚线分别代表冷泉区和非冷泉区溶解氧浓度;(b)冷泉区与非冷泉区海底总耗氧通量与水深相关图(据参考文献[ 7 138 ]修改)
Fig. 15 Characteristics of O2 uptake in cold seep sediments
(a) Changes in oxygen and methane concentration in the benthic chamber (modified after reference [ 138 ]), filled and hollow symbols indicate the methane concentration at seep and non-seep sites, while solid and dotted lines indicate the O 2 concentration at seep and non-seep sites; (b) The total O 2 uptake versus water depth at seep and non-seep sites (modified after references [7,138])
40 TENGBERG A. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 119-142.
41 GLUD R N, FORSTER S, HUETTEL M. Influence of radial pressure gradients on solute exchange in stirred benthic Chambers[J]. Marine Ecology Progress Series, 1996, 141: 303-311.
42 SWINBANK W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Meteorology, 1951, 8(3): 135-145.
43 BERG P, RØY H, JANSSEN F, et al. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique[J]. Marine Ecology Progress Series, 2003, 261: 75-83.
44 BERG P, GLUD R N, HUME A, et al. Eddy correlation measurements of oxygen uptake in deep ocean sediments[J]. Limnology and Oceanography: Methods, 2009, 7(8): 576-584.
45 REIMERS C E, ÖZKAN-HALLER H T, BERG P, et al. Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2). DOI:10.1029/2011JC007564 .
46 BERG P, HUETTEL M. Monitoring the seafloor using the noninvasive eddy correlation technique: integrated benthic exchange dynamics[J]. Oceanography, 2008, 21(4): 164-167.
47 BERG P, HUETTEL M, GLUD R N, et al. Aquatic eddy covariance: the method and its contributions to defining oxygen and carbon fluxes in marine environments[J]. Annual Review of Marine Science, 2022, 14: 431-455.
48 KUWAE T, KAMIO K, INOUE T, et al. Oxygen exchange flux between sediment and waterin an intertidal sandflat, measured in situ by the eddy-correlation method[J]. Marine Ecology Progress Series, 2006, 307: 59-68.
49 CUI Shanggong, YU Xinsheng, ZHAO Guangtao, et al. Research on the in situ observation methods for dissolved oxygen flux in the benthic boundary layer[J]. Journal of Ocean Technology, 2017, 36(2): 122-131.
崔尚公, 于新生, 赵广涛, 等. 海底边界层溶解氧通量原位观测技术方法研究[J]. 海洋技术学报, 2017, 36(2): 122-131.
50 CUI Shanggong, YU Xinsheng, ZHAO Guangtao. In situ measurements of benthic oxygen fluxes in Huiquan Bay of Qingdao by eddy correlation techniques: short term pattern variations in gravel beach[J]. Marine Information, 2017(4): 51-62.
崔尚公, 于新生, 赵广涛. 应用涡动相关技术的底栖溶解氧通量原位观测: 以青岛汇泉湾砾石海滩短周期变化为例[J]. 海洋信息, 2017(4): 51-62.
51 HUME A C, BERG P, MCGLATHERY K J. Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique[J]. Limnology and Oceanography, 2011, 56(1): 86-96.
52 LONG M H, BERG P, FALTER J L. Seagrass metabolism across a productivity gradient using the eddy covariance, Eulerian control volume, and biomass addition techniques[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3 624-3 639.
53 ATTARD K M, RODIL I F, BERG P, et al. Seasonal metabolism and carbon export potential of a key coastal habitat: the perennial canopy-forming macroalga Fucus vesiculosus [J]. Limnology and Oceanography, 2019, 64(1): 149-164.
54 LONG M H, BERG P, de BEER D, et al. In situ coral reef oxygen metabolism: an eddy correlation study[J]. PLoS ONE, 2013, 8(3). DOI:10.1371/journal.pone.0058581 .
55 ATTARD K M, RODIL I F, BERG P, et al. Metabolism of a subtidal rocky mussel reef in a high-temperate setting: pathways of organic C flow[J]. Marine Ecology Progress Series, 2020, 645: 41-54.
56 BERG P, RØY H, WIBERG P L. Eddy correlation flux measurements: the sediment surface area that contributes to the flux[J]. Limnology and Oceanography, 2007, 52(4): 1 672-1 684.
57 REIMERS C E, SANDERS R D, DEWEY R, et al. Benthic fluxes of oxygen and heat from a seasonally hypoxic region of Saanich Inlet fjord observed by eddy covariance[J]. Estuarine, Coastal and Shelf Science, 2020, 243. DOI: 10.1016/j.ecss.2020.106815 .
58 AMBROSE W, CLOUGH L, TILNEY P, et al. Role of echinoderms in benthic remineralization in the Chukchi Sea[J]. Marine Biology, 2001, 139(5): 937-949.
59 GLUD R N, RISGAARD-PETERSEN N, THAMDRUP B, et al. Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland)[J]. Marine Ecology Progress Series, 2000, 206: 59-71.
60 HEIP C H R. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(14/15): 3 223-3 243.
61 RODIL I F, ATTARD K M, NORKKO J, et al. Estimating respiration rates and secondary production of macrobenthic communities across coastal habitats with contrasting structural biodiversity[J]. Ecosystems, 2020, 23(3): 630-647.
62 KRISTENSEN E, KOSTKA J E. Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions[M]// Coastal and estuarine studies. Washington, D. C.: American Geophysical Union, 2005: 125-157.
63 MIDDELBURG J J. Reviews and syntheses: to the bottom of carbon processing at the seafloor[J]. Biogeosciences, 2018, 15(2): 413-427.
64 VOLARIC M P, BERG P, REIDENBACH M A. Drivers of oyster reef ecosystem metabolism measured across multiple timescales[J]. Estuaries and Coasts, 2020, 43(8): 2 034-2 045.
65 SNELGROVE P V R, SOETAERT K, SOLAN M, et al. Global carbon cycling on a heterogeneous seafloor[J]. Trends in Ecology & Evolution, 2018, 33(2): 96-105.
66 MAZLUMYAN S, BOLTACHОVA N. Long-term variations in macrobenthos diversity at the Istanbul strait’s (Bosporus) outlet area of the black sea[J]. Ecologica Montenegrina, 2017, 14: 80-91.
67 VEDENIN A, GUSKY M, GEBRUK A, et al. Spatial distribution of benthic macrofauna in the central Arctic Ocean[J]. PLoS ONE, 2018, 13(10). DOI:10.1371/journal.pone.0200121 .
68 HUGHES S J M, RUHL H A, HAWKINS L E, et al. Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea[J]. The Journal of Experimental Biology, 2011, 214(Pt 15): 2 512-2 521.
69 CHRISTIANSEN B, DIEL-CHRISTIANSEN S. Respiration of lysianassoid amphipods in a subarctic fjord and some implications on their feeding ecology[J]. Sarsia, 1993, 78(1): 9-15.
70 YANG T H, SOMERO G N. Effects of feeding and food deprivation on oxygen consumption, muscle protein concentration and activities of energy metabolism enzymes in muscle and brain of shallow-living (Scorpaena guttata) and deep-living (Sebastolobus alascanus) scorpaenid fishes[J]. Journal of Experimental Biology, 1993, 181(1): 213-232.
71 SERGEEVA N G, MAZLUMYAN S A. Deep-water hypoxic meiobenthic protozoa and Metazoa taxa of the Istanbul strait’s (Bosporus) outlet area of the black sea[J]. Ecologica Montenegrina, 2015, 2(3): 255-270.
72 STRATMANN T, van OEVELEN D, MARTÍNEZ A P, et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities[J]. Scientific Data, 2020, 7. DOI:10.1038/s41597-020-0551-2 .
73 LEDUC D, ROWDEN A A, GLUD R N, et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 116: 264-275.
74 KRISTENSEN E, PENHA-LOPES G, DELEFOSSE M, et al. What is bioturbation?The need for a precise definition for fauna in aquatic sciences[J]. Marine Ecology Progress Series, 2012, 446: 285-302.
75 HUFFARD C L, KUHNZ L A, LEMON L,et al. Demographic indicators of change in a deposit-feeding abyssal holothurian community (Station M, 4 000 m)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 109: 27-39.
76 DURDEN J M, BETT B J, HUFFARD C L, et al. Response of deep-sea deposit-feeders to detrital inputs: a comparison of two abyssal time-series sites[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2020, 173. DOI:10.1016/j.dsr2.2019.104677 .
77 VOLKENBORN N, POLERECKY L, HEDTKAMP S I C, et al. Bioturbation and bioirrigation extend the open exchange regions in permeable sediments[J]. Limnology and Oceanography, 2007, 52(5): 1 898-1 909.
78 JØRGENSEN B B, GLUD R N, HOLBY O. Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea)[J]. Marine Ecology Progress Series, 2005, 292: 85-95.
79 ALLER R C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation[J]. Chemical Geology, 1994, 114(3/4): 331-345.
1 GLUD R N, KÜHL M, WENZHÖFER F, et al. Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production[J]. Marine Ecology Progress Series, 2002, 238: 15-29.
2 COLIJN F, de JONGE V N. Primary production of microphytobenthos in the Ems-dollard Estuary[J]. Marine Ecology Progress Series, 1984, 14: 185-196.
3 CAHOON L B, COOKE J E. Benthic microalgal production in onslow bay, north Carolina, USA[J]. Marine Ecology Progress Series, 1992, 84: 185-196.
4 DUNNE J P, SARMIENTO J L, GNANADESIKAN A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor[J]. Global Biogeochemical Cycles, 2007, 21(4).DOI: 10.1029/2006GB002907 .
5 BERNER R A, CANFIELD D E. A new model for atmospheric oxygen over Phanerozoic time[J]. American Journal of Science, 1989, 289(4): 333-361.
6 BJERRUM C J, CANFIELD D E. New insights into the burial history of organic carbon on the early Earth[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8). DOI: 10.1029/2004GC000713 .
7 GLUD R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243-289.
8 FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1 075-1 090.
9 NØHR GLUD R, GUNDERSEN J K, JØRGENSEN B B,et al. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(11/12): 1 767-1 788.
10 JØRGENSEN B B, WENZHÖFER F, EGGER M,et al. Sediment oxygen consumption: role in the global marine carbon cycle[J]. Earth-Science Reviews, 2022, 228. DOI:10.1016/j.earscirev.2022.103987 .
11 RØY H, KALLMEYER J, ADHIKARI R R, et al. Aerobic microbial respiration in 86-million-year-old deep-sea red clay[J]. Science, 2012, 336(6 083): 922-925.
80 ALLER R C. Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor[J]. Journal of Marine Research, 2004, 62(6): 815-835.
81 JØRGENSEN B B. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments[J]. Marine Biology, 1977, 41(1): 7-17.
82 JØRGENSEN B B. Bacteria and marine biogeochemistry[M]//Marine geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 169-206.
83 BRADLEY J A, ARNDT S, AMEND J P, et al. Widespread energy limitation to life in global subseafloor sediments[J]. Science Advances, 2020, 6(32). DOI: 10.1126/sciadv.aba0697 .
84 JØRGENSEN B B. Mineralization of organic matter in the sea bed—the role of sulphate reduction[J]. Nature, 1982, 296(5 858): 643-645.
85 MÄRZ C. Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: authigenic apatite and Fe(II) phosphates[J]. Marine Geology, 2018, 404: 84-96.
86 RAISWELL R, CANFIELD D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
87 BERNER R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268(1): 1-23.
88 JØRGENSEN B B, FINDLAY A J, PELLERIN A. The biogeochemical sulfur cycle of marine sediments[J]. Frontiers in Microbiology, 2019, 10. DOI:10.3389/fmicb.2019.00849 .
89 WALLMANN K, PINERO E, BURWICZ E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach[J]. Energies, 2012, 5(7): 2 449-2 498.
90 CADÉE G C. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research, 1974, 8(2/3): 260-291.
12 REIMERS C E, FISCHER K M, MEREWETHER R, et al. Oxygen microprofiles measured in situ in deep ocean sediments [J]. Nature, 1986, 320(6 064): 741-744.
13 CANFIELD D E, KRISTENSEN E, THAMDRUP B. Aquatic geomicrobiology[J]. Advances in Marine Biology, 2005, 48: 1-599.
14 ANDERSON L A, SARMIENTO J L. Redfield ratios of remineralization determined by nutrient data analysis[J]. Global Biogeochemical Cycles, 1994, 8(1): 65-80.
15 WENZHÖFER F, GLUD R N. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(7): 1 255-1 279.
16 JØRGENSEN B B, REVSBECH N P. Diffusive boundary layers and the oxygen uptake of sediments and detritus[J]. Limnology and Oceanography, 1985, 30(1): 111-122.
17 REVSBECH N P, NIELSEN L P, RAMSING N B. A novel microsensor for determination of apparent diffusivity in sediments[J]. Limnology and Oceanography, 1998, 43(5): 986-992.
18 RABOUILLE C, DENIS L, DEDIEU K, et al. Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 49-69.
19 TAILLEFERT M, NUZZIO D B. The application of electrochemical tools for in situ measurements in aquatic systems[J]. Electroanalysis, 2000, 12(6): 401-412.
20 GLUD R N, WENZHÖFER F, MIDDELBOE M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
21 GLUD R N, GUNDERSEN J K, HOLBY O. Benthic in situ respiration in the upwelling area off central Chile [J]. Marine Ecology Progress Series, 1999, 186: 9-18.
22 DEVOL A H, CHRISTENSEN J P. Benthic fluxes nitrogen cycling in sediments of continental margin of eastern North Pacific[J]. Journal of Marine Research, 1993, 51(2): 345-372.
23 GLUD R N, GUNDERSEN J K, RØY H, et al. Seasonal dynamics of benthic O2 uptake in a semienclosed bay: importance of diffusion and faunal activity[J]. Limnology and Oceanography, 2003, 48(3): 1 265-1 276.
24 HALL P O J, BRUNNEGÅRD J, HULTHE G, et al. Dissolved organic matter in abyssal sediments: core recovery artifacts[J]. Limnology and Oceanography, 2007, 52(1): 19-31.
25 WENZHOEFER F, LEMBURG J, HOFBAUER M, et al. Tramper[C]// OCEANS 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016: 1-6.
26 LEMBURG J, WENZHÖFER F, HOFBAUER M, et al. Benthic crawler NOMAD[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans. Kobe, Japan: IEEE, 2018: 1-7.
27 PAMATMAT M M, FENTON D. An instrument for measuring subtidal benthic metabolism in situ[J]. Limnology and Oceanography, 1968, 13(3): 537-540.
28 SMITH K L. Benthic community respiration in the N.W. Atlantic Ocean: in situ measurements from 40 to 5200 M[J]. Marine Biology, 1978, 47(4): 337-347.
29 HALL P O J, ANDERSON L G, van der LOEFF M M R, et al. Oxygen uptake kinetics in the benthic boundary layer[J]. Limnology and Oceanography, 1989, 34(4): 734-746.
30 CAPRAIS J C, LANTERI N, CRASSOUS P, et al. A new CALMAR benthic chamber operating by submersible: first application in the cold-seep environment of Napoli mud volcano (Mediterranean Sea)[J]. Limnology and Oceanography: Methods, 2010, 8(6): 304-312.
31 LUO M, GLUD R N, PAN B B, et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption[J]. Geophysical Research Letters, 2018, 45(6): 2 752-2 760.
32 VIOLLIER E. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 5-31.
91 BARRANGUET C, KROMKAMP J, PEENE J. Factors controlling primary production and photosynthetic characteristics of intertidal microphytobenthos[J]. Marine Ecology Progress Series, 1998, 173: 117-126.
92 GLUD R N, RAMSING N B, REVSBECH N P. Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors1[J]. Journal of Phycology, 1992, 28(1): 51-60.
93 FENCHEL T, GLUD R N. Benthic primary production and O2-CO2 dynamics in a shallow-water sediment: spatial and temporal heterogeneity[J]. Ophelia, 2000, 53(2): 159-171.
94 EPPING E H G, KHALILI A, THAR R. Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles[J]. Limnology and Oceanography, 1999, 44(8): 1 936-1 948.
95 KÜHL M, GLUD R N, PLOUG H, et al. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm1[J]. Journal of Phycology, 1996, 32(5): 799-812.
96 WIELAND A, KÜHL M. Irradiance and temperature regulation of oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat (Solar Lake, Egypt)[J]. Marine Biology, 2000, 137(1): 71-85.
97 HANCKE K, GLUD R N. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities[J]. Aquatic Microbial Ecology, 2004, 37: 265-281.
98 THAMDRUP B, HANSEN J W, JØRGENSEN B B. Temperature dependence of aerobic respiration in a coastal sediment[J]. FEMS Microbiology Ecology, 1998, 25(2): 189-200.
99 THAMDRUP B, FLEISCHER S. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments[J]. Aquatic Microbial Ecology, 1998, 15: 191-199.
100 THERKILDSEN M S, LOMSTEIN B A. Seasonal variation in net benthic C-mineralization in a shallow estuary[J]. FEMS Microbiology Ecology, 1993, 12(2): 131-142.
101 HARRIS P T. Geomorphology of the oceans[J]. Marine Geology, 2014, 352: 4-24.
102 SMITH K L, RUHL H A, KAUFMANN R S, et al. Tracing abyssal food supply back to upper-ocean processes over a 17-year time series in the northeast Pacific[J]. Limnology and Oceanography, 2008, 53(6): 2 655-2 667.
103 WIEDMANN I, ERSHOVA E, BLUHM B, et al. What feeds the benthos in the Arctic Basins? assembling a carbon budget for the deep Arctic Ocean[J]. Frontiers in Marine Science, 2020. DOI:10.3389/FMARS.2020.00224 .
104 PAK H, ZANEVELD J R V. Bottom nepheloid layers and bottom mixed layers observed on the continental shelf off Oregon[J]. Journal of Geophysical Research, 1977, 82(27): 3 921-3 931.
105 SPINRAD R W, ZANEVELD J R V, KITCHEN J C. A study of the optical characteristics of the suspended particles in the benthic nepheloid layer of the Scotian Rise[J]. Journal of Geophysical Research: Oceans, 1983, 88(C12): 7 641-7 645.
106 RANSOM B. Comparison of pelagic and nepheloid layer marine snow: implications for carbon cycling[J]. Marine Geology, 1998, 150(1/2/3/4): 39-50.
107 TREUDE T, SMITH C R, WENZHÖFER F, et al. Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis[J]. Marine Ecology Progress Series, 2009, 382: 1-21.
108 BOETIUS A, ALBRECHT S, BAKKER K, et al. Export of algal biomass from the melting Arctic Sea ice[J]. Science, 2013, 339(6 126): 1 430-1 432.
109 SMITH K L, HUFFARD C L, SHERMAN A D, et al. Decadal change in sediment community oxygen consumption in the abyssal northeast Pacific[J]. Aquatic Geochemistry, 2016, 22(5/6): 401-417.
110 PAULMIER A. Oxygen Minimum Zones (OMZs) in the modern ocean[J]. Progress in Oceanography, 2009, 80(3/4): 113-128.
111 BREITBURG D, LEVIN L A, OSCHLIES A, et al. Declining oxygen in the global ocean and coastal waters [J]. Science, 2018, 359(6 371). DOI: 10.1126/science.aam7240 .
112 SCHMIDTKO S, STRAMMA L, VISBECK M. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 2017, 542(7 641): 335-339.
113 LAM P, KUYPERS M M M. Microbial nitrogen cycling processes in oxygen minimum zones[J]. Annual Review of Marine Science, 2011, 3: 317-345.
114 SEITAJ D, SCHAUER R, SULU-GAMBARI F, et al. Cable bacteria generate a firewall against Euxinia in seasonally hypoxic basins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13 278-13 283.
115 ORSI W D, MORARD R, VUILLEMIN A, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor[J]. The ISME Journal, 2020, 14(10): 2 580-2 594.
116 LEVIN L A. Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700-1 100 m)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(6/7): 449-471.
117 CANFIELD D E. Factors influencing organic carbon preservation in marine sediments[J]. Chemical Geology, 1994, 114(3/4): 315-329.
118 BARONI I R, PALASTANGA V, SLOMP C P. Enhanced organic carbon burial in sediments of oxygen minimum zones upon ocean deoxygenation[J]. Frontiers in Marine Science, 2020, 6. DOI:10.3389/fmars.2019.00839 .
119 WOLFF T. The hadal community, an introduction[J]. Deep Sea Research (1953), 1959, 6: 95-124.
120 JAMIESON A J. Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
121 DU M R, PENG X T, ZHANG H B, et al. Geology, environment, and life in the deepest part of the world’s oceans[J]. Innovation (Cambridge (Mass)), 2021, 2(2). DOI: 10.1016/j.xinn.2021.100109 .
122 XU Y P. Biogeochemistry of hadal trenches: recent developments and future perspectives[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 19-26.
123 LUO M. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches[J]. Marine Geology, 2017, 386: 98-106.
124 XU Y P, JIA Z, XIAO W, et al. Glycerol dialkyl glycerol tetraethers in surface sediments from three Pacific trenches: distribution, source and environmental implications[J]. Organic Geochemistry, 2020, 147. DOI:10.1016/j.orggeochem.2020.104079 .
125 WENZHÖFER F, OGURI K, MIDDELBOE M, et al. Benthic carbon mineralization in hadal trenches: assessment by in situ O2 microprofile measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 116: 276-286.
126 GLUD R N, BERG P, THAMDRUP B, et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea[J]. Communications Earth & Environment, 2021, 2. DOI:10.1038/s43247-020-00087-2 .
127 LUO M, GIESKES J, CHEN L Y, et al. Sources, degradation, and transport of organic matter in the new Britain shelf-trench continuum, Papua new Guinea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6): 1 680-1 695.
128 XU Y P, LI X X, LUO M, et al. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama trenches[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(5). DOI:10.1029/2020JG006189 .
129 ZHANG X, XU Y, XIAO W, et al. The hadal zone is an important and heterogeneous sink of black carbon in the ocean[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00351-7 .
130 OGURI K, KAWAMURA K, SAKAGUCHI A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki earthquake[J]. Scientific Reports, 2013, 3. DOI:10.1038/srep01915 .
131 KANHAI L D K, OFFICER R, LYASHEVSKA O, et al. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean[J]. Marine Pollution Bulletin, 2017, 115(1/2): 307-314.
132 SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1 889-1 916.
133 LEVIN L A, SIBUET M. Understanding continental margin biodiversity: a new imperative[J]. Annual Review of Marine Science, 2012, 4: 79-112.
134 ORPHAN V J, HOUSE C H, HINRICHS K U, et al. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5 529): 484-487.
135 BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6 804): 623-626.
136 REEBURGH W S. Oceanic methane biogeochemistry[J]. ChemInform, 2007, 38(20). DOI:10.1021/cr050362v .
137 REGNIER P. Quantitative analysis of Anaerobic Oxidation of Methane (AOM) in marine sediments: a modeling perspective[J]. Earth-Science Reviews, 2011, 106(1/2): 105-130.
138 BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9): 725-734.
139 SOMMER S, PFANNKUCHE O, LINKE P, et al. Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge[J]. Global Biogeochemical Cycles, 2006, 20(2). DOI:10.1029/2004GB002389 .
140 GRÜNKE S, FELDEN J, LICHTSCHLAG A, et al. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea)[J]. Geobiology, 2011, 9(4): 330-348.
141 LICHTSCHLAG A, FELDEN J, BRÜCHERT V, et al. Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Håkon Mosby Mud Volcano (Barents Sea)[J]. Limnology and Oceanography, 2010, 55(2): 931-949.
142 SOMMER S. Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand)[J]. Marine Geology, 2010, 272(1/2/3/4): 223-232.
33 ARCHER D, DEVOL A. Benthic oxygen fluxes on the Washington shelf and slope: a comparison of in situ microelectrode and chamber flux measurements[J]. Limnology and Oceanography, 1992, 37(3): 614-629.
34 KONONETS M, TENGBERG A, NILSSON M, et al. In situ incubations with the Gothenburg benthic chamber landers: applications and quality control[J]. Journal of Marine Systems, 2021, 214. DOI:10.1016/j.jmarsys.2020.103475 .
35 TENGBERG A. Benthic chamber and profiling landers in oceanography—a review of design, technical solutions and functioning[J]. Progress in Oceanography, 1995, 35(3): 253-294.
36 BENDER M, JAHNKE R, RAY W, et al. Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 685-697.
37 GLUD R N, JENSEN K, REVSBECH N P, et al. Diffusivity in surficial sediments and benthic mats determined by use of a combined N2O-O2 microsensor[J]. Geochimica et Cosmochimica Acta, 1995, 59(2): 231-237.
38 GLUD R N, BERG P, FOSSING H, et al. Effect of the diffusive boundary layer on benthic mineralization and O2 distribution: a theoretical model analysis[J]. Limnology and Oceanography, 2007, 52(2): 547-557.
39 LORENZEN J, GLUD R N, REVSBECH N P. Impact of microsensor-caused changes in diffusive boundary layer thickness on O2 profiles and photosynthetic rates in benthic communities of microorganisms[J]. Marine Ecology Progress Series, 1995, 119: 237-241.
143 FELDEN J, LICHTSCHLAG A, WENZHÖFER F, et al. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)[J]. Biogeosciences, 2013, 10(5): 3 269-3 283.
144 RISTOVA P POP, WENZHÖFER F, RAMETTE A, et al. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth) [J]. Biogeosciences, 2012, 9(12): 5 031-5 048.
[1] 张瀚, 杨一超, 任景玲. 大洋中溶解态镉与磷酸盐的相关关系及关键控制过程[J]. 地球科学进展, 2024, 39(2): 207-219.
[2] 牛雪琦, 时巍巍, 吴文欣, 刘树伟, 杨平, 李思亮, 晏智锋. 内陆水体 CH4 冒泡排放研究进展[J]. 地球科学进展, 2023, 38(8): 802-814.
[3] 赵显烨, 王伟, 关成国, 宋晨冉, 庞科, 陈哲, 周传明, 袁训来. 古元古代早中期大氧化事件及碳循环扰动[J]. 地球科学进展, 2023, 38(8): 838-851.
[4] 张雪冰, 张泽和, 鲁显楷. 森林生态系统土壤微生物碳利用效率对氮沉降增加的响应及其机制[J]. 地球科学进展, 2023, 38(10): 999-1014.
[5] 何志, 田军. 中中新世气候转型期太平洋深层环流变化与碳循环[J]. 地球科学进展, 2023, 38(1): 17-31.
[6] 陆瑶, 黄良波, 贾珺杰, 高扬. 内陆水体初级生产力评估方法研究进展[J]. 地球科学进展, 2023, 38(1): 57-69.
[7] 袁媛, 庄光超, 毛士海, 刘佳睿, 刘喜停, 杨桂朋. 海洋环境中乙烷和丙烷的分布及生物转化[J]. 地球科学进展, 2022, 37(4): 370-381.
[8] 南峰, 于非, 徐安琪, 丁雅楠. 西北太平洋次表层中尺度涡研究进展和展望[J]. 地球科学进展, 2022, 37(11): 1115-1126.
[9] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[10] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[11] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[12] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[13] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[14] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[15] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
阅读次数
全文


摘要