1 |
CHEN Min. Chemical oceanography[M]. Beijing: Ocean Press, 2009.
|
|
陈敏. 化学海洋学[M]. 北京: 海洋出版社, 2009.
|
2 |
SIEBER M, CONWAY T M, de SOUZA G F, et al. Physical and biogeochemical controls on the distribution of dissolved cadmium and its isotopes in the Southwest Pacific Ocean[J]. Chemical Geology, 2019, 511: 494-509.
|
3 |
ZHANG R F, REN J L, ZHANG Z R, et al. Distribution patterns of dissolved trace metals (Fe, Ni, Cu, Zn, Cd, and Pb) in China marginal seas during the GEOTRACES GP06-CN cruise[J]. Chemical Geology, 2022, 604. DOI:10.1016/j.chemgeo.2022.120948 .
|
4 |
LOHAN M C, TAGLIABUE A. Oceanic micronutrients: trace metals that are essential for marine life[J]. Elements, 2018, 14(6): 385-390.
|
5 |
ZHANG Zhengbin. Marine chemistry[M]. Qingdao: China Ocean University Press, 2004.
|
|
张正斌. 海洋化学[M]. 青岛: 中国海洋大学出版社, 2004.
|
6 |
GEOTRACES Intermediate Data Product Group. The GEOTRACES intermediate data product 2021v2 (IDP2021v2) [DB]. NERC EDS British Oceanographic Data Centre NOC, 2023.
|
7 |
PRICE N M, MOREL F M M. Cadmium and cobalt substitution for zinc in a marine diatom[J]. Nature, 1990, 344: 658-660.
|
8 |
PATEY M D, RIJKENBERG M J A, STATHAM P J, et al. Determination of nitrate and phosphate in seawater at nanomolar concentrations[J]. Trends in Analytical Chemistry, 2008, 27(2): 169-182.
|
9 |
CONWAY T M, JOHN S G. Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 2015, 148: 269-283.
|
10 |
DIEU VU H THI, SOHRIN Y. Diverse stoichiometry of dissolved trace metals in the Indian Ocean[J]. Scientific Reports, 2013, 3. DOI:10.1038/srep01745 .
|
11 |
SIEBER M, LANNING N T, BUNNELL Z B, et al. Biological, physical, and atmospheric controls on the distribution of cadmium and its isotopes in the Pacific Ocean[J]. Global Biogeochemical Cycles, 2023, 37(2). DOI:10.1029/2022GB007441 .
|
12 |
JOHN S G, HELGOE J, TOWNSEND E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific[J]. Marine Chemistry, 2018, 201: 256-262.
|
13 |
BOYLE E A, SCLATER F, EDMOND J M. On the marine geochemistry of cadmium[J]. Nature, 1976, 263(5 572): 42-44.
|
14 |
HESTER K, BOYLE E. Water chemistry control of cadmium content in recent benthic foraminifera[J]. Nature, 1982, 298: 260-262.
|
15 |
DELANEY M L, BOYLE E A. Cd/Ca in late Miocene benthic foraminifera and changes in the global organic carbon budget[J]. Nature, 1987, 330: 156-159.
|
16 |
OHKOUCHI N, KAWAHATA H, OKADA M, et al. Benthic foraminifera cadmium record from the western equatorial Pacific[J]. Marine Geology, 1995, 127(1/2/3/4): 167-180.
|
17 |
VALLEY S, LYNCH-STIEGLITZ J, MARCHITTO T M. Timing of deglacial AMOC variability from a high-resolution seawater cadmium reconstruction[J]. Paleoceanography, 2017, 32(11): 1 195-1 203.
|
18 |
MARCHITTO T M, OPPO D W, CURRY W B. Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic[J]. Paleoceanography, 2002, 17(3). DOI:10.1029/2000PA000598 .
|
19 |
MATTHEWS K A, GROTTOLI A G, McDONOUGH W F, et al. Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca)[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4 537-4 550.
|
20 |
PALMER M R, BRUMMER G J, COOPER M J, et al. Multi-proxy reconstruction of surface water pCO2 in the northern Arabian Sea since 29 ka[J]. Earth and Planetary Science Letters, 2010, 295(1/2): 49-57.
|
21 |
SCOR Working Group. GEOTRACES—an international study of the global marine biogeochemical cycles of trace elements and their isotopes[J]. Geochemistry, 2007, 67(2): 85-131.
|
22 |
LAM P J, ANDERSON R F. GEOTRACES: the marine biogeochemical cycle of trace elements and their isotopes[J]. Elements, 2018, 14(6): 377-378.
|
23 |
RUAN Yaqing, ZHANG Ruifeng. Review of the copper biogeochemistry in seawater[J]. Advances in Earth Science, 2020, 35(12): 1 243-1 255.
|
|
阮雅青, 张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1 243-1 255.
|
24 |
HERNÁNDEZ-CANDELARIO del C I, LARES M L, CAMACHO-IBAR V F, et al. Dissolved cadmium and its relation to phosphate in the deep region of the Gulf of Mexico[J]. Journal of Marine Systems, 2019, 193: 27-45.
|
25 |
CULLEN J T, MALDONADO M T. Biogeochemistry of cadmium and its release to the environment[M]// Cadmium: from toxicity to essentiality. Dordrecht: Springer, 2013: 31-62.
|
26 |
GARNIER J M, GUIEU C. Release of cadmium in the Danube Estuary: contribution of physical and chemical processes as determined by an experimental approach[J]. Marine Environmental Research, 2003, 55(1): 5-25.
|
27 |
HO T Y, YOU C F, CHOU W C, et al. Cadmium and phosphorus cycling in the water column of the South China Sea: the roles of biotic and abiotic particles[J]. Marine Chemistry, 2009, 115(1/2): 125-133.
|
28 |
RIPPERGER S, REHKÄMPER M, PORCELLI D, et al. Cadmium isotope fractionation in seawater—a signature of biological activity[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 670-684.
|
29 |
WALSH R S, HUNTER K A. Influence of phosphorus storage on the uptake of cadmium by the marine alga Macrocystis pyrifera [J]. Limnology and Oceanography, 1992, 37(7): 1 361-1 369.
|
30 |
HORNER T J, LEE R B Y, HENDERSON G M, et al. Nonspecific uptake and homeostasis drive the oceanic cadmium cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(7): 2 500-2 505.
|
31 |
van GEEN A, MCCORKLE D C, KLINKHAMMER G P. Sensitivity of the phosphate-cadmium-carbon isotope relation in the ocean to cadmium removal by suboxic sediments[J]. Paleoceanography, 1995, 10(2): 159-169.
|
32 |
JANSSEN D J, CONWAY T M, JOHN S G, et al. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 6 888-6 893.
|
33 |
MOREL F, HERING J G. Principles and applications of aquatic chemistry[M]. New York: Wiley, 1993.
|
34 |
BRULAND K W. Complexation of cadmium by natural organic ligands in the central North Pacific[J]. Limnology and Oceanography, 1992, 37(5): 1 008-1 017.
|
35 |
BAARS O, ABOUCHAMI W, GALER S J G, et al. Dissolved cadmium in the Southern Ocean: distribution, speciation, and relation to phosphate[J]. Limnology and Oceanography, 2014, 59(2): 385-399.
|
36 |
MOREL F M M, MALCOLM E G. The biogeochemistry of cadmium[J]. Metal Ions in Biological Systems, 2005, 43: 195-219.
|
37 |
HENRY R P. Multiple roles of carbonic anhydrase in cellular transport and metabolism[J]. Annual Review of Physiology, 1996, 58: 523-538.
|
38 |
REHKÄMPER M, WOMBACHER F, HORNER T J, et al. Natural and anthropogenic Cd isotope variations[M]// Handbook of environmental isotope geochemistry. Berlin, Heidelberg: Springer, 2012: 125-154.
|
39 |
ZHONG Q H, ZHOU Y C, TSANG D C W, et al. Cadmium isotopes as tracers in environmental studies: a review[J]. Science of the Total Environment, 2020, 736. DOI:10.1016/j.scitotenv.2020.139585 .
|
40 |
ABOUCHAMI W, GALER S J G, de BAAR H J W, et al. Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367.
|
41 |
BOYLE E A. Cadmium: chemical tracer of deepwater paleoceanography[J]. Paleoceanography, 1988, 3(4): 471-489.
|
42 |
YU J M, THORNALLEY D J R, RAE J W B, et al. Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation[J]. Paleoceanography, 2013, 28(2): 237-252.
|
43 |
ELDERFIELD H, RICKABY R E M. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean[J]. Nature, 2000, 405: 305-310.
|
44 |
MA R F, SÉPULCRE S, LICARI L, et al. Changes in productivity and intermediate circulation in the northern Indian Ocean since the last deglaciation: new insights from benthic foraminiferal Cd∕Ca records and benthic assemblage analyses[J]. Climate of the Past, 2022, 18(8): 1 757-1 774.
|
45 |
XIE R C, GALER S J G, ABOUCHAMI W, et al. The cadmium-phosphate relationship in the western South Atlantic—the importance of mode and intermediate waters on the global systematics[J]. Marine Chemistry, 2015, 177: 110-123.
|
46 |
IKHSANI I Y, WONG K H, OGAWA H, et al. Dissolved trace metals (Fe, Mn, Pb, Cd, Cu, and Zn) in the eastern Indian Ocean[J]. Marine Chemistry, 2023, 248. DOI:10.1016/j.marchem.2023.104208 .
|
47 |
ABOUCHAMI W, GALER S J G, de BAAR H J W, et al. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity[J]. Earth and Planetary Science Letters, 2011, 305(1/2): 83-91.
|
48 |
MA Hao, WANG Zhaomin, SHI Jiuxin. The role of the Southern Ocean physical processes in global climate system[J]. Advances in Earth Science, 2012, 27(4): 398-412.
|
|
马浩, 王召民, 史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.
|
49 |
QUAY P, CULLEN J, LANDING W, et al. Processes controlling the distributions of Cd and PO4 in the ocean[J]. Global Biogeochemical Cycles, 2015, 29(6): 830-841.
|
50 |
WAELES M, MAGUER J F, BAURAND F, et al. Off Congo waters (Angola Basin, Atlantic Ocean): a hot spot for cadmium-phosphate fractionation[J]. Limnology and Oceanography, 2013, 58(4): 1 481-1 490.
|
51 |
FREW R, BOWIE A, CROOT P, et al. Macronutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(11/12): 2 467-2 481.
|
52 |
BASTERRETXEA G, FONT-MUÑOZ J S, HERNÁNDEZ-CARRASCO I, et al. Global variability of high-nutrient low-chlorophyll regions using neural networks and wavelet coherence analysis[J]. Ocean Science, 2023, 19(4): 973-990.
|
53 |
de BAAR H J W, BOYD P W, COALE K H, et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment[J]. Journal of Geophysical Research: Oceans, 2005, 110(C9). DOI:10.1029/2004JC002601 .
|
54 |
KUDO I, KOKUBUN H, MATSUNAGA K. Chemical fractionation of phosphorus and cadmium in the marine diatom Phaeodactylum tricornutum [J]. Marine Chemistry, 1996, 52(3/4): 221-231.
|
55 |
SUNDA W G, HUNTSMAN S A. Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling[J]. Limnology and Oceanography, 2000, 45(7): 1 501-1 516.
|
56 |
CULLEN J T, SHERRELL R M. Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages[J]. Limnology and Oceanography, 2005, 50(4): 1 193-1 204.
|
57 |
ABE K, MATSUNAGA K. Mechanism controlling Cd and PO4 concentrations in Funka Bay, Japan[J]. Marine Chemistry, 1988, 23(1/2): 145-152.
|
58 |
FREW R D, HUNTER K A. Influence of Southern Ocean waters on the cadmium-phosphate properties of the global ocean[J]. Nature, 1992, 360: 144-146.
|
59 |
FINKEL Z V, QUIGG A S, CHIAMPI R K, et al. Phylogenetic diversity in cadmium: phosphorus ratio regulation by marine phytoplankton[J]. Limnology and Oceanography, 2007, 52(3): 1 131-1 138.
|
60 |
TWINING B S, BAINES S B. The trace metal composition of marine phytoplankton[J]. Annual Review of Marine Science, 2013, 5: 191-215.
|
61 |
ROSHAN S, DEVRIES T. Global contrasts between oceanic cycling of cadmium and phosphate[J]. Global Biogeochemical Cycles, 2021, 35(6). DOI:10.1029/2021GB006952 .
|
62 |
CULLEN J T. On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: could chronic iron limitation of phytoplankton growth cause the kink?[J]. Limnology and Oceanography, 2006, 51(3): 1 369-1 380.
|
63 |
POWELL C F, BAKER A R, JICKELLS T D, et al. Estimation of the atmospheric flux of nutrients and trace metals to the eastern tropical North Atlantic Ocean[J]. Journal of the Atmospheric Sciences, 2015, 72(10): 4 029-4 045.
|
64 |
SOOKHDEO C. Wet and dry atmospheric deposition of nutrients and bioactive trace metals to coastal waters of the mid-Atlantic bight [D]. Norfolk: Old Dominion, 2018.
|
65 |
GUIEU C, LOŸE-PILOT M D, BENYAHYA L, et al. Spatial variability of atmospheric fluxes of metals (Al, Fe, Cd, Zn and Pb) and phosphorus over the whole Mediterranean from a one-year monitoring experiment: biogeochemical implications[J]. Marine Chemistry, 2010, 120(1/2/3/4): 164-178.
|
66 |
MARCHITTO T M, BROECKER W S. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(12). DOI:10.1029/2006GC001323 .
|
67 |
LI R, ZHANG H H, WANG F, et al. Abundance and fractional solubility of phosphorus and trace metals in combustion ash and desert dust: implications for bioavailability and reactivity[J]. Science of the Total Environment, 2022, 816. DOI:10.1016/j.scitotenv.2021.151495 .
|
68 |
ROSHAN S, WU J F, DEVRIES T. Controls on the cadmium-phosphate relationship in the tropical South Pacific[J]. Global Biogeochemical Cycles, 2017, 31(10): 1 516-1 527.
|
69 |
MIDDAG R, van HEUVEN S M A C, BRULAND K W, et al. The relationship between cadmium and phosphate in the Atlantic Ocean unravelled[J]. Earth and Planetary Science Letters, 2018, 492: 79-88.
|
70 |
ZHENG L J, MINAMI T, TAKANO S, et al. Sectional distribution patterns of Cd, Ni, Zn, and Cu in the North Pacific Ocean: relationships to nutrients and importance of scavenging[J]. Global Biogeochemical Cycles, 2021, 35(7). DOI:10.1029/2020GB006558 .
|
71 |
BOURNE H L, BISHOP J K B, LAM P J, et al. Global spatial and temporal variation of Cd∶P in euphotic zone particulates[J]. Global Biogeochemical Cycles, 2018, 32(7): 1 123-1 141.
|
72 |
JANSSEN D J, ABOUCHAMI W, GALER S J G, et al. Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific[J]. Earth and Planetary Science Letters, 2017, 472: 241-252.
|
73 |
LANE E S, SEMENIUK D M, STRZEPEK R F, et al. Effects of iron limitation on intracellular cadmium of cultured phytoplankton: implications for surface dissolved cadmium to phosphate ratios[J]. Marine Chemistry, 2009, 115(3/4): 155-162.
|
74 |
FREW R D. Antarctic bottom water formation and the global cadmium to phosphorus relationship[J]. Geophysical Research Letters, 1995, 22(17): 2 349-2 352.
|
75 |
LEE J M, HELLER M I, LAM P J. Size distribution of particulate trace elements in the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16)[J]. Marine Chemistry, 2018, 201: 108-123.
|
76 |
LACAN F, FRANCOIS R, JI Y C, et al. Cadmium isotopic composition in the ocean[J]. Geochimica et Cosmochimica Acta, 2006, 70(20): 5 104-5 118.
|
77 |
XUE Z C, REHKÄMPER M, HORNER T J, et al. Cadmium isotope variations in the Southern Ocean[J]. Earth and Planetary Science Letters, 2013, 382: 161-172.
|
78 |
XIE R C, GALER S J G, ABOUCHAMI W, et al. Non-Rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic[J]. Earth and Planetary Science Letters, 2017, 471: 94-103.
|
79 |
YEATS P A, WESTERLUND S, FLEGAL A R. Cadmium, copper and nickel distributions at four stations in the eastern central and South Atlantic[J]. Marine Chemistry, 1995, 49(4): 283-293.
|
80 |
GUINOISEAU D, GALER S J G, ABOUCHAMI W, et al. Importance of cadmium sulfides for biogeochemical cycling of Cd and its isotopes in oxygen deficient zones—a case study of the Angola Basin[J]. Global Biogeochemical Cycles, 2019, 33(12): 1 746-1 763.
|
81 |
SIEBER M, LANNING N T, BIAN X, et al. The importance of reversible scavenging for the marine Zn cycle evidenced by the distribution of zinc and its isotopes in the Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2023, 128(4). DOI:10.1029/2022JC019419 .
|
82 |
HE Zhi, TIAN Jun. Pacific ocean deep circulation and global carbon cycle during the middle Miocene climate transition[J]. Advances in Earth Science, 2023, 38(1): 17-31.
|
|
何志, 田军. 中中新世气候转型期太平洋深层环流变化与碳循环[J]. 地球科学进展, 2023, 38(1): 17-31.
|
83 |
XIE R C, GALER S J G, ABOUCHAMI W, et al. Limited impact of eolian and riverine sources on the biogeochemical cycling of Cd in the tropical Atlantic[J]. Chemical Geology, 2019, 511: 371-379.
|
84 |
QUAY P, WU J F. Impact of end-member mixing on depth distributions of δ13C, cadmium and nutrients in the N. Atlantic Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 107-116.
|
85 |
CONWAY T M, JOHN S G. The cycling of iron, zinc and cadmium in the North East Pacific Ocean-Insights from stable isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 262-283.
|
86 |
BIANCHI D, WEBER T S, KIKO R, et al. Global niche of marine anaerobic metabolisms expanded by particle microenvironments[J]. Nature Geoscience, 2018, 11: 263-268.
|
87 |
GUINOISEAU D, GALER S J G, ABOUCHAMI W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308.
|
88 |
de SOUZA G F, VANCE D, SIEBER M, et al. Re-assessing the influence of particle-hosted sulphide precipitation on the marine cadmium cycle[J]. Geochimica et Cosmochimica Acta, 2022, 322: 274-296.
|
89 |
OHNEMUS D C, RAUSCHENBERG S, CUTTER G A, et al. Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones[J]. Limnology and Oceanography, 2017, 62(1): 3-25.
|
90 |
BIAN X, YANG S C, BOLSTER K M, et al. Biogeochemical cycling of Cd, Mn, and Ce in the Eastern Tropical North Pacific oxygen-deficient zone [J]. Limnology and Oceanography, 2023, 68(2): 483-497.
|