1 |
GILLELAND E, AHIJEVYCH D, BROWN B G, et al. Intercomparison of spatial forecast verification methods[J]. Weather and Forecasting, 2009, 24(5): 1 416-1 430.
|
2 |
DAI Kan, BI Baogui, ZHU Yuejian. Investigation of the medium-range forecast errors for the extreme rainfall event in North China during July 19-20, 2016[J]. Chinese Science Bulletin,2018, 63(3):340-355.
|
|
代刊,毕宝贵,朱跃建. 2016年7月华北极端降水的中期预报误差分析[J].科学通报, 2018, 63(3): 340-355.
|
3 |
MA Leiming, LIN Hong, CHU Hai, et al. Research progress of Shanghai operational intelligent forecast technologies on severe convection[J]. Advances in Earth Science, 2023, 38(2): 111-124.
|
|
马雷鸣, 林红, 储海, 等. 上海强对流智能预报业务新技术研究进展[J]. 地球科学进展, 2023, 38(2): 111-124.
|
4 |
LIU Donghai, HUANG Jing, LIU Juan, et al. Review and prospect of parameterization schemes of typical mesoscale numerical prediction models[J]. Advances in Earth Science, 2023, 38(4): 349-362.
|
|
刘东海,黄静,刘娟,等. 典型中尺度数值预报模式参数化方案的综述与展望[J]. 地球科学进展, 2023, 38(4): 349-362.
|
5 |
CAO Yancha, ZHENG Yongguang, SHENG Jie, et al. Severe convective wind and hail probabilistic forecasting method based on outputs of GRAPES3 km model[J]. Meteorological Monthly, 2021, 47(9): 1 047-1 061.
|
|
曹艳察, 郑永光, 盛杰, 等. 基于GRAPES_3 km模式输出的风雹概率预报技术研究[J]. 气象, 2021, 47(9): 1 047-1 061.
|
6 |
MAO Xu, LIU Xinhua, YANG Bo. An optimized probabilistic prediction method for aircraft icing potential based on a convection-allowing model[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(5): 1 525-1 540.
|
|
毛旭, 刘鑫华, 杨波. 一种优化的基于对流可分辨模式的飞机积冰潜势概率预报方法[J]. 大气科学, 2023, 47(5): 1 525-1 540.
|
7 |
MASS C F, OVENS D, WESTRICK K, et al. Does increasing horizontal resolution produce more skillful forecasts?[J]. Bulletin of the American Meteorological Society, 2002, 83(3): 407-430.
|
8 |
SCHAEFER J T. The critical success index as an indicator of warning skill[J]. Weather and Forecasting, 1990, 5(4): 570-575.
|
9 |
PAN Liujie, ZHANG Hongfang, WANG Jianpeng. Progress on verification methods of numerical weather prediction[J]. Advances in Earth Science, 2014, 29(3): 327-335.
|
|
潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.
|
10 |
BRILL K F, MESINGER F. Applying a general analytic method for assessing bias sensitivity to bias-adjusted threat and equitable threat scores[J]. Weather and Forecasting, 2009, 24(6): 1 748-1 754.
|
11 |
EBERT E E. Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework[J]. Meteorological Applications, 2008, 15(1): 51-64.
|
12 |
AHIJEVYCH D, GILLELAND E, BROWN B G, et al. Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts[J]. Weather and Forecasting, 2009, 24(6): 1 485-1 497.
|
13 |
GILLELAND E, AHIJEVYCH D A, BROWN B G, et al. Verifying forecasts spatially[J]. Bulletin of the American Meteorological Society, 2010, 91(10): 1 365-1 376.
|
14 |
EBERT E E, McBRIDE J L. Verification of precipitation in weather systems: determination of systematic errors[J]. Journal of Hydrology, 2000, 239(1/2/3/4): 179-202.
|
15 |
EBERT E E. Neighborhood verification: a strategy for rewarding close forecasts[J]. Weather and Forecasting, 2009, 24(6): 1 498-1 510.
|
16 |
PAN Liujie, ZHANG Hongfang, LIU Jing, et al. Comparative analysis of SCMOC and various numerical models for precipitation forecasting[J]. Transactions of Atmospheric Science, 2023, 46(2): 217-229.
|
|
潘留杰,张宏芳,刘静,等.智能网格SCMOC及多模式降水预报对比[J].大气科学学报,2023, 46(2): 217-229.
|
17 |
MARZBAN C, SANDGATHE S, LYONS H, et al. Three spatial verification techniques: cluster analysis, variogram, and optical flow[J]. Weather and Forecasting, 2009, 24(6): 1 457-1 471.
|
18 |
MICHEAS A C, FOX N I, LACK S A, et al. Cell identification and verification of QPF ensembles using shape analysis techniques[J]. Journal of Hydrology, 2007, 343(3/4): 105-116.
|
19 |
LACK S A, LIMPERT G L, FOX N I. An object-oriented multiscale verification scheme[J]. Weather and Forecasting, 2010, 25(1): 79-92.
|
20 |
GILLELAND E. Testing competing precipitation forecasts accurately and efficiently: the spatial prediction comparison test[J]. Monthly Weather Review, 2013, 141(1): 340-355.
|
21 |
MARZBAN C, SANDGATHE S. Cluster analysis for object-oriented verification of fields: a variation[J]. Monthly Weather Review, 2008, 136(3): 1 013-1 025.
|
22 |
STEIN J, STOOP F. Neighborhood-based contingency tables including errors compensation[J]. Monthly Weather Review, 2019, 147(1): 329-344.
|
23 |
SCHWARTZ C S, ROMINE G S, SOBASH R A, et al. NCAR’s experimental real-time convection-allowing ensemble prediction system[J]. Weather and Forecasting, 2015, 30(6): 1 645-1 654.
|
24 |
PAN Liujie, ZHANG Hongfang, CHEN Xiaoting, et al. Neighborhood-based precipitation forecasting capability analysis of high-resolution models[J]. Journal of Tropical Meteorology, 2015, 31(5): 632-642.
|
|
潘留杰, 张宏芳, 陈小婷, 等. 基于邻域法的高分辨率模式降水的预报能力分析[J]. 热带气象学报, 2015, 31(5): 632-642.
|
25 |
PAN Liujie, ZHANG Hongfang, XUE Chunfang, et al. Numerical weather prediction model testing and evaluation systems MET and application[J]. Advances in Meteorological Science and Technology, 2016, 6(4): 37-43.
|
|
潘留杰, 张宏芳, 薛春芳, 等. 数值模式评估系统MET及其初步应用[J]. 气象科技进展, 2016, 6(4): 37-43.
|
26 |
PAN Liujie, XUE Chunfang, ZHANG Hongfang, et al. Comparison of three verification methods for high-resolution grid precipitation forecast[J]. Climatic and Environmental Research, 2017, 22(1): 45-58.
|
|
潘留杰, 薛春芳, 张宏芳, 等. 三种高分辨率格点降水预报检验方法的对比[J]. 气候与环境研究, 2017, 22(1): 45-58.
|
27 |
KOCHASIC M C, GALLUS W A, SCHAFFER C J. Further evaluation of probabilistic convective precipitation forecasts using the QPF-PoP neighborhood relationship[J]. Weather and Forecasting, 2017, 32(4): 1 423-1 440.
|
28 |
JOHNSON A, WANG X G, WANG Y M, et al. Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 hazardous weather testbeds[J]. Weather and Forecasting, 2020, 35(1): 169-191.
|
29 |
DAVIS C, BROWN B, BULLOCK R. Object-based verification of precipitation forecasts. part I: methodology and application to mesoscale rain areas[J]. Monthly Weather Review, 2006, 134(7): 1 772-1 784.
|
30 |
DAVIS C A, BROWN B G, BULLOCK R, et al. The Method for Object-based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC spring program[J]. Weather and Forecasting, 2009, 24(5): 1 252-1 267.
|
31 |
DAVIS C, BROWN B, BULLOCK R. Object-based verification of precipitation forecasts. part II: application to convective rain systems[J]. Monthly Weather Review, 2006, 134(7): 1 785-1 795.
|
32 |
BYTHEWAY J L, KUMMEROW C D. Toward an object-based assessment of high-resolution forecasts of long-lived convective precipitation in the central U.S[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(3): 1 248-1 264.
|
33 |
FLORA M L, SKINNER P S, POTVIN C K, et al. Object-based verification of short-term, storm-scale probabilistic mesocyclone guidance from an experimental warn-on-forecast system[J]. Weather and Forecasting, 2019, 34(6): 1 721-1 739.
|
34 |
CHEN Xiao, ZHAO Dong, HE Xiaofeng, et al. Evaluation and analysis of model forecast performance of high wind based on MODE method[J]. Meteorological Monthly, 2018, 44(8): 1 009-1 019.
|
|
陈笑, 赵东, 何晓凤, 等. 基于MODE对模式预报强风风场的检验分析[J]. 气象, 2018, 44(8): 1 009-1 019.
|
35 |
MITTERMAIER M, NORTH R, SEMPLE A, et al. Feature-based diagnostic evaluation of global NWP forecasts[J]. Monthly Weather Review, 2016, 144(10): 3 871-3 893.
|
36 |
GIANNAKAKI P, MARTIUS O. An object-based forecast verification tool for synoptic-scale rossby waveguides[J]. Weather and Forecasting, 2016, 31(3): 937-946.
|
37 |
YOU Fengchun, WANG Guorong, GUO Rui, et al. The application analysis of MODE method to the rainfall forecast test[J]. Meteorological Monthly, 2011, 37(12): 1 498-1 503.
|
|
尤凤春, 王国荣, 郭锐, 等. MODE方法在降水预报检验中的应用分析[J]. 气象, 2011, 37(12): 1 498-1 503.
|
38 |
WANG Guorong, CHEN Min, YOU Fengchun, et al. Method for object-based diagnostic evaluation and its application[J]. Meteorological Science and Technology, 2014, 42(4): 652-656.
|
|
王国荣, 陈敏, 由凤春, 等. 基于对象诊断的空间检验方法(MODE)[J]. 气象科技, 2014, 42(4): 652-656.
|
39 |
LIU Jing, REN Chuan, ZHAO Ziqi, et al. Comparative analysis on verification of heavy rainfall forecasts in different regional models[J]. Meteorological Monthly, 2022, 48(10): 1 292-1 302.
|
|
刘静, 任川, 赵梓淇, 等. 多区域高分辨率模式强降水预报检验分析[J]. 气象, 2022, 48(10): 1 292-1 302.
|
40 |
YU Biyu, ZHU Kefeng. Application of multiple spatial verification methods to precipitation forecasts from different resolution models[J]. Journal of the Meteorological Sciences, 2022, 42(3): 341-355.
|
|
俞碧玉, 朱科锋. 多种空间检验方法在不同分辨率模式降水预报评估中的应用[J]. 气象科学, 2022, 42(3): 341-355.
|
41 |
QU Qiaona, SHENG Chunyan, FAN Sudan, et al. Study on characteristics of rainstorm prediction by ECMWF and CMA-SH9[J]. Journal of the Meteorological Sciences, 2023, 43(2):196-206.
|
|
曲巧娜,盛春岩,范苏丹,等. 基于ECMWF和华东区域中尺度模式的暴雨预报特征研究[J]. 气象科学,2023,43(2):196-206.
|
42 |
PAN Liujie, ZHANG Hongfang, LIU Jing, et al. Comparative analysis of SCMOC and various numerical models for pre-cipitation forecasting[J]. Transactions of Atmospheric Sciences, 2023, 46(2): 217-229.
|
|
潘留杰, 张宏芳, 刘静, 等. 智能网格SCMOC及多模式降水预报对比[J]. 大气科学学报, 2023, 46(2): 217-229.
|
43 |
CASE J L, KUMAR S V, SRIKISHEN J, et al. Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state[J]. Weather and Forecasting, 2011, 26(6): 785-807.
|
44 |
WOLFF J K, HARROLD M, FOWLER T, et al. Beyond the basics: evaluating model-based precipitation forecasts using traditional, spatial, and object-based methods[J]. Weather and Forecasting, 2014, 29(6): 1 451-1 472.
|
45 |
PAN L J, ZHANG H F, LIU J, et al. Comparative analysis of SCMOC and models rainstorm forecasting performance in Qinling Mountains and their surrounding areas[J]. Atmosphere, 2022, 13(5). DOI:10.3390/atmos13050705 .
|
46 |
ZHANG H F, PAN L J. Diagnostic analysis of multimodel rainstorm forecast for cases based on MODE method[J]. Atmosphere, 2022, 13(7). DOI:10.3390/atmos13071047 .
|
47 |
DUDA J D, TURNER D D. Large-sample application of radar reflectivity object-based verification to evaluate HRRR warm-season forecasts[J]. Weather and Forecasting, 2021, 36(3): 805-821.
|
48 |
CONNELLY R, COLLE B A. Validation of snow multibands in the comma head of an extratropical cyclone using a 40-member ensemble[J]. Weather and Forecasting, 2019, 34(5): 1 343-1 363.
|
49 |
FAIRMAN J G, SCHULTZ D M, KIRSHBAUM D J, et al. Climatology of banded precipitation over the contiguous United States[J]. Monthly Weather Review, 2016, 144(12): 4 553-4 568.
|
50 |
LAWSON J R, GALLUS W A. Adapting the SAL method to evaluate reflectivity forecasts of summer precipitation in the central United States[J]. Atmospheric Science Letters, 2016, 17(10): 524-530.
|
51 |
GANETIS S A, COLLE B A, YUTER S E, et al. Environmental conditions associated with observed snowband structures within northeast U.S. winter storms[J]. Monthly Weather Review, 2018, 146(11): 3 675-3 690.
|
52 |
CINTINEO R, OTKIN J A, XUE M, et al. Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection-permitting ensemble forecasts using synthetic GOES-13 satellite observations[J]. Monthly Weather Review, 2014, 142(1): 163-182.
|
53 |
THOMPSON G, TEWARI M, IKEDA K, et al. Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts[J]. Atmospheric Research, 2016, 168: 92-104.
|
54 |
BIKOS D, LINDSEY D T, OTKIN J, et al. Synthetic satellite imagery for real-time high-resolution model evaluation[J]. Weather and Forecasting, 2012, 27(3): 784-795.
|
55 |
VAN WEVERBERG K, VOGELMANN A M, LIN W, et al. The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical Western Pacific[J]. Journal of the Atmospheric Sciences, 2013, 70(4): 1 104-1 128.
|
56 |
JIN H, PENG M S, JIN Y, et al. An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC[J]. Weather and Forecasting, 2014, 29(2): 252-270.
|
57 |
MITTERMAIER M P, BULLOCK R. Using MODE to explore the spatial and temporal characteristics of cloud cover forecasts from high-resolution NWP models[J]. Meteorological Applications, 2013, 20(2): 187-196.
|
58 |
GRIFFIN S M, OTKIN J A, ROZOFF C M, et al. Methods for comparing simulated and observed satellite infrared brightness temperatures and what do they tell us?[J]. Weather and Forecasting, 2017, 32(1): 5-25.
|
59 |
GRIFFIN S M, OTKIN J A, ROZOFF C M, et al. Seasonal analysis of cloud objects in the High-Resolution Rapid Refresh (HRRR) model using object-based verification[J]. Journal of Applied Meteorology and Climatology, 2017, 56(8): 2 317-2 334.
|
60 |
NOHARA D, KITOH A, HOSAKA M, et al. Impact of climate change on river discharge projected by multimodel ensemble[J]. Journal of Hydrometeorology, 2006, 7(5): 1 076-1 089.
|
61 |
GALLUS W A. Application of object-based verification techniques to ensemble precipitation forecasts[J]. Weather and Forecasting, 2010, 25(1): 144-158.
|
62 |
CLARK A J, GALLUS W A, XUE M, et al. A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles[J]. Weather and Forecasting, 2009, 24(4): 1 121-1 140.
|
63 |
JI L Y, ZHI X F, SIMMER C, et al. Multimodel ensemble forecasts of precipitation based on an object-based diagnostic evaluation[J]. Monthly Weather Review, 2020, 148(6): 2 591-2 606.
|
64 |
JOHNSON A, WANG X G. Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble[J]. Monthly Weather Review, 2012, 140(9): 3 054-3 077.
|
65 |
GRIFFIN S M, OTKIN J A, THOMPSON G, et al. Assessing the impact of stochastic perturbations in cloud microphysics using GOES-16 infrared brightness temperatures[J]. Monthly Weather Review, 2020, 148(8): 3 111-3 137.
|
66 |
SKOK G, TRIBBIA J, RAKOVEC J, et al. Object-based analysis of satellite-derived precipitation systems over the low- and midlatitude Pacific Ocean[J]. Monthly Weather Review, 2009, 137(10): 3 196-3 218.
|
67 |
WHITE R H, BATTISTI D S, SKOK G. Tracking precipitation events in time and space in gridded observational data[J]. Geophysical Research Letters, 2017, 44(16): 8 637-8 646.
|
68 |
SKOK G, TRIBBIA J, RAKOVEC J. Object-based analysis and verification of WRF model precipitation in the low- and midlatitude Pacific Ocean[J]. Monthly Weather Review, 2010, 138(12): 4 561-4 575.
|
69 |
SKOK G, BACMEISTER J, TRIBBIA J. Analysis of tropical cyclone precipitation using an object-based algorithm[J]. Journal of Climate, 2013, 26(8): 2 563-2 579.
|
70 |
CLARK A J, BULLOCK R G, JENSEN T L, et al. Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models[J]. Weather and Forecasting, 2014, 29(3): 517-542.
|
71 |
ZHANG Hongfang, PAN Liujie, LU Shan, et al. Tracking diagnosis analysis of grid precipitation forecast based on Time-Domain object[J]. Plateau Meteorology, 2021, 40(3): 559-568.
|
|
张宏芳, 潘留杰, 卢珊, 等. 基于时域对象的网格降水预报的追踪诊断分析[J]. 高原气象, 2021, 40(3): 559-568.
|
72 |
AYAT H, EVANS J P, SHERWOOD S, et al. Are storm characteristics the same when viewed using merged surface radars or a merged satellite product?[J]. Journal of Hydrometeorology, 2021, 22(1): 43-62.
|