地球科学进展 ›› 2024, Vol. 39 ›› Issue (2): 207 -219. doi: 10.11867/j.issn.1001-8166.2024.011

研究简报 上一篇    

大洋中溶解态镉与磷酸盐的相关关系及关键控制过程
张瀚( ), 杨一超, 任景玲( )   
  1. 中国海洋大学海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
  • 收稿日期:2023-10-10 修回日期:2023-12-23 出版日期:2024-02-10
  • 通讯作者: 任景玲 E-mail:zh8332@stu.ouc.edu.cn;renjingl@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目(42176042);山东省“泰山学者工程”专项经费资助

Correlation Between Dissolved Cadmium and Phosphate and Its Key Controlling Processes in the Open Ocean

Han ZHANG( ), Yichao YANG, Jingling REN( )   

  1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 166100, China
  • Received:2023-10-10 Revised:2023-12-23 Online:2024-02-10 Published:2024-03-05
  • Contact: Jingling REN E-mail:zh8332@stu.ouc.edu.cn;renjingl@ouc.edu.cn
  • About author:ZHANG Han, Master student, research area includes marine biogeochemical cycles of trace elements. E-mail: zh8332@stu.ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42176042);The Taishan Scholars Programme of Shandong Province

大洋中溶解态镉(Cd)与磷酸盐(PO4)存在相关关系,常被用来反演古海洋生产力的变化。基于国际海洋研究计划“痕量元素及同位素的海洋生物地球化学研究”(GEOTRACES)2023年公布的数据集产品IDP2021v2以及近40年发表的相关文献,综述了大洋Cd-PO4线性相关关系的提出、不同海盆Cd-PO4关系汇总以及影响其相关性因素的最新研究进展。大洋Cd-PO4线性相关关系受多种因素影响,总体呈现双线性相关的特征。不同水深影响其相关关系的关键海洋生物地球化学过程不同:上层水(<200 m)主要为浮游植物的吸收,中层水(500~1 000 m)为颗粒态Cd与磷酸盐的再矿化与水团混合,深层水(>1 500 m)则主要为水团混合。其中,起源于南大洋的南极中层水与南极深层水向北的运移对全球大洋中深层水的Cd-PO4值的分布具有重要意义。

The correlation between dissolved cadmium (Cd) and phosphate (PO4) in the ocean is often used to reconstruct paleoproductivity. Based on the intermediate data product IDP2021v2 released by GEOTRACES (an international study of the marine biogeochemical cycles of trace elements and isotopes) in 2023 and related literature published in the past 40 years, this paper reviews the latest research progress regarding the correlation between Cd and PO4 in the ocean. It summarizes the Cd-PO4 relationship in various ocean basins and identifies their major influencing factors. The controlling factors affecting the oceanic Cd-PO4 relationship differ from surface to deep water and generally exhibit a bilinear correlation. In this study, the key processes controlling the correlation in different water layers are summarized, including the absorption of phytoplankton in the upper water (<200 m), remineralization of particulate Cd and P, mixing of water masses in the intermediate water mass (500~1 000 m), and mixing of different water masses in deep water (>1 500 m). The northward migration of Antarctic intermediate and bottom water from the Southern Ocean is vital in shaping the global ocean Cd-PO4 relationship.

中图分类号: 

图1 大洋PO4Cd垂直剖面图
数据源自GEOTRACES数据集产品IDP2021v2(https://www.geotraces.org/geotraces-intermediate-data-product-2021)与参考文献[ 9 - 12
Fig. 1 Vertical profile of PO4 and Cd in the open oceans
Data derived from the GEOTRACES Intermediate data product IDP2021v2 (https://www.geotraces.org/geotraces-intermediate-data-product-2021) and references [9-12]
图2 大洋Cd-PO4 相关关系曲线
(a) 北太平洋Cd与PO 4相关关系(据参考文献[ 13 ]修改); (b) 1988年全球海洋Cd与PO 4相关关系(据参考文献[ 41 ]修改);(c) 2021年全球海洋Cd与PO 4相关关系(数据源自GEOTRACES 数据集产品IDP2021v2,https://www.geotraces.org/geotraces-intermediate-data-product-2021,参考文献[ 11 46 ]及实验室未发表数据);横坐标中灰色数据标签代表双线性关系转折处PO 4的浓度值
Fig. 2 The correlation curve of oceanic Cd-PO4
(a) Correlation between Cd and PO 4 in the North Pacific Ocean (modified after reference [ 13 ]); (b) Correlation between Cd and PO 4 in the global ocean in 1988 (modified after reference [ 41 ]); (c) Correlation between Cd and PO 4 in the global ocean in 2021 (data derived from the GEOTRACES Intermediate data product IDP2021v2, https://www.geotraces.org/geotraces-intermediate-data-product-2021, references [11,46] and unpublished data); The grey data label in the horizontal coordinate represents the concentration value of PO 4 at the bend of the two-linear relation
图3 不同海域全水深Cd-PO4 关系
数据源自GEOTRACES数据集产品IDP2021v2(https://www.geotraces.org/geotraces-intermediate-data-product-2021)、印度洋数据源自参考文献[ 46 ]、南太平洋和北太平洋数据源自参考文献[ 11 ]以及北太平洋数据源自实验室未发表数据;横坐标中灰色数据标签代表双线性关系转折处PO 4的浓度值
Fig. 3 Full vertical depth Cd-PO4 relationship in different seas
Data derived from the GEOTRACES Intermediate data product IDP2021v2 (https://www.geotraces.org/geotraces-intermediate-data-product-2021), Indian Ocean date from reference [ 46 ], North Pacific and South Pacific date from reference [ 11 ] and North Pacific (unpublished data); The grey data label in the horizontal coordinate represents the concentration value of PO 4 at the bend of the two-linear relation
图4 影响大洋Cd/PO4 值的因素
物理背景场来自参考文献[ 47 - 48 ];SAMW:亚南极模态水,AAIW:南极中层水,NADW:北大西洋深层水,CDW:绕极深层水,AABW:南极底层水
Fig. 4 Factors affecting the ocean Cd/PO4 ratio
The physical background field from references [47-48];SAMW: Sub-Antarctic Mode Water, AAIW: Antarctic Intermediate Water, NADW: North Atlantic Deep Water, CDW: Circumpolar Deep Water, AABW: Antarctic Bottom Water
图5 大洋上层海水分馏因子(FF)的经向和洋盆间变化(据参考文献[ 49 ]修改)
Fig. 5 Meridional and interbasin variations of Fractionation FactorFFin surface ocean watermodified after reference 49 ])
图6 沿GEOTRACES GP16断面航次(南太平洋)颗粒态Cda)与Pb)的垂直剖面(数据源自参考文献[ 75 ])
纵坐标为不等间距坐标轴
Fig. 6 Vertical profile of granular Cdaand Pbalong GEOTRACES GP16 cross section voyageSouth Pacific) (data from reference 75 ])
The ordinates are axes with unequal spacing
图7 大西洋和太平洋的Cd/PO4CdPO4 断面分布
数据源自GEOTRACES数据集产品IDP2021v2,https://www.geotraces.org/geotraces-intermediate-data-product-2021, GA02数据源自参考文献[ 45 69 ],GP15数据源自参考文献[ 11 ],GP19数据源自参考文献[ 2 ],水团信息源自参考文献[ 2 69 81 ];SACW:南大西洋中央水,UCDW:上绕极深水,NACW:北大西洋中央水,LCDW:下绕极深水,EqPIW:赤道太平洋中层水,NPIW:北太平洋中层水,PDW:太平洋深层水
Fig. 7 Distribution of Cd/PO4CdPO4 sections of Atlantic and Pacific
Data derived from the GEOTRACES Intermediate data product IDP2021v2, https://www.geotraces.org/geotraces-intermediate-data-product-2021, GA02 data from references [45, 69], GP15 data from reference [ 11 ], and GP19 data from reference [ 2 ],water mass information from references [2, 69, 81]);SACW: South Atlantic Central Water, UCDW: Upper Circumpolar Deep Water, NACW: North Atlantic Central Water, LCDW: Lower Circumpolar Deep Water, EqPIW: Equatorial Pacific Intermediate Water, NPIW: North Pacific Intermediate Water, PDW: Pacific Deep Water
1 CHEN Min. Chemical oceanography[M]. Beijing: Ocean Press, 2009.
陈敏. 化学海洋学[M]. 北京: 海洋出版社, 2009.
2 SIEBER M, CONWAY T M, de SOUZA G F, et al. Physical and biogeochemical controls on the distribution of dissolved cadmium and its isotopes in the Southwest Pacific Ocean[J]. Chemical Geology, 2019, 511: 494-509.
3 ZHANG R F, REN J L, ZHANG Z R, et al. Distribution patterns of dissolved trace metals (Fe, Ni, Cu, Zn, Cd, and Pb) in China marginal seas during the GEOTRACES GP06-CN cruise[J]. Chemical Geology, 2022, 604. DOI:10.1016/j.chemgeo.2022.120948 .
4 LOHAN M C, TAGLIABUE A. Oceanic micronutrients: trace metals that are essential for marine life[J]. Elements, 2018, 14(6): 385-390.
5 ZHANG Zhengbin. Marine chemistry[M]. Qingdao: China Ocean University Press, 2004.
张正斌. 海洋化学[M]. 青岛: 中国海洋大学出版社, 2004.
6 GEOTRACES Intermediate Data Product Group. The GEOTRACES intermediate data product 2021v2 (IDP2021v2) [DB]. NERC EDS British Oceanographic Data Centre NOC, 2023.
7 PRICE N M, MOREL F M M. Cadmium and cobalt substitution for zinc in a marine diatom[J]. Nature, 1990, 344: 658-660.
8 PATEY M D, RIJKENBERG M J A, STATHAM P J, et al. Determination of nitrate and phosphate in seawater at nanomolar concentrations[J]. Trends in Analytical Chemistry, 2008, 27(2): 169-182.
9 CONWAY T M, JOHN S G. Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 2015, 148: 269-283.
10 DIEU VU H THI, SOHRIN Y. Diverse stoichiometry of dissolved trace metals in the Indian Ocean[J]. Scientific Reports, 2013, 3. DOI:10.1038/srep01745 .
11 SIEBER M, LANNING N T, BUNNELL Z B, et al. Biological, physical, and atmospheric controls on the distribution of cadmium and its isotopes in the Pacific Ocean[J]. Global Biogeochemical Cycles, 2023, 37(2). DOI:10.1029/2022GB007441 .
12 JOHN S G, HELGOE J, TOWNSEND E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific[J]. Marine Chemistry, 2018, 201: 256-262.
13 BOYLE E A, SCLATER F, EDMOND J M. On the marine geochemistry of cadmium[J]. Nature, 1976, 263(5 572): 42-44.
14 HESTER K, BOYLE E. Water chemistry control of cadmium content in recent benthic foraminifera[J]. Nature, 1982, 298: 260-262.
15 DELANEY M L, BOYLE E A. Cd/Ca in late Miocene benthic foraminifera and changes in the global organic carbon budget[J]. Nature, 1987, 330: 156-159.
16 OHKOUCHI N, KAWAHATA H, OKADA M, et al. Benthic foraminifera cadmium record from the western equatorial Pacific[J]. Marine Geology, 1995, 127(1/2/3/4): 167-180.
17 VALLEY S, LYNCH-STIEGLITZ J, MARCHITTO T M. Timing of deglacial AMOC variability from a high-resolution seawater cadmium reconstruction[J]. Paleoceanography, 2017, 32(11): 1 195-1 203.
18 MARCHITTO T M, OPPO D W, CURRY W B. Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic[J]. Paleoceanography, 2002, 17(3). DOI:10.1029/2000PA000598 .
19 MATTHEWS K A, GROTTOLI A G, McDONOUGH W F, et al. Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca)[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4 537-4 550.
20 PALMER M R, BRUMMER G J, COOPER M J, et al. Multi-proxy reconstruction of surface water pCO2 in the northern Arabian Sea since 29 ka[J]. Earth and Planetary Science Letters, 2010, 295(1/2): 49-57.
21 SCOR Working Group. GEOTRACES—an international study of the global marine biogeochemical cycles of trace elements and their isotopes[J]. Geochemistry, 2007, 67(2): 85-131.
22 LAM P J, ANDERSON R F. GEOTRACES: the marine biogeochemical cycle of trace elements and their isotopes[J]. Elements, 2018, 14(6): 377-378.
23 RUAN Yaqing, ZHANG Ruifeng. Review of the copper biogeochemistry in seawater[J]. Advances in Earth Science, 2020, 35(12): 1 243-1 255.
阮雅青, 张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1 243-1 255.
24 HERNÁNDEZ-CANDELARIO del C I, LARES M L, CAMACHO-IBAR V F, et al. Dissolved cadmium and its relation to phosphate in the deep region of the Gulf of Mexico[J]. Journal of Marine Systems, 2019, 193: 27-45.
25 CULLEN J T, MALDONADO M T. Biogeochemistry of cadmium and its release to the environment[M]// Cadmium: from toxicity to essentiality. Dordrecht: Springer, 2013: 31-62.
26 GARNIER J M, GUIEU C. Release of cadmium in the Danube Estuary: contribution of physical and chemical processes as determined by an experimental approach[J]. Marine Environmental Research, 2003, 55(1): 5-25.
27 HO T Y, YOU C F, CHOU W C, et al. Cadmium and phosphorus cycling in the water column of the South China Sea: the roles of biotic and abiotic particles[J]. Marine Chemistry, 2009, 115(1/2): 125-133.
28 RIPPERGER S, REHKÄMPER M, PORCELLI D, et al. Cadmium isotope fractionation in seawater—a signature of biological activity[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 670-684.
29 WALSH R S, HUNTER K A. Influence of phosphorus storage on the uptake of cadmium by the marine alga Macrocystis pyrifera [J]. Limnology and Oceanography, 1992, 37(7): 1 361-1 369.
30 HORNER T J, LEE R B Y, HENDERSON G M, et al. Nonspecific uptake and homeostasis drive the oceanic cadmium cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(7): 2 500-2 505.
31 van GEEN A, MCCORKLE D C, KLINKHAMMER G P. Sensitivity of the phosphate-cadmium-carbon isotope relation in the ocean to cadmium removal by suboxic sediments[J]. Paleoceanography, 1995, 10(2): 159-169.
32 JANSSEN D J, CONWAY T M, JOHN S G, et al. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 6 888-6 893.
33 MOREL F, HERING J G. Principles and applications of aquatic chemistry[M]. New York: Wiley, 1993.
34 BRULAND K W. Complexation of cadmium by natural organic ligands in the central North Pacific[J]. Limnology and Oceanography, 1992, 37(5): 1 008-1 017.
35 BAARS O, ABOUCHAMI W, GALER S J G, et al. Dissolved cadmium in the Southern Ocean: distribution, speciation, and relation to phosphate[J]. Limnology and Oceanography, 2014, 59(2): 385-399.
36 MOREL F M M, MALCOLM E G. The biogeochemistry of cadmium[J]. Metal Ions in Biological Systems, 2005, 43: 195-219.
37 HENRY R P. Multiple roles of carbonic anhydrase in cellular transport and metabolism[J]. Annual Review of Physiology, 1996, 58: 523-538.
38 REHKÄMPER M, WOMBACHER F, HORNER T J, et al. Natural and anthropogenic Cd isotope variations[M]// Handbook of environmental isotope geochemistry. Berlin, Heidelberg: Springer, 2012: 125-154.
39 ZHONG Q H, ZHOU Y C, TSANG D C W, et al. Cadmium isotopes as tracers in environmental studies: a review[J]. Science of the Total Environment, 2020, 736. DOI:10.1016/j.scitotenv.2020.139585 .
40 ABOUCHAMI W, GALER S J G, de BAAR H J W, et al. Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367.
41 BOYLE E A. Cadmium: chemical tracer of deepwater paleoceanography[J]. Paleoceanography, 1988, 3(4): 471-489.
42 YU J M, THORNALLEY D J R, RAE J W B, et al. Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation[J]. Paleoceanography, 2013, 28(2): 237-252.
43 ELDERFIELD H, RICKABY R E M. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean[J]. Nature, 2000, 405: 305-310.
44 MA R F, SÉPULCRE S, LICARI L, et al. Changes in productivity and intermediate circulation in the northern Indian Ocean since the last deglaciation: new insights from benthic foraminiferal Cd∕Ca records and benthic assemblage analyses[J]. Climate of the Past, 2022, 18(8): 1 757-1 774.
45 XIE R C, GALER S J G, ABOUCHAMI W, et al. The cadmium-phosphate relationship in the western South Atlantic—the importance of mode and intermediate waters on the global systematics[J]. Marine Chemistry, 2015, 177: 110-123.
46 IKHSANI I Y, WONG K H, OGAWA H, et al. Dissolved trace metals (Fe, Mn, Pb, Cd, Cu, and Zn) in the eastern Indian Ocean[J]. Marine Chemistry, 2023, 248. DOI:10.1016/j.marchem.2023.104208 .
47 ABOUCHAMI W, GALER S J G, de BAAR H J W, et al. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity[J]. Earth and Planetary Science Letters, 2011, 305(1/2): 83-91.
48 MA Hao, WANG Zhaomin, SHI Jiuxin. The role of the Southern Ocean physical processes in global climate system[J]. Advances in Earth Science, 2012, 27(4): 398-412.
马浩, 王召民, 史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.
49 QUAY P, CULLEN J, LANDING W, et al. Processes controlling the distributions of Cd and PO4 in the ocean[J]. Global Biogeochemical Cycles, 2015, 29(6): 830-841.
50 WAELES M, MAGUER J F, BAURAND F, et al. Off Congo waters (Angola Basin, Atlantic Ocean): a hot spot for cadmium-phosphate fractionation[J]. Limnology and Oceanography, 2013, 58(4): 1 481-1 490.
51 FREW R, BOWIE A, CROOT P, et al. Macronutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(11/12): 2 467-2 481.
52 BASTERRETXEA G, FONT-MUÑOZ J S, HERNÁNDEZ-CARRASCO I, et al. Global variability of high-nutrient low-chlorophyll regions using neural networks and wavelet coherence analysis[J]. Ocean Science, 2023, 19(4): 973-990.
53 de BAAR H J W, BOYD P W, COALE K H, et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment[J]. Journal of Geophysical Research: Oceans, 2005, 110(C9). DOI:10.1029/2004JC002601 .
54 KUDO I, KOKUBUN H, MATSUNAGA K. Chemical fractionation of phosphorus and cadmium in the marine diatom Phaeodactylum tricornutum [J]. Marine Chemistry, 1996, 52(3/4): 221-231.
55 SUNDA W G, HUNTSMAN S A. Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling[J]. Limnology and Oceanography, 2000, 45(7): 1 501-1 516.
56 CULLEN J T, SHERRELL R M. Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages[J]. Limnology and Oceanography, 2005, 50(4): 1 193-1 204.
57 ABE K, MATSUNAGA K. Mechanism controlling Cd and PO4 concentrations in Funka Bay, Japan[J]. Marine Chemistry, 1988, 23(1/2): 145-152.
58 FREW R D, HUNTER K A. Influence of Southern Ocean waters on the cadmium-phosphate properties of the global ocean[J]. Nature, 1992, 360: 144-146.
59 FINKEL Z V, QUIGG A S, CHIAMPI R K, et al. Phylogenetic diversity in cadmium: phosphorus ratio regulation by marine phytoplankton[J]. Limnology and Oceanography, 2007, 52(3): 1 131-1 138.
60 TWINING B S, BAINES S B. The trace metal composition of marine phytoplankton[J]. Annual Review of Marine Science, 2013, 5: 191-215.
61 ROSHAN S, DEVRIES T. Global contrasts between oceanic cycling of cadmium and phosphate[J]. Global Biogeochemical Cycles, 2021, 35(6). DOI:10.1029/2021GB006952 .
62 CULLEN J T. On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: could chronic iron limitation of phytoplankton growth cause the kink?[J]. Limnology and Oceanography, 2006, 51(3): 1 369-1 380.
63 POWELL C F, BAKER A R, JICKELLS T D, et al. Estimation of the atmospheric flux of nutrients and trace metals to the eastern tropical North Atlantic Ocean[J]. Journal of the Atmospheric Sciences, 2015, 72(10): 4 029-4 045.
64 SOOKHDEO C. Wet and dry atmospheric deposition of nutrients and bioactive trace metals to coastal waters of the mid-Atlantic bight [D]. Norfolk: Old Dominion, 2018.
65 GUIEU C, LOŸE-PILOT M D, BENYAHYA L, et al. Spatial variability of atmospheric fluxes of metals (Al, Fe, Cd, Zn and Pb) and phosphorus over the whole Mediterranean from a one-year monitoring experiment: biogeochemical implications[J]. Marine Chemistry, 2010, 120(1/2/3/4): 164-178.
66 MARCHITTO T M, BROECKER W S. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(12). DOI:10.1029/2006GC001323 .
67 LI R, ZHANG H H, WANG F, et al. Abundance and fractional solubility of phosphorus and trace metals in combustion ash and desert dust: implications for bioavailability and reactivity[J]. Science of the Total Environment, 2022, 816. DOI:10.1016/j.scitotenv.2021.151495 .
68 ROSHAN S, WU J F, DEVRIES T. Controls on the cadmium-phosphate relationship in the tropical South Pacific[J]. Global Biogeochemical Cycles, 2017, 31(10): 1 516-1 527.
69 MIDDAG R, van HEUVEN S M A C, BRULAND K W, et al. The relationship between cadmium and phosphate in the Atlantic Ocean unravelled[J]. Earth and Planetary Science Letters, 2018, 492: 79-88.
70 ZHENG L J, MINAMI T, TAKANO S, et al. Sectional distribution patterns of Cd, Ni, Zn, and Cu in the North Pacific Ocean: relationships to nutrients and importance of scavenging[J]. Global Biogeochemical Cycles, 2021, 35(7). DOI:10.1029/2020GB006558 .
71 BOURNE H L, BISHOP J K B, LAM P J, et al. Global spatial and temporal variation of Cd∶P in euphotic zone particulates[J]. Global Biogeochemical Cycles, 2018, 32(7): 1 123-1 141.
72 JANSSEN D J, ABOUCHAMI W, GALER S J G, et al. Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific[J]. Earth and Planetary Science Letters, 2017, 472: 241-252.
73 LANE E S, SEMENIUK D M, STRZEPEK R F, et al. Effects of iron limitation on intracellular cadmium of cultured phytoplankton: implications for surface dissolved cadmium to phosphate ratios[J]. Marine Chemistry, 2009, 115(3/4): 155-162.
74 FREW R D. Antarctic bottom water formation and the global cadmium to phosphorus relationship[J]. Geophysical Research Letters, 1995, 22(17): 2 349-2 352.
75 LEE J M, HELLER M I, LAM P J. Size distribution of particulate trace elements in the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16)[J]. Marine Chemistry, 2018, 201: 108-123.
76 LACAN F, FRANCOIS R, JI Y C, et al. Cadmium isotopic composition in the ocean[J]. Geochimica et Cosmochimica Acta, 2006, 70(20): 5 104-5 118.
77 XUE Z C, REHKÄMPER M, HORNER T J, et al. Cadmium isotope variations in the Southern Ocean[J]. Earth and Planetary Science Letters, 2013, 382: 161-172.
78 XIE R C, GALER S J G, ABOUCHAMI W, et al. Non-Rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic[J]. Earth and Planetary Science Letters, 2017, 471: 94-103.
79 YEATS P A, WESTERLUND S, FLEGAL A R. Cadmium, copper and nickel distributions at four stations in the eastern central and South Atlantic[J]. Marine Chemistry, 1995, 49(4): 283-293.
80 GUINOISEAU D, GALER S J G, ABOUCHAMI W, et al. Importance of cadmium sulfides for biogeochemical cycling of Cd and its isotopes in oxygen deficient zones—a case study of the Angola Basin[J]. Global Biogeochemical Cycles, 2019, 33(12): 1 746-1 763.
81 SIEBER M, LANNING N T, BIAN X, et al. The importance of reversible scavenging for the marine Zn cycle evidenced by the distribution of zinc and its isotopes in the Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 2023, 128(4). DOI:10.1029/2022JC019419 .
82 HE Zhi, TIAN Jun. Pacific ocean deep circulation and global carbon cycle during the middle Miocene climate transition[J]. Advances in Earth Science, 2023, 38(1): 17-31.
何志, 田军. 中中新世气候转型期太平洋深层环流变化与碳循环[J]. 地球科学进展, 2023, 38(1): 17-31.
83 XIE R C, GALER S J G, ABOUCHAMI W, et al. Limited impact of eolian and riverine sources on the biogeochemical cycling of Cd in the tropical Atlantic[J]. Chemical Geology, 2019, 511: 371-379.
84 QUAY P, WU J F. Impact of end-member mixing on depth distributions of δ13C, cadmium and nutrients in the N. Atlantic Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 107-116.
85 CONWAY T M, JOHN S G. The cycling of iron, zinc and cadmium in the North East Pacific Ocean-Insights from stable isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 262-283.
86 BIANCHI D, WEBER T S, KIKO R, et al. Global niche of marine anaerobic metabolisms expanded by particle microenvironments[J]. Nature Geoscience, 2018, 11: 263-268.
87 GUINOISEAU D, GALER S J G, ABOUCHAMI W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308.
88 de SOUZA G F, VANCE D, SIEBER M, et al. Re-assessing the influence of particle-hosted sulphide precipitation on the marine cadmium cycle[J]. Geochimica et Cosmochimica Acta, 2022, 322: 274-296.
89 OHNEMUS D C, RAUSCHENBERG S, CUTTER G A, et al. Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones[J]. Limnology and Oceanography, 2017, 62(1): 3-25.
90 BIAN X, YANG S C, BOLSTER K M, et al. Biogeochemical cycling of Cd, Mn, and Ce in the Eastern Tropical North Pacific oxygen-deficient zone [J]. Limnology and Oceanography, 2023, 68(2): 483-497.
[1] 马红梅,孙波,姜苏,安春雷,史贵涛,李院生. 极地冰下生物地球化学过程研究进展[J]. 地球科学进展, 2012, 27(2): 147-153.
[2] 王世杰,李阳兵. 喀斯特石漠化研究存在的问题与发展趋势[J]. 地球科学进展, 2007, 22(6): 573-582.
[3] 詹滨秋. 海洋气候化学——化学海洋学研究的一个新领域[J]. 地球科学进展, 1995, 10(4): 402-404.
阅读次数
全文


摘要