地球科学进展 ›› 2024, Vol. 39 ›› Issue (2): 193 -206. doi: 10.11867/j.issn.1001-8166.2024.012

新学科?新技术?新发现 上一篇    下一篇

MODE检验在天气预报中的应用研究进展
潘留杰 1 , 2( ), 张宏芳 2 , 3( ), 刘嘉慧敏 1 , 2, 祁春娟 1 , 2, 梁绵 1 , 2, 马丹萌 1, 李培荣 1 , 2, 戴昌明 1 , 2, 高星星 1 , 2   
  1. 1.陕西省气象台,陕西 西安 710014
    2.秦岭和黄土高原生态气象环境重点实验室,陕西 西安 710014
    3.陕西省气象服务中心,陕西 西安 710014
  • 收稿日期:2023-10-08 修回日期:2024-01-20 出版日期:2024-02-10
  • 通讯作者: 张宏芳 E-mail:781483047@qq.com;hongfanglj@sohu.com
  • 基金资助:
    中国气象局创新发展专项(CXFZ2022J023);中国气象局复盘总结专项(FPZJ2023-129);陕西省社会发展领域重点研发计划项目(2024SF-YBXM-556)

Advancements in Study on the Application of MODE Verification Method in Weather Forecasting

Liujie PAN 1 , 2( ), Hongfang ZHANG 2 , 3( ), Jiahuimin LIU 1 , 2, Chunjuan QI 1 , 2, Mian LIANG 1 , 2, Danmeng MA 1, Peirong LI 1 , 2, Changming DAI 1 , 2, Xingxing GAO 1 , 2   

  1. 1.Shaanxi Meteorological Observatory, Xi’an 710014, China
    2.Key Laboratory of Eco-Environment and Meteorology for the Qinling Mountains and Loess Plateau, Xi’an 710014, China
    3.Shaanxi Meteorological Service Centre, Xi’an 710014, China
  • Received:2023-10-08 Revised:2024-01-20 Online:2024-02-10 Published:2024-03-05
  • Contact: Hongfang ZHANG E-mail:781483047@qq.com;hongfanglj@sohu.com
  • About author:PAN Liujie, Professor of engineering, research areas include weather forecasting and research. E-mail: 781483047@qq.com
  • Supported by:
    the Innovation and Development Special Project of China Meteorological Administration(CXFZ2022J023);Review and Summary Special Project of China Meteorological Administration(FPZJ2023-129);Key Areas Project for Social Development in Shaanxi Province(2024SF-YBXM-556)

客观评价高分辨率中小尺度变量的预报表现是数值天气预报模式应用和发展的重要环节。传统点对点的检验在高分辨率数值预报模式评估中存在显著不足。空间面向对象或目标法MODE检验方法利用卷积函数和给定的阈值在预报和观测场中识别目标对象、诊断模式的预报表现,在天气预报中有着广泛应用。首先系统回顾了MODE检验方法的学术思想、技术架构、算法流程和检验指标;详细归纳了MODE检验在降水预报、天气雷达、卫星云图、集合预报以及其他不同要素或物理量场中的典型应用,阐述了检验结果在数值模式预报质量评价中的意义和对天气预报结果主客观订正的影响;介绍了近年来MODE检验方法的更新发展,主要包括考虑不匹配目标对象属性的综合评价指数MCS,以椭球体为目标的三维时域空间对象追踪和MODE扩展的时域检验方法MODE-TD;最后总结和讨论了MODE检验方法的适用性、优势和不足,同时对MODE检验方法未来的发展方向和应用前景进行了展望。旨在为更好地应用MODE检验方法诊断数值模式的预报性能提供参考。

The objective evaluation of small-scale variables’ forecast performance is vital for the application and development of Numerical Weather Prediction (NWP). Traditional point-to-point verification has significant limitations in the evaluation of high-resolution NWP. The Object-based Diagnostic Evaluation (MODE) method utilizes convolution functions and a given threshold to identify objects in the forecast and observation fields, extract their attributes, and diagnose the performance of the NWP. It has been widely applied in weather forecasting. This paper systematically reviews the academic ideas, technical framework, algorithm flow, and verification indices of the MODE spatial verification method. Subsequently, this paper summarizes the typical applications of MODE verification in precipitation forecasting, weather radar, satellite cloud images, ensemble forecasting, and other elements. It elaborates on the significance of verification results in evaluating the quality of NWP and their role in improving the accuracy of weather forecast results, both subjectively and objectively. Furthermore, it introduces recent updates and developments in MODE verification methods. These include the comprehensive evaluation index MODE Composite Score (MCS), which considers the mismatched attributes of objects, three-dimensional spatiotemporal object tracking using ellipsoids as targets, and the verification method, MODE Time Domain (MTD). Finally, it discusses the MODE verification method's applicability, advantages, and limitations while considering its future development direction and application prospects. The purpose of this study is to provide references for better application and diagnosis of NWP performance using the MODE method.

中图分类号: 

图1 不同的预报和观测降水场情景示例(据参考文献[ 29 ]修改)
(a)、(b)和(c)分别表示预报和观测降水面积和形态一致,但是降水空间位置和走向出现偏差;(d)、(e)和(f)分别表示预报和观测降水面积不一致,同时空间位置、走向出现偏差;“F”表示预报,“O”表示观测
Fig. 1 A schematic example of different forecast and observed precipitation field scenariosmodified after reference 29 ])
(a), (b) and (c) respectively indicate that the forecast and observed precipitation area and morphology are consistent, but there is a deviation in the spatial location and direction of the precipitation; (d), (e) and (f) respectively indicate that the forecasted and observed precipitation areas are inconsistent, with deviation occurring in spatial location simultaneously;“F” represents forecast, and “O” represents observation
图2 MODE检验降水数据处理示意图
(a)原始降水场;(b)降水场卷积;(c)给定阈值降水场提取的目标对象;(d)提取降水对象内部的降水空间分布;A~E表示提取的降水对象或目标
Fig. 2 Schematic diagram of precipitation data processing using the MODE method
(a) Original precipitation field; (b) Convolution of precipitation field; (c) Precipitation mask field with given threshold; (d) Extraction of precipitation spatial distribution inside the precipitation objects; A~E stands for the extracted precipitation object or target
图3 MODE定义的特征对象不同属性的收益函数表 30
Fig. 3 Interst functions for different attributes of the feature object defined by MODE 30
表1 MODE检验与经典二分法检验的对比
Table 1 Comparison of advantages and disadvantages between MODE and classical binary verification in weather forecasting
图4 MODE检验个例 16
(a)24小时的实况观测降水;(b) ECMWF模式预报;(c)CMA-Meso模式预报;(d)、(e)、(f)分别为CMPA、ECMWF、CMA-Meso的暴雨目标对象,(e)和(f)中的数字为预报和观测中降水对象(d)的匹配情况,蓝色填充对象表示预报和观测场中的降水对象未匹配
Fig. 4 A case of MODE method verified 16
(a) The precipitation for 24 hours of observation; (b) The precipitation forecast by ECMWF model; (c) The precipitation forecast of CMA-Meso model; (d), (e), (f) are torrential rain objects identified in observation, ECMWF, and CMA-Meso respectively. The numbers in figures of (e), (f) are the matching precipitation objects in forecat and observation; The blue fill is the unmatched precipitation object
图5 MODE检验对不同环流形势下不同数值模式降水预报产品的检验 45
DWQB、XFC、FG_XFC和XNW代表4种环流分型,SCMOC、ECMWF和CMA-Meso代表3种降水预报产品;(a)识别降水对象数量的对比;(b)降水对象强度的对比;(c)降水对象面积的对比
Fig. 5 Verify of different precipitation forecast products under different circulation patterns using the MODE method 45
DWQB, XFC, FG_XFC, and XNW represent four types of circulation patterns, while SCMOC, ECMWF, and CMA-Meso represent three types of precipitation forecast products; (a) Comparison of identified number of precipitation objects;(b) Comparison of precipitation object intensity;(c) Comparison of precipitation object area
图6 MODE检验方法美国卫星云图典型应用个例 59
(a) GOES-13卫星观测;(b) HRRRx 模拟红外亮温;(c) GOES-13观测场对象识别结果;(d)模拟场对象识别结果;(c)和(d)中不同的颜色代表不同的目标对象
Fig. 6 Typical application examples of the MODE examination method for satellite cloud images in the United States 59
(a) GOES-13 satellite observation;(b) HRRRx simulated infrared brightness temperature;(c) GOES-13 observed field object recognition result;(d) Simulated field object recognition result; The different colors in (c) and (d) represent different targeet object
图7 EPS转换为概率预报目标对象的示意图 33
色标中分子表示EPS成员预报的个数,分母表示EPS集合成员总数;(a)EPS成员预报的中尺度气旋对象个数;(b)基于(a)计算的中尺度气旋概率;(c)基于(b)提取的中尺度气旋概率预报对象;(a)中不同的颜色代表EPS成员预报个数,与色标中的分子对应;(b)和(c)中填色代表概率,与色标中分数的比值对应
Fig. 7 Illustrates the conversion of EPSEnsemble Prediction Systemto probability forecast target objects 33
In the color scale, the numerator represents the number of forecasts made by EPS members, and the denominator represents the total number of ensemble members; (a) The number of mesoscale cyclone objects forecast by EPS members; (b) The probability of mesoscale cyclones calculated based on (a); (c) The forecast objects for mesoscale cyclone probability extracted based on (b). In (a), different colors represent the number of forecasts made by EPS members, which correspond to the numerators in the color scale; In (b) and (c), the filled colors represent probabilities, corresponding to the respective fraction values in the color scale
图8 时域时间三维追踪检验概念示意图 66
(a) 时间生命周期15小时的降水对象演变;(b)卷积对象椭球体
Fig. 8 Schematic diagram of time 3D tracking verify concept 66
(a) The evolution of precipitation objects with a life cycle of 15 hours;(b) A hypothetical ellipsoid convolution object
1 GILLELAND E, AHIJEVYCH D, BROWN B G, et al. Intercomparison of spatial forecast verification methods[J]. Weather and Forecasting, 2009, 24(5): 1 416-1 430.
2 DAI Kan, BI Baogui, ZHU Yuejian. Investigation of the medium-range forecast errors for the extreme rainfall event in North China during July 19-20, 2016[J]. Chinese Science Bulletin,2018, 63(3):340-355.
代刊,毕宝贵,朱跃建. 2016年7月华北极端降水的中期预报误差分析[J].科学通报, 2018, 63(3): 340-355.
3 MA Leiming, LIN Hong, CHU Hai, et al. Research progress of Shanghai operational intelligent forecast technologies on severe convection[J]. Advances in Earth Science, 2023, 38(2): 111-124.
马雷鸣, 林红, 储海, 等. 上海强对流智能预报业务新技术研究进展[J]. 地球科学进展, 2023, 38(2): 111-124.
4 LIU Donghai, HUANG Jing, LIU Juan, et al. Review and prospect of parameterization schemes of typical mesoscale numerical prediction models[J]. Advances in Earth Science, 2023, 38(4): 349-362.
刘东海,黄静,刘娟,等. 典型中尺度数值预报模式参数化方案的综述与展望[J]. 地球科学进展, 2023, 38(4): 349-362.
5 CAO Yancha, ZHENG Yongguang, SHENG Jie, et al. Severe convective wind and hail probabilistic forecasting method based on outputs of GRAPES3 km model[J]. Meteorological Monthly, 2021, 47(9): 1 047-1 061.
曹艳察, 郑永光, 盛杰, 等. 基于GRAPES_3 km模式输出的风雹概率预报技术研究[J]. 气象, 2021, 47(9): 1 047-1 061.
6 MAO Xu, LIU Xinhua, YANG Bo. An optimized probabilistic prediction method for aircraft icing potential based on a convection-allowing model[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(5): 1 525-1 540.
毛旭, 刘鑫华, 杨波. 一种优化的基于对流可分辨模式的飞机积冰潜势概率预报方法[J]. 大气科学, 2023, 47(5): 1 525-1 540.
7 MASS C F, OVENS D, WESTRICK K, et al. Does increasing horizontal resolution produce more skillful forecasts?[J]. Bulletin of the American Meteorological Society, 2002, 83(3): 407-430.
8 SCHAEFER J T. The critical success index as an indicator of warning skill[J]. Weather and Forecasting, 1990, 5(4): 570-575.
9 PAN Liujie, ZHANG Hongfang, WANG Jianpeng. Progress on verification methods of numerical weather prediction[J]. Advances in Earth Science, 2014, 29(3): 327-335.
潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.
10 BRILL K F, MESINGER F. Applying a general analytic method for assessing bias sensitivity to bias-adjusted threat and equitable threat scores[J]. Weather and Forecasting, 2009, 24(6): 1 748-1 754.
11 EBERT E E. Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework[J]. Meteorological Applications, 2008, 15(1): 51-64.
12 AHIJEVYCH D, GILLELAND E, BROWN B G, et al. Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts[J]. Weather and Forecasting, 2009, 24(6): 1 485-1 497.
13 GILLELAND E, AHIJEVYCH D A, BROWN B G, et al. Verifying forecasts spatially[J]. Bulletin of the American Meteorological Society, 2010, 91(10): 1 365-1 376.
14 EBERT E E, McBRIDE J L. Verification of precipitation in weather systems: determination of systematic errors[J]. Journal of Hydrology, 2000, 239(1/2/3/4): 179-202.
15 EBERT E E. Neighborhood verification: a strategy for rewarding close forecasts[J]. Weather and Forecasting, 2009, 24(6): 1 498-1 510.
16 PAN Liujie, ZHANG Hongfang, LIU Jing, et al. Comparative analysis of SCMOC and various numerical models for precipitation forecasting[J]. Transactions of Atmospheric Science, 2023, 46(2): 217-229.
潘留杰,张宏芳,刘静,等.智能网格SCMOC及多模式降水预报对比[J].大气科学学报,2023, 46(2): 217-229.
17 MARZBAN C, SANDGATHE S, LYONS H, et al. Three spatial verification techniques: cluster analysis, variogram, and optical flow[J]. Weather and Forecasting, 2009, 24(6): 1 457-1 471.
18 MICHEAS A C, FOX N I, LACK S A, et al. Cell identification and verification of QPF ensembles using shape analysis techniques[J]. Journal of Hydrology, 2007, 343(3/4): 105-116.
19 LACK S A, LIMPERT G L, FOX N I. An object-oriented multiscale verification scheme[J]. Weather and Forecasting, 2010, 25(1): 79-92.
20 GILLELAND E. Testing competing precipitation forecasts accurately and efficiently: the spatial prediction comparison test[J]. Monthly Weather Review, 2013, 141(1): 340-355.
21 MARZBAN C, SANDGATHE S. Cluster analysis for object-oriented verification of fields: a variation[J]. Monthly Weather Review, 2008, 136(3): 1 013-1 025.
22 STEIN J, STOOP F. Neighborhood-based contingency tables including errors compensation[J]. Monthly Weather Review, 2019, 147(1): 329-344.
23 SCHWARTZ C S, ROMINE G S, SOBASH R A, et al. NCAR’s experimental real-time convection-allowing ensemble prediction system[J]. Weather and Forecasting, 2015, 30(6): 1 645-1 654.
24 PAN Liujie, ZHANG Hongfang, CHEN Xiaoting, et al. Neighborhood-based precipitation forecasting capability analysis of high-resolution models[J]. Journal of Tropical Meteorology, 2015, 31(5): 632-642.
潘留杰, 张宏芳, 陈小婷, 等. 基于邻域法的高分辨率模式降水的预报能力分析[J]. 热带气象学报, 2015, 31(5): 632-642.
25 PAN Liujie, ZHANG Hongfang, XUE Chunfang, et al. Numerical weather prediction model testing and evaluation systems MET and application[J]. Advances in Meteorological Science and Technology, 2016, 6(4): 37-43.
潘留杰, 张宏芳, 薛春芳, 等. 数值模式评估系统MET及其初步应用[J]. 气象科技进展, 2016, 6(4): 37-43.
26 PAN Liujie, XUE Chunfang, ZHANG Hongfang, et al. Comparison of three verification methods for high-resolution grid precipitation forecast[J]. Climatic and Environmental Research, 2017, 22(1): 45-58.
潘留杰, 薛春芳, 张宏芳, 等. 三种高分辨率格点降水预报检验方法的对比[J]. 气候与环境研究, 2017, 22(1): 45-58.
27 KOCHASIC M C, GALLUS W A, SCHAFFER C J. Further evaluation of probabilistic convective precipitation forecasts using the QPF-PoP neighborhood relationship[J]. Weather and Forecasting, 2017, 32(4): 1 423-1 440.
28 JOHNSON A, WANG X G, WANG Y M, et al. Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 hazardous weather testbeds[J]. Weather and Forecasting, 2020, 35(1): 169-191.
29 DAVIS C, BROWN B, BULLOCK R. Object-based verification of precipitation forecasts. part I: methodology and application to mesoscale rain areas[J]. Monthly Weather Review, 2006, 134(7): 1 772-1 784.
30 DAVIS C A, BROWN B G, BULLOCK R, et al. The Method for Object-based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC spring program[J]. Weather and Forecasting, 2009, 24(5): 1 252-1 267.
31 DAVIS C, BROWN B, BULLOCK R. Object-based verification of precipitation forecasts. part II: application to convective rain systems[J]. Monthly Weather Review, 2006, 134(7): 1 785-1 795.
32 BYTHEWAY J L, KUMMEROW C D. Toward an object-based assessment of high-resolution forecasts of long-lived convective precipitation in the central U.S[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(3): 1 248-1 264.
33 FLORA M L, SKINNER P S, POTVIN C K, et al. Object-based verification of short-term, storm-scale probabilistic mesocyclone guidance from an experimental warn-on-forecast system[J]. Weather and Forecasting, 2019, 34(6): 1 721-1 739.
34 CHEN Xiao, ZHAO Dong, HE Xiaofeng, et al. Evaluation and analysis of model forecast performance of high wind based on MODE method[J]. Meteorological Monthly, 2018, 44(8): 1 009-1 019.
陈笑, 赵东, 何晓凤, 等. 基于MODE对模式预报强风风场的检验分析[J]. 气象, 2018, 44(8): 1 009-1 019.
35 MITTERMAIER M, NORTH R, SEMPLE A, et al. Feature-based diagnostic evaluation of global NWP forecasts[J]. Monthly Weather Review, 2016, 144(10): 3 871-3 893.
36 GIANNAKAKI P, MARTIUS O. An object-based forecast verification tool for synoptic-scale rossby waveguides[J]. Weather and Forecasting, 2016, 31(3): 937-946.
37 YOU Fengchun, WANG Guorong, GUO Rui, et al. The application analysis of MODE method to the rainfall forecast test[J]. Meteorological Monthly, 2011, 37(12): 1 498-1 503.
尤凤春, 王国荣, 郭锐, 等. MODE方法在降水预报检验中的应用分析[J]. 气象, 2011, 37(12): 1 498-1 503.
38 WANG Guorong, CHEN Min, YOU Fengchun, et al. Method for object-based diagnostic evaluation and its application[J]. Meteorological Science and Technology, 2014, 42(4): 652-656.
王国荣, 陈敏, 由凤春, 等. 基于对象诊断的空间检验方法(MODE)[J]. 气象科技, 2014, 42(4): 652-656.
39 LIU Jing, REN Chuan, ZHAO Ziqi, et al. Comparative analysis on verification of heavy rainfall forecasts in different regional models[J]. Meteorological Monthly, 2022, 48(10): 1 292-1 302.
刘静, 任川, 赵梓淇, 等. 多区域高分辨率模式强降水预报检验分析[J]. 气象, 2022, 48(10): 1 292-1 302.
40 YU Biyu, ZHU Kefeng. Application of multiple spatial verification methods to precipitation forecasts from different resolution models[J]. Journal of the Meteorological Sciences, 2022, 42(3): 341-355.
俞碧玉, 朱科锋. 多种空间检验方法在不同分辨率模式降水预报评估中的应用[J]. 气象科学, 2022, 42(3): 341-355.
41 QU Qiaona, SHENG Chunyan, FAN Sudan, et al. Study on characteristics of rainstorm prediction by ECMWF and CMA-SH9[J]. Journal of the Meteorological Sciences, 2023, 43(2):196-206.
曲巧娜,盛春岩,范苏丹,等. 基于ECMWF和华东区域中尺度模式的暴雨预报特征研究[J]. 气象科学,2023,43(2):196-206.
42 PAN Liujie, ZHANG Hongfang, LIU Jing, et al. Comparative analysis of SCMOC and various numerical models for pre-cipitation forecasting[J]. Transactions of Atmospheric Sciences, 2023, 46(2): 217-229.
潘留杰, 张宏芳, 刘静, 等. 智能网格SCMOC及多模式降水预报对比[J]. 大气科学学报, 2023, 46(2): 217-229.
43 CASE J L, KUMAR S V, SRIKISHEN J, et al. Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state[J]. Weather and Forecasting, 2011, 26(6): 785-807.
44 WOLFF J K, HARROLD M, FOWLER T, et al. Beyond the basics: evaluating model-based precipitation forecasts using traditional, spatial, and object-based methods[J]. Weather and Forecasting, 2014, 29(6): 1 451-1 472.
45 PAN L J, ZHANG H F, LIU J, et al. Comparative analysis of SCMOC and models rainstorm forecasting performance in Qinling Mountains and their surrounding areas[J]. Atmosphere, 2022, 13(5). DOI:10.3390/atmos13050705 .
46 ZHANG H F, PAN L J. Diagnostic analysis of multimodel rainstorm forecast for cases based on MODE method[J]. Atmosphere, 2022, 13(7). DOI:10.3390/atmos13071047 .
47 DUDA J D, TURNER D D. Large-sample application of radar reflectivity object-based verification to evaluate HRRR warm-season forecasts[J]. Weather and Forecasting, 2021, 36(3): 805-821.
48 CONNELLY R, COLLE B A. Validation of snow multibands in the comma head of an extratropical cyclone using a 40-member ensemble[J]. Weather and Forecasting, 2019, 34(5): 1 343-1 363.
49 FAIRMAN J G, SCHULTZ D M, KIRSHBAUM D J, et al. Climatology of banded precipitation over the contiguous United States[J]. Monthly Weather Review, 2016, 144(12): 4 553-4 568.
50 LAWSON J R, GALLUS W A. Adapting the SAL method to evaluate reflectivity forecasts of summer precipitation in the central United States[J]. Atmospheric Science Letters, 2016, 17(10): 524-530.
51 GANETIS S A, COLLE B A, YUTER S E, et al. Environmental conditions associated with observed snowband structures within northeast U.S. winter storms[J]. Monthly Weather Review, 2018, 146(11): 3 675-3 690.
52 CINTINEO R, OTKIN J A, XUE M, et al. Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection-permitting ensemble forecasts using synthetic GOES-13 satellite observations[J]. Monthly Weather Review, 2014, 142(1): 163-182.
53 THOMPSON G, TEWARI M, IKEDA K, et al. Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts[J]. Atmospheric Research, 2016, 168: 92-104.
54 BIKOS D, LINDSEY D T, OTKIN J, et al. Synthetic satellite imagery for real-time high-resolution model evaluation[J]. Weather and Forecasting, 2012, 27(3): 784-795.
55 VAN WEVERBERG K, VOGELMANN A M, LIN W, et al. The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical Western Pacific[J]. Journal of the Atmospheric Sciences, 2013, 70(4): 1 104-1 128.
56 JIN H, PENG M S, JIN Y, et al. An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC[J]. Weather and Forecasting, 2014, 29(2): 252-270.
57 MITTERMAIER M P, BULLOCK R. Using MODE to explore the spatial and temporal characteristics of cloud cover forecasts from high-resolution NWP models[J]. Meteorological Applications, 2013, 20(2): 187-196.
58 GRIFFIN S M, OTKIN J A, ROZOFF C M, et al. Methods for comparing simulated and observed satellite infrared brightness temperatures and what do they tell us?[J]. Weather and Forecasting, 2017, 32(1): 5-25.
59 GRIFFIN S M, OTKIN J A, ROZOFF C M, et al. Seasonal analysis of cloud objects in the High-Resolution Rapid Refresh (HRRR) model using object-based verification[J]. Journal of Applied Meteorology and Climatology, 2017, 56(8): 2 317-2 334.
60 NOHARA D, KITOH A, HOSAKA M, et al. Impact of climate change on river discharge projected by multimodel ensemble[J]. Journal of Hydrometeorology, 2006, 7(5): 1 076-1 089.
61 GALLUS W A. Application of object-based verification techniques to ensemble precipitation forecasts[J]. Weather and Forecasting, 2010, 25(1): 144-158.
62 CLARK A J, GALLUS W A, XUE M, et al. A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles[J]. Weather and Forecasting, 2009, 24(4): 1 121-1 140.
63 JI L Y, ZHI X F, SIMMER C, et al. Multimodel ensemble forecasts of precipitation based on an object-based diagnostic evaluation[J]. Monthly Weather Review, 2020, 148(6): 2 591-2 606.
64 JOHNSON A, WANG X G. Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble[J]. Monthly Weather Review, 2012, 140(9): 3 054-3 077.
65 GRIFFIN S M, OTKIN J A, THOMPSON G, et al. Assessing the impact of stochastic perturbations in cloud microphysics using GOES-16 infrared brightness temperatures[J]. Monthly Weather Review, 2020, 148(8): 3 111-3 137.
66 SKOK G, TRIBBIA J, RAKOVEC J, et al. Object-based analysis of satellite-derived precipitation systems over the low- and midlatitude Pacific Ocean[J]. Monthly Weather Review, 2009, 137(10): 3 196-3 218.
67 WHITE R H, BATTISTI D S, SKOK G. Tracking precipitation events in time and space in gridded observational data[J]. Geophysical Research Letters, 2017, 44(16): 8 637-8 646.
68 SKOK G, TRIBBIA J, RAKOVEC J. Object-based analysis and verification of WRF model precipitation in the low- and midlatitude Pacific Ocean[J]. Monthly Weather Review, 2010, 138(12): 4 561-4 575.
69 SKOK G, BACMEISTER J, TRIBBIA J. Analysis of tropical cyclone precipitation using an object-based algorithm[J]. Journal of Climate, 2013, 26(8): 2 563-2 579.
70 CLARK A J, BULLOCK R G, JENSEN T L, et al. Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models[J]. Weather and Forecasting, 2014, 29(3): 517-542.
71 ZHANG Hongfang, PAN Liujie, LU Shan, et al. Tracking diagnosis analysis of grid precipitation forecast based on Time-Domain object[J]. Plateau Meteorology, 2021, 40(3): 559-568.
张宏芳, 潘留杰, 卢珊, 等. 基于时域对象的网格降水预报的追踪诊断分析[J]. 高原气象, 2021, 40(3): 559-568.
72 AYAT H, EVANS J P, SHERWOOD S, et al. Are storm characteristics the same when viewed using merged surface radars or a merged satellite product?[J]. Journal of Hydrometeorology, 2021, 22(1): 43-62.
[1] LUGuo-ping;ZHENGChun-miao. Natural Attenuation of Fuel Hydrocarbon Contaminants:Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study[J]. 地球科学进展, 2004, 19(3): 403-408.
[2] SUNNe-zheng. Parameter Estimation and Experimental Design in Groundwater Modeling[J]. 地球科学进展, 2004, 19(3): 409-414.
[3] 宋淑丽;朱文耀;廖新浩. 地基GPS气象学研究的主要问题及最新进展[J]. 地球科学进展, 2004, 19(2): 250-259.
[4] 谢志辉,丑纪范. 大气动力学方程组全局分析的研究进展[J]. 地球科学进展, 1999, 14(2): 133-139.
阅读次数
全文


摘要