40 |
TENGBERG A. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 119-142.
|
41 |
GLUD R N, FORSTER S, HUETTEL M. Influence of radial pressure gradients on solute exchange in stirred benthic Chambers[J]. Marine Ecology Progress Series, 1996, 141: 303-311.
|
42 |
SWINBANK W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Meteorology, 1951, 8(3): 135-145.
|
43 |
BERG P, RØY H, JANSSEN F, et al. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique[J]. Marine Ecology Progress Series, 2003, 261: 75-83.
|
44 |
BERG P, GLUD R N, HUME A, et al. Eddy correlation measurements of oxygen uptake in deep ocean sediments[J]. Limnology and Oceanography: Methods, 2009, 7(8): 576-584.
|
45 |
REIMERS C E, ÖZKAN-HALLER H T, BERG P, et al. Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2). DOI:10.1029/2011JC007564 .
|
46 |
BERG P, HUETTEL M. Monitoring the seafloor using the noninvasive eddy correlation technique: integrated benthic exchange dynamics[J]. Oceanography, 2008, 21(4): 164-167.
|
47 |
BERG P, HUETTEL M, GLUD R N, et al. Aquatic eddy covariance: the method and its contributions to defining oxygen and carbon fluxes in marine environments[J]. Annual Review of Marine Science, 2022, 14: 431-455.
|
48 |
KUWAE T, KAMIO K, INOUE T, et al. Oxygen exchange flux between sediment and waterin an intertidal sandflat, measured in situ by the eddy-correlation method[J]. Marine Ecology Progress Series, 2006, 307: 59-68.
|
49 |
CUI Shanggong, YU Xinsheng, ZHAO Guangtao, et al. Research on the in situ observation methods for dissolved oxygen flux in the benthic boundary layer[J]. Journal of Ocean Technology, 2017, 36(2): 122-131.
|
|
崔尚公, 于新生, 赵广涛, 等. 海底边界层溶解氧通量原位观测技术方法研究[J]. 海洋技术学报, 2017, 36(2): 122-131.
|
50 |
CUI Shanggong, YU Xinsheng, ZHAO Guangtao. In situ measurements of benthic oxygen fluxes in Huiquan Bay of Qingdao by eddy correlation techniques: short term pattern variations in gravel beach[J]. Marine Information, 2017(4): 51-62.
|
|
崔尚公, 于新生, 赵广涛. 应用涡动相关技术的底栖溶解氧通量原位观测: 以青岛汇泉湾砾石海滩短周期变化为例[J]. 海洋信息, 2017(4): 51-62.
|
51 |
HUME A C, BERG P, MCGLATHERY K J. Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique[J]. Limnology and Oceanography, 2011, 56(1): 86-96.
|
52 |
LONG M H, BERG P, FALTER J L. Seagrass metabolism across a productivity gradient using the eddy covariance, Eulerian control volume, and biomass addition techniques[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3 624-3 639.
|
53 |
ATTARD K M, RODIL I F, BERG P, et al. Seasonal metabolism and carbon export potential of a key coastal habitat: the perennial canopy-forming macroalga Fucus vesiculosus [J]. Limnology and Oceanography, 2019, 64(1): 149-164.
|
54 |
LONG M H, BERG P, de BEER D, et al. In situ coral reef oxygen metabolism: an eddy correlation study[J]. PLoS ONE, 2013, 8(3). DOI:10.1371/journal.pone.0058581 .
|
55 |
ATTARD K M, RODIL I F, BERG P, et al. Metabolism of a subtidal rocky mussel reef in a high-temperate setting: pathways of organic C flow[J]. Marine Ecology Progress Series, 2020, 645: 41-54.
|
56 |
BERG P, RØY H, WIBERG P L. Eddy correlation flux measurements: the sediment surface area that contributes to the flux[J]. Limnology and Oceanography, 2007, 52(4): 1 672-1 684.
|
57 |
REIMERS C E, SANDERS R D, DEWEY R, et al. Benthic fluxes of oxygen and heat from a seasonally hypoxic region of Saanich Inlet fjord observed by eddy covariance[J]. Estuarine, Coastal and Shelf Science, 2020, 243. DOI: 10.1016/j.ecss.2020.106815 .
|
58 |
AMBROSE W, CLOUGH L, TILNEY P, et al. Role of echinoderms in benthic remineralization in the Chukchi Sea[J]. Marine Biology, 2001, 139(5): 937-949.
|
59 |
GLUD R N, RISGAARD-PETERSEN N, THAMDRUP B, et al. Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland)[J]. Marine Ecology Progress Series, 2000, 206: 59-71.
|
60 |
HEIP C H R. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(14/15): 3 223-3 243.
|
61 |
RODIL I F, ATTARD K M, NORKKO J, et al. Estimating respiration rates and secondary production of macrobenthic communities across coastal habitats with contrasting structural biodiversity[J]. Ecosystems, 2020, 23(3): 630-647.
|
62 |
KRISTENSEN E, KOSTKA J E. Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions[M]// Coastal and estuarine studies. Washington, D. C.: American Geophysical Union, 2005: 125-157.
|
63 |
MIDDELBURG J J. Reviews and syntheses: to the bottom of carbon processing at the seafloor[J]. Biogeosciences, 2018, 15(2): 413-427.
|
64 |
VOLARIC M P, BERG P, REIDENBACH M A. Drivers of oyster reef ecosystem metabolism measured across multiple timescales[J]. Estuaries and Coasts, 2020, 43(8): 2 034-2 045.
|
65 |
SNELGROVE P V R, SOETAERT K, SOLAN M, et al. Global carbon cycling on a heterogeneous seafloor[J]. Trends in Ecology & Evolution, 2018, 33(2): 96-105.
|
66 |
MAZLUMYAN S, BOLTACHОVA N. Long-term variations in macrobenthos diversity at the Istanbul strait’s (Bosporus) outlet area of the black sea[J]. Ecologica Montenegrina, 2017, 14: 80-91.
|
67 |
VEDENIN A, GUSKY M, GEBRUK A, et al. Spatial distribution of benthic macrofauna in the central Arctic Ocean[J]. PLoS ONE, 2018, 13(10). DOI:10.1371/journal.pone.0200121 .
|
68 |
HUGHES S J M, RUHL H A, HAWKINS L E, et al. Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea[J]. The Journal of Experimental Biology, 2011, 214(Pt 15): 2 512-2 521.
|
69 |
CHRISTIANSEN B, DIEL-CHRISTIANSEN S. Respiration of lysianassoid amphipods in a subarctic fjord and some implications on their feeding ecology[J]. Sarsia, 1993, 78(1): 9-15.
|
70 |
YANG T H, SOMERO G N. Effects of feeding and food deprivation on oxygen consumption, muscle protein concentration and activities of energy metabolism enzymes in muscle and brain of shallow-living (Scorpaena guttata) and deep-living (Sebastolobus alascanus) scorpaenid fishes[J]. Journal of Experimental Biology, 1993, 181(1): 213-232.
|
71 |
SERGEEVA N G, MAZLUMYAN S A. Deep-water hypoxic meiobenthic protozoa and Metazoa taxa of the Istanbul strait’s (Bosporus) outlet area of the black sea[J]. Ecologica Montenegrina, 2015, 2(3): 255-270.
|
72 |
STRATMANN T, van OEVELEN D, MARTÍNEZ A P, et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities[J]. Scientific Data, 2020, 7. DOI:10.1038/s41597-020-0551-2 .
|
73 |
LEDUC D, ROWDEN A A, GLUD R N, et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 116: 264-275.
|
74 |
KRISTENSEN E, PENHA-LOPES G, DELEFOSSE M, et al. What is bioturbation?The need for a precise definition for fauna in aquatic sciences[J]. Marine Ecology Progress Series, 2012, 446: 285-302.
|
75 |
HUFFARD C L, KUHNZ L A, LEMON L,et al. Demographic indicators of change in a deposit-feeding abyssal holothurian community (Station M, 4 000 m)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 109: 27-39.
|
76 |
DURDEN J M, BETT B J, HUFFARD C L, et al. Response of deep-sea deposit-feeders to detrital inputs: a comparison of two abyssal time-series sites[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2020, 173. DOI:10.1016/j.dsr2.2019.104677 .
|
77 |
VOLKENBORN N, POLERECKY L, HEDTKAMP S I C, et al. Bioturbation and bioirrigation extend the open exchange regions in permeable sediments[J]. Limnology and Oceanography, 2007, 52(5): 1 898-1 909.
|
78 |
JØRGENSEN B B, GLUD R N, HOLBY O. Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea)[J]. Marine Ecology Progress Series, 2005, 292: 85-95.
|
79 |
ALLER R C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation[J]. Chemical Geology, 1994, 114(3/4): 331-345.
|
1 |
GLUD R N, KÜHL M, WENZHÖFER F, et al. Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production[J]. Marine Ecology Progress Series, 2002, 238: 15-29.
|
2 |
COLIJN F, de JONGE V N. Primary production of microphytobenthos in the Ems-dollard Estuary[J]. Marine Ecology Progress Series, 1984, 14: 185-196.
|
3 |
CAHOON L B, COOKE J E. Benthic microalgal production in onslow bay, north Carolina, USA[J]. Marine Ecology Progress Series, 1992, 84: 185-196.
|
4 |
DUNNE J P, SARMIENTO J L, GNANADESIKAN A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor[J]. Global Biogeochemical Cycles, 2007, 21(4).DOI: 10.1029/2006GB002907 .
|
5 |
BERNER R A, CANFIELD D E. A new model for atmospheric oxygen over Phanerozoic time[J]. American Journal of Science, 1989, 289(4): 333-361.
|
6 |
BJERRUM C J, CANFIELD D E. New insights into the burial history of organic carbon on the early Earth[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8). DOI: 10.1029/2004GC000713 .
|
7 |
GLUD R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243-289.
|
8 |
FROELICH P N, KLINKHAMMER G P, BENDER M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1 075-1 090.
|
9 |
NØHR GLUD R, GUNDERSEN J K, JØRGENSEN B B,et al. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(11/12): 1 767-1 788.
|
10 |
JØRGENSEN B B, WENZHÖFER F, EGGER M,et al. Sediment oxygen consumption: role in the global marine carbon cycle[J]. Earth-Science Reviews, 2022, 228. DOI:10.1016/j.earscirev.2022.103987 .
|
11 |
RØY H, KALLMEYER J, ADHIKARI R R, et al. Aerobic microbial respiration in 86-million-year-old deep-sea red clay[J]. Science, 2012, 336(6 083): 922-925.
|
80 |
ALLER R C. Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor[J]. Journal of Marine Research, 2004, 62(6): 815-835.
|
81 |
JØRGENSEN B B. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments[J]. Marine Biology, 1977, 41(1): 7-17.
|
82 |
JØRGENSEN B B. Bacteria and marine biogeochemistry[M]//Marine geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 169-206.
|
83 |
BRADLEY J A, ARNDT S, AMEND J P, et al. Widespread energy limitation to life in global subseafloor sediments[J]. Science Advances, 2020, 6(32). DOI: 10.1126/sciadv.aba0697 .
|
84 |
JØRGENSEN B B. Mineralization of organic matter in the sea bed—the role of sulphate reduction[J]. Nature, 1982, 296(5 858): 643-645.
|
85 |
MÄRZ C. Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: authigenic apatite and Fe(II) phosphates[J]. Marine Geology, 2018, 404: 84-96.
|
86 |
RAISWELL R, CANFIELD D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
|
87 |
BERNER R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268(1): 1-23.
|
88 |
JØRGENSEN B B, FINDLAY A J, PELLERIN A. The biogeochemical sulfur cycle of marine sediments[J]. Frontiers in Microbiology, 2019, 10. DOI:10.3389/fmicb.2019.00849 .
|
89 |
WALLMANN K, PINERO E, BURWICZ E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach[J]. Energies, 2012, 5(7): 2 449-2 498.
|
90 |
CADÉE G C. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea[J]. Netherlands Journal of Sea Research, 1974, 8(2/3): 260-291.
|
12 |
REIMERS C E, FISCHER K M, MEREWETHER R, et al. Oxygen microprofiles measured in situ in deep ocean sediments [J]. Nature, 1986, 320(6 064): 741-744.
|
13 |
CANFIELD D E, KRISTENSEN E, THAMDRUP B. Aquatic geomicrobiology[J]. Advances in Marine Biology, 2005, 48: 1-599.
|
14 |
ANDERSON L A, SARMIENTO J L. Redfield ratios of remineralization determined by nutrient data analysis[J]. Global Biogeochemical Cycles, 1994, 8(1): 65-80.
|
15 |
WENZHÖFER F, GLUD R N. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(7): 1 255-1 279.
|
16 |
JØRGENSEN B B, REVSBECH N P. Diffusive boundary layers and the oxygen uptake of sediments and detritus[J]. Limnology and Oceanography, 1985, 30(1): 111-122.
|
17 |
REVSBECH N P, NIELSEN L P, RAMSING N B. A novel microsensor for determination of apparent diffusivity in sediments[J]. Limnology and Oceanography, 1998, 43(5): 986-992.
|
18 |
RABOUILLE C, DENIS L, DEDIEU K, et al. Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 49-69.
|
19 |
TAILLEFERT M, NUZZIO D B. The application of electrochemical tools for in situ measurements in aquatic systems[J]. Electroanalysis, 2000, 12(6): 401-412.
|
20 |
GLUD R N, WENZHÖFER F, MIDDELBOE M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
|
21 |
GLUD R N, GUNDERSEN J K, HOLBY O. Benthic in situ respiration in the upwelling area off central Chile [J]. Marine Ecology Progress Series, 1999, 186: 9-18.
|
22 |
DEVOL A H, CHRISTENSEN J P. Benthic fluxes nitrogen cycling in sediments of continental margin of eastern North Pacific[J]. Journal of Marine Research, 1993, 51(2): 345-372.
|
23 |
GLUD R N, GUNDERSEN J K, RØY H, et al. Seasonal dynamics of benthic O2 uptake in a semienclosed bay: importance of diffusion and faunal activity[J]. Limnology and Oceanography, 2003, 48(3): 1 265-1 276.
|
24 |
HALL P O J, BRUNNEGÅRD J, HULTHE G, et al. Dissolved organic matter in abyssal sediments: core recovery artifacts[J]. Limnology and Oceanography, 2007, 52(1): 19-31.
|
25 |
WENZHOEFER F, LEMBURG J, HOFBAUER M, et al. Tramper[C]// OCEANS 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016: 1-6.
|
26 |
LEMBURG J, WENZHÖFER F, HOFBAUER M, et al. Benthic crawler NOMAD[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans. Kobe, Japan: IEEE, 2018: 1-7.
|
27 |
PAMATMAT M M, FENTON D. An instrument for measuring subtidal benthic metabolism in situ[J]. Limnology and Oceanography, 1968, 13(3): 537-540.
|
28 |
SMITH K L. Benthic community respiration in the N.W. Atlantic Ocean: in situ measurements from 40 to 5200 M[J]. Marine Biology, 1978, 47(4): 337-347.
|
29 |
HALL P O J, ANDERSON L G, van der LOEFF M M R, et al. Oxygen uptake kinetics in the benthic boundary layer[J]. Limnology and Oceanography, 1989, 34(4): 734-746.
|
30 |
CAPRAIS J C, LANTERI N, CRASSOUS P, et al. A new CALMAR benthic chamber operating by submersible: first application in the cold-seep environment of Napoli mud volcano (Mediterranean Sea)[J]. Limnology and Oceanography: Methods, 2010, 8(6): 304-312.
|
31 |
LUO M, GLUD R N, PAN B B, et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption[J]. Geophysical Research Letters, 2018, 45(6): 2 752-2 760.
|
32 |
VIOLLIER E. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey[J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 5-31.
|
91 |
BARRANGUET C, KROMKAMP J, PEENE J. Factors controlling primary production and photosynthetic characteristics of intertidal microphytobenthos[J]. Marine Ecology Progress Series, 1998, 173: 117-126.
|
92 |
GLUD R N, RAMSING N B, REVSBECH N P. Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors1[J]. Journal of Phycology, 1992, 28(1): 51-60.
|
93 |
FENCHEL T, GLUD R N. Benthic primary production and O2-CO2 dynamics in a shallow-water sediment: spatial and temporal heterogeneity[J]. Ophelia, 2000, 53(2): 159-171.
|
94 |
EPPING E H G, KHALILI A, THAR R. Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles[J]. Limnology and Oceanography, 1999, 44(8): 1 936-1 948.
|
95 |
KÜHL M, GLUD R N, PLOUG H, et al. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm1[J]. Journal of Phycology, 1996, 32(5): 799-812.
|
96 |
WIELAND A, KÜHL M. Irradiance and temperature regulation of oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat (Solar Lake, Egypt)[J]. Marine Biology, 2000, 137(1): 71-85.
|
97 |
HANCKE K, GLUD R N. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities[J]. Aquatic Microbial Ecology, 2004, 37: 265-281.
|
98 |
THAMDRUP B, HANSEN J W, JØRGENSEN B B. Temperature dependence of aerobic respiration in a coastal sediment[J]. FEMS Microbiology Ecology, 1998, 25(2): 189-200.
|
99 |
THAMDRUP B, FLEISCHER S. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments[J]. Aquatic Microbial Ecology, 1998, 15: 191-199.
|
100 |
THERKILDSEN M S, LOMSTEIN B A. Seasonal variation in net benthic C-mineralization in a shallow estuary[J]. FEMS Microbiology Ecology, 1993, 12(2): 131-142.
|
101 |
HARRIS P T. Geomorphology of the oceans[J]. Marine Geology, 2014, 352: 4-24.
|
102 |
SMITH K L, RUHL H A, KAUFMANN R S, et al. Tracing abyssal food supply back to upper-ocean processes over a 17-year time series in the northeast Pacific[J]. Limnology and Oceanography, 2008, 53(6): 2 655-2 667.
|
103 |
WIEDMANN I, ERSHOVA E, BLUHM B, et al. What feeds the benthos in the Arctic Basins? assembling a carbon budget for the deep Arctic Ocean[J]. Frontiers in Marine Science, 2020. DOI:10.3389/FMARS.2020.00224 .
|
104 |
PAK H, ZANEVELD J R V. Bottom nepheloid layers and bottom mixed layers observed on the continental shelf off Oregon[J]. Journal of Geophysical Research, 1977, 82(27): 3 921-3 931.
|
105 |
SPINRAD R W, ZANEVELD J R V, KITCHEN J C. A study of the optical characteristics of the suspended particles in the benthic nepheloid layer of the Scotian Rise[J]. Journal of Geophysical Research: Oceans, 1983, 88(C12): 7 641-7 645.
|
106 |
RANSOM B. Comparison of pelagic and nepheloid layer marine snow: implications for carbon cycling[J]. Marine Geology, 1998, 150(1/2/3/4): 39-50.
|
107 |
TREUDE T, SMITH C R, WENZHÖFER F, et al. Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis[J]. Marine Ecology Progress Series, 2009, 382: 1-21.
|
108 |
BOETIUS A, ALBRECHT S, BAKKER K, et al. Export of algal biomass from the melting Arctic Sea ice[J]. Science, 2013, 339(6 126): 1 430-1 432.
|
109 |
SMITH K L, HUFFARD C L, SHERMAN A D, et al. Decadal change in sediment community oxygen consumption in the abyssal northeast Pacific[J]. Aquatic Geochemistry, 2016, 22(5/6): 401-417.
|
110 |
PAULMIER A. Oxygen Minimum Zones (OMZs) in the modern ocean[J]. Progress in Oceanography, 2009, 80(3/4): 113-128.
|
111 |
BREITBURG D, LEVIN L A, OSCHLIES A, et al. Declining oxygen in the global ocean and coastal waters [J]. Science, 2018, 359(6 371). DOI: 10.1126/science.aam7240 .
|
112 |
SCHMIDTKO S, STRAMMA L, VISBECK M. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 2017, 542(7 641): 335-339.
|
113 |
LAM P, KUYPERS M M M. Microbial nitrogen cycling processes in oxygen minimum zones[J]. Annual Review of Marine Science, 2011, 3: 317-345.
|
114 |
SEITAJ D, SCHAUER R, SULU-GAMBARI F, et al. Cable bacteria generate a firewall against Euxinia in seasonally hypoxic basins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13 278-13 283.
|
115 |
ORSI W D, MORARD R, VUILLEMIN A, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor[J]. The ISME Journal, 2020, 14(10): 2 580-2 594.
|
116 |
LEVIN L A. Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700-1 100 m)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(6/7): 449-471.
|
117 |
CANFIELD D E. Factors influencing organic carbon preservation in marine sediments[J]. Chemical Geology, 1994, 114(3/4): 315-329.
|
118 |
BARONI I R, PALASTANGA V, SLOMP C P. Enhanced organic carbon burial in sediments of oxygen minimum zones upon ocean deoxygenation[J]. Frontiers in Marine Science, 2020, 6. DOI:10.3389/fmars.2019.00839 .
|
119 |
WOLFF T. The hadal community, an introduction[J]. Deep Sea Research (1953), 1959, 6: 95-124.
|
120 |
JAMIESON A J. Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
|
121 |
DU M R, PENG X T, ZHANG H B, et al. Geology, environment, and life in the deepest part of the world’s oceans[J]. Innovation (Cambridge (Mass)), 2021, 2(2). DOI: 10.1016/j.xinn.2021.100109 .
|
122 |
XU Y P. Biogeochemistry of hadal trenches: recent developments and future perspectives[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 19-26.
|
123 |
LUO M. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches[J]. Marine Geology, 2017, 386: 98-106.
|
124 |
XU Y P, JIA Z, XIAO W, et al. Glycerol dialkyl glycerol tetraethers in surface sediments from three Pacific trenches: distribution, source and environmental implications[J]. Organic Geochemistry, 2020, 147. DOI:10.1016/j.orggeochem.2020.104079 .
|
125 |
WENZHÖFER F, OGURI K, MIDDELBOE M, et al. Benthic carbon mineralization in hadal trenches: assessment by in situ O2 microprofile measurements[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 116: 276-286.
|
126 |
GLUD R N, BERG P, THAMDRUP B, et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea[J]. Communications Earth & Environment, 2021, 2. DOI:10.1038/s43247-020-00087-2 .
|
127 |
LUO M, GIESKES J, CHEN L Y, et al. Sources, degradation, and transport of organic matter in the new Britain shelf-trench continuum, Papua new Guinea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6): 1 680-1 695.
|
128 |
XU Y P, LI X X, LUO M, et al. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama trenches[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(5). DOI:10.1029/2020JG006189 .
|
129 |
ZHANG X, XU Y, XIAO W, et al. The hadal zone is an important and heterogeneous sink of black carbon in the ocean[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00351-7 .
|
130 |
OGURI K, KAWAMURA K, SAKAGUCHI A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki earthquake[J]. Scientific Reports, 2013, 3. DOI:10.1038/srep01915 .
|
131 |
KANHAI L D K, OFFICER R, LYASHEVSKA O, et al. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean[J]. Marine Pollution Bulletin, 2017, 115(1/2): 307-314.
|
132 |
SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1 889-1 916.
|
133 |
LEVIN L A, SIBUET M. Understanding continental margin biodiversity: a new imperative[J]. Annual Review of Marine Science, 2012, 4: 79-112.
|
134 |
ORPHAN V J, HOUSE C H, HINRICHS K U, et al. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5 529): 484-487.
|
135 |
BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6 804): 623-626.
|
136 |
REEBURGH W S. Oceanic methane biogeochemistry[J]. ChemInform, 2007, 38(20). DOI:10.1021/cr050362v .
|
137 |
REGNIER P. Quantitative analysis of Anaerobic Oxidation of Methane (AOM) in marine sediments: a modeling perspective[J]. Earth-Science Reviews, 2011, 106(1/2): 105-130.
|
138 |
BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9): 725-734.
|
139 |
SOMMER S, PFANNKUCHE O, LINKE P, et al. Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge[J]. Global Biogeochemical Cycles, 2006, 20(2). DOI:10.1029/2004GB002389 .
|
140 |
GRÜNKE S, FELDEN J, LICHTSCHLAG A, et al. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea)[J]. Geobiology, 2011, 9(4): 330-348.
|
141 |
LICHTSCHLAG A, FELDEN J, BRÜCHERT V, et al. Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Håkon Mosby Mud Volcano (Barents Sea)[J]. Limnology and Oceanography, 2010, 55(2): 931-949.
|
142 |
SOMMER S. Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand)[J]. Marine Geology, 2010, 272(1/2/3/4): 223-232.
|
33 |
ARCHER D, DEVOL A. Benthic oxygen fluxes on the Washington shelf and slope: a comparison of in situ microelectrode and chamber flux measurements[J]. Limnology and Oceanography, 1992, 37(3): 614-629.
|
34 |
KONONETS M, TENGBERG A, NILSSON M, et al. In situ incubations with the Gothenburg benthic chamber landers: applications and quality control[J]. Journal of Marine Systems, 2021, 214. DOI:10.1016/j.jmarsys.2020.103475 .
|
35 |
TENGBERG A. Benthic chamber and profiling landers in oceanography—a review of design, technical solutions and functioning[J]. Progress in Oceanography, 1995, 35(3): 253-294.
|
36 |
BENDER M, JAHNKE R, RAY W, et al. Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 685-697.
|
37 |
GLUD R N, JENSEN K, REVSBECH N P, et al. Diffusivity in surficial sediments and benthic mats determined by use of a combined N2O-O2 microsensor[J]. Geochimica et Cosmochimica Acta, 1995, 59(2): 231-237.
|
38 |
GLUD R N, BERG P, FOSSING H, et al. Effect of the diffusive boundary layer on benthic mineralization and O2 distribution: a theoretical model analysis[J]. Limnology and Oceanography, 2007, 52(2): 547-557.
|
39 |
LORENZEN J, GLUD R N, REVSBECH N P. Impact of microsensor-caused changes in diffusive boundary layer thickness on O2 profiles and photosynthetic rates in benthic communities of microorganisms[J]. Marine Ecology Progress Series, 1995, 119: 237-241.
|
143 |
FELDEN J, LICHTSCHLAG A, WENZHÖFER F, et al. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)[J]. Biogeosciences, 2013, 10(5): 3 269-3 283.
|
144 |
RISTOVA P POP, WENZHÖFER F, RAMETTE A, et al. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth) [J]. Biogeosciences, 2012, 9(12): 5 031-5 048.
|