地球科学进展 ›› 2024, Vol. 39 ›› Issue (2): 181 -192. doi: 10.11867/j.issn.1001-8166.2024.009

可持续发展研究 上一篇    下一篇

基于多源数据融合的可持续发展目标监测与评估研究进展
王一超( )   
  1. 生态环境部华南环境科学研究所/国家环境保护城市生态环境模拟与保护重点实验室,广东 广州 510535
  • 收稿日期:2023-07-24 修回日期:2023-11-05 出版日期:2024-02-10
  • 基金资助:
    国家自然科学基金项目(42201323);广州市科技计划项目(2023A04J0252)

Research Progress of Monitoring and Evaluation of Sustainable Development Goals Based on Multisource Data

Yichao WANG( )   

  1. State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
  • Received:2023-07-24 Revised:2023-11-05 Online:2024-02-10 Published:2024-03-05
  • About author:WANG Yichao, Assistant professor, research areas include the evaluation of composite ecosystems, monitoring, and evaluation of sustainable development goals. E-mail: yichaow@foxmail.com
  • Supported by:
    the National Natural Science Foundation of China(42201323);The Guangzhou Science and Technology Plan Project(2023A04J0252)

2015年联合国《2030年可持续发展议程》提出了17个可持续发展目标(SDGs)。国内外学者正持续开展SDGs监测评估研究,数据缺失和指标监测能力不足等问题被认为是当前制约SDGs常态化监测评估的重要因素。为了应对这些问题,需要加强指标的监测能力和数据获取能力。综合应用多源数据开展SDGs监测评估研究可有效弥补上述不足,并逐渐成为了国内外学术界的研究热点。相关研究工作可以归纳为3类:第一类研究侧重于讨论基于多源数据的SDGs监测评估基础理论和方法体系;第二类研究主要开展基于多源数据的SDGs监测评估案例研究;第三类研究和实践的重点是加强多源数据相关的基础能力建设。通过对比基于多源数据的研究案例和常规研究案例中所使用的指标类型差异,探讨多源数据的应用前景。结果表明,多源数据的应用可以加强对自然生态系统的评价、识别需要重点关注的地区、分析人与自然的交互作用、强化空间分析能力,可以有效弥补数据缺失等不足,并且提高指标数据的及时性和时空分辨率,可以极大地丰富SDGs的评价指标体系。未来可以从4个方面加强多源数据在SDGs监测评估中的应用:拓展多源数据在SDGs中的应用范围、促进多学科交叉和综合研究、在国家可持续发展议程创新示范区中试点多源数据的应用以及强化多源数据相关基础能力建设。

In 2015, the “2030 Agenda for Sustainable Development” (2030 ASD), adopted by the United Nations, set 17 Sustainable Development Goals (SDGs). Scholars worldwide have conducted continuous research on the monitoring and evaluation of SDGs. Data deficiency and inadequate index monitoring abilities are considered vital restrictions in the regular monitoring and evaluation of SDGs. The application of Multisource Data to the monitoring and evaluation of SDGs can effectively address these deficiencies. Research progress on SDGs based on Multisource Data can be categorized into three types: the first type focuses on the basic theory and method system of SDG monitoring and evaluation based on Multisource Data; The second type conducts SDG monitoring and evaluation case studies based on Multisource Data; The third type focuses on strengthening the primary capacity building related to Multisource Data. The application of multisource data can strengthen the evaluation of natural ecosystems, identify critical areas, analyze the interaction between humans and nature, effectively compensate for the lack of data and other deficiencies, and improve the timeliness and spatial and temporal resolution of indicator data, which can significantly enrich the evaluation index system of the SDGs. This study proposes to strengthen the application of Multisource Data in the study of SDGs from four aspects: to expand the application of Multisource Data in the SDGs, promote interdisciplinary and comprehensive research, pilot the application of Multisource Data in the national innovation-driven demonstration zone for implementing the UN's 2030 ASD, and strengthen the primary capacity building of Multisource Data.

中图分类号: 

表1 可持续发展目标( SDGs)典型研究案例对比
Table 1 Comparison of typical research cases of SDGs
SDGs 以统计调查数据为主要数据源的相关研究 32 - 34 基于多源数据的相关研究 49 - 53 58 - 61
指标类型(节选) 研究方法或数据来源(节选) 主要指标类型/数据产品(节选) 研究方法或数据来源(节选)
SDG14(水下生物) 重要的海洋生物多样性地区的受保护面积比例;海洋健康指数;从过度捕捞或崩溃的种群中捕获的鱼类(占总捕获量的百分比);拖网或疏浚捕获的鱼类(%);捕捞后丢弃的鱼类(%);进口所隐含的海洋生物多样性威胁 重要的海洋生物多样性地区的受保护面积比例指标来自Birdlife International(国际鸟盟); 海洋鱼类捕捞相关指标来自沿岸海域调查数据; 海洋健康指数来自OHI(Ocean Health Index); 进口所隐含的海洋生物多样性威胁指标数据来自相关研究文献 中国东部近海营养盐的现场观测数据集;中国近海绿潮生物量的时空数据集;中国滨海滩涂空间分布数据集;全国近海湿地台风防护价值数据集;中国—东盟海域珊瑚礁白化热环境监测与预警数据集;中国沿海退围还海、退围还湿1∶10万比例尺矢量数据产品;近海海洋垃圾与微塑料;红树林面积;近海筏式养殖面积;中国近海典型海域富营养化;中国近海典型海域生态系统健康 针对HY-1C/D卫星海岸带成像仪、美国MODIS、欧洲空间局哨兵二号卫星多光谱成像仪等光学遥感数据特点,基于绿潮生物量变化模拟与观测验证数据,提出适用于不同载荷数据的绿潮生物量光学遥感估算模型和计算方法; 以10 m分辨率密集时序Sentinel-2影像为数据源,构建基于最大光谱指数合成(Maximum Spectral Index Composite,MSIC)算法和大津(Otsu)算法的滩涂全自动提取方法; 基于全国的土地利用/覆盖数据和长时间序列台风灾害、经济损失、人口和GDP等要素数据集,利用对数线性环境经济模型,定量评估单位面积的近海湿地台风防护减灾生态服务功能价值,综合每年台风袭击中国沿岸的频率,估算全国近海湿地台风防护价值
SDG15(陆地生物) 重要的陆地生物多样性地区的受保护面积比例;重要的淡水生物多样性地区的受保护面积比例;物种生存红色名录指数;永久性毁林(占森林面积的百分比);进口所隐含的陆地和淡水生物多样性威胁 重要的陆地生物多样性地区的受保护面积比例、重要的淡水生物多样性地区的受保护面积比例指标来自Birdlife International(国际鸟盟); 红色名录指数来自国际自然保护联盟(International Union for Conservation of Nature,IUCN)和Birdlife International; 永久性森林砍伐、进口所隐含的陆地和淡水生物多样性威胁等指标来自相关研究文献 全球30 m沙丘(地)分布及变化数据产品;中国主要外来入侵物种扩散风险空间分布;东北黑土退化现状与风险;中国荒漠化治理碳汇效应;中国山地生物多样性保护状况;土地退化面积比例;红色名录指数;钱江源国家公园生态系统数据集、钱江源国家公园生物多样性数据集;全国大熊猫栖息地的分布数据;中国植物多样性风险分布与保护空缺分布;北方半干旱区及周边沙漠化动态数据产品;全球土地退化/恢复数据集;中国生物多样性保护和可持续利用3个分区数据集;2018年长江流域森林类型分布数据集;全球2019年森林覆盖数据产品;珍稀濒危植物精细空间分布;中国生态系统质量数据集;中国重要草地生态系统名录及空间分布产品数据集;全球2015年和2020年2期山地绿色覆盖指数数据集 基于卫星遥感数据、多源地表制图产品和土地覆盖样本集,构建包含光谱、光谱指数、多时相归一化植被指数(NDVI)、纹理、地形和多源制图特征在内的多源多时相分类特征体系,利用高质量单时相与多时相分类样本,研制30 m空间分辨率的全球沙丘(地)分布数据集; 采用MODIS-NDVI数据结合地面调查数据、全国土壤普查数据,开发了荒漠生态系统碳储量估算方法,对中国荒漠生态系统碳储量进行估算; 以生态环境部公开发布的71种外来入侵物种为研究对象,基于公开发表的文献、专著、数据库及实地调查获取各物种分布信息,基于MaxEnt生态位模型完成外来入侵物种适生区模拟,研判主要外来入侵物种扩散风险; 通过计算人工用地(农田和城镇)转变为自然生态系统(森林、灌丛、草地、湿地)的面积估算生态系统恢复面积。然后采用生物量与植被覆盖度指标开展不同生态系统质量评估,构建生态系统质量指数(Ecological Quality Index,EQI); 通过文献报道提取、语义分析与挖掘和网络爬虫等大数据获取方法获得IUCN濒危物种红色名录、《国家重点保护野生动物名录》和《国家重点保护野生植物名录》中的物种在空间上分布的样本点数据。结合物种生境信息,通过主成分分析法提取关键的决定性生境因子。在MaxEnt模型或BIOMOD2模型中进行建模和模拟,最终得到物种空间分布数据
1 International Union for Conservation of Nature (IUCN), World Wildlife Fund (WWF). World conservation strategy: living resource conservation for sustainable development[M]. Gland, Switzerland: IUCN, 1980.
2 United Nations. Transforming our world: the 2030 agenda for sustainable development[R]. United Nations, 2015.
3 International Council for Science (ICSU), International Social Science Council (ISSC). Review of the sustainable development goals: the science perspective[R]. Paris: International Council for Science, 2015.
4 Yonglong LÜ, WANG Yichao, YUAN Jingjing, et al. The ecology of sustainability: progress and prospect[J]. Acta Ecologica Sinica, 2019, 39(10): 3 401-3 415.
吕永龙, 王一超, 苑晶晶, 等. 可持续生态学[J]. 生态学报, 2019, 39(10): 3 401-3 415.
5 LU Y L, NAKICENOVIC N, VISBECK M, et al. Policy: five priorities for the UN sustainable development goals[J]. Nature, 2015, 520: 432-433.
6 外交部网站. 中方发布《中国落实2030年可持续发展议程国别方案》[EB/OL]. (2016-10-13) [2023-10-20]. .
7 GUO Huadong, LIANG Dong, CHEN Fang, et al. Big Earth Data facilitates sustainable development goals[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 874-884.
郭华东,梁栋,陈方,等. 地球大数据促进联合国可持续发展目标实现[J]. 中国科学院院刊, 2021, 36(8): 874-884.
8 LU Y L, ZHANG Y Q, CAO X H, et al. Forty years of reform and opening up: China’s progress toward a sustainable path[J]. Science Advances, 2019, 5(8). DOI:10.1126/sciadv.aau9413 .
9 NILSSON M. A draft framework for understanding SDG interactions[J]. Chemistry International, 2016, 38(6). DOI:10.1515/ci-2016-0632 .
10 Yonglong LÜ, WANG Yichao, YUAN Jingjing, et al. Some thoughts on promoting the implementation of sustainable development goals in China[J]. China Population, Resources and Environment,2018, 28(1): 1-9.
吕永龙,王一超,苑晶晶,等.关于中国推进实施可持续发展目标的若干思考[J]. 中国人口·资源与环境, 2018, 28(1): 1-9.
11 NIU Wenyuan, MA Ning, LIU Yijun. World sustainable development: from action to science—sustainability science and the annual report for world sustainable development 2015[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(5): 573-585.
牛文元, 马宁, 刘怡君. 可持续发展从行动走向科学——《2015世界可持续发展年度报告》[J]. 中国科学院院刊, 2015, 30(5): 573-585.
12 SCHMIDT-TRAUB G, KROLL C, TEKSOZ K, et al. National baselines for the sustainable development goals assessed in the SDG Index and dashboards[J]. Nature Geoscience, 2017, 10(8): 547-555.
13 FULDAUER L I, THACKER S, HAGGIS R A, et al. Targeting climate adaptation to safeguard and advance the sustainable development goals[J]. Nature Communications, 2022, 13.DOI:10.1038/s41467-022-31202-w .
14 BIERMANN F, HICKMANN T, SÉNIT C A, et al. Scientific evidence on the political impact of the sustainable development goals[J]. Nature Sustainability, 2022, 5(9): 795-800.
15 LENZEN M, GESCHKE A, WEST J, et al. Implementing the material footprint to measure progress towards sustainable development goals 8 and 12[J]. Nature Sustainability, 2022, 5(2): 157-166.
16 ALLEN C, NEJDAWI R, EL-BABA J, et al. Indicator-based assessments of progress towards the Sustainable Development Goals (SDGs): a case study from the Arab region[J]. Sustainability Science, 2017, 12(6): 975-989.
17 COLE M J, BAILEY R M, NEW M G. Spatial variability in sustainable development trajectories in South Africa: provincial level safe and just operating spaces[J]. Sustainability Science, 2017, 12(5): 829-848.
18 WANG Y C, LU Y L, HE G Z, et al. Spatial variability of Sustainable development goals in China: a provincial level evaluation[J]. Environmental Development, 2020, 35. DOI:10.1016/j.envdev.2019.100483 .
19 XU Z C, CHAU S N, CHEN X Z, et al. Assessing progress towards sustainable development over space and time[J]. Nature, 2020, 577: 74-78.
20 OMISORE A G. Attaining sustainable development goals in sub-Saharan Africa: the need to address environmental challenges[J]. Environmental Development, 2018, 25: 138-145.
21 RAI S M, BROWN B D, RUWANPURA K N. SDG 8: decent work and economic growth—a gendered analysis[J]. World Development, 2019, 113: 368-380.
22 WANG M R, JANSSEN A B G, BAZIN J, et al. Accounting for interactions between sustainable development goals is essential for water pollution control in China[J]. Nature Communications, 2022, 13. DOI:10.1038/s41467-022-28351-3 .
23 RASUL G. Managing the food, water, and energy nexus for achieving the sustainable development goals in South Asia[J]. Environmental Development, 2016, 18: 14-25.
24 ZHANG J Z, WANG S, ZHAO W W, et al. Finding pathways to synergistic development of sustainable development goals in China[J]. Humanities and Social Sciences Communications, 2022, 9(1). DOI:10.1057/s41599-022-01036-4 .
25 HORAN D. A framework to harness effective partnerships for the sustainable development goals[J]. Sustainability Science, 2022, 17(4): 1 573-1 587.
26 WU X T, FU B J, WANG S, et al. Decoupling of SDGs followed by re-coupling as sustainable development progresses[J]. Nature Sustainability, 2022, 5: 452-459.
27 DI LUCIA L, SLADE R, KHAN J. Decision-making fitness of methods to understand sustainable development goal interactions[J]. Nature Sustainability, 2022, 5(2): 131-138.
28 ALCAMO J. Water quality and its interlinkages with the Sustainable Development Goals[J]. Current Opinion in Environmental Sustainability, 2019, 36: 126-140.
29 FLÖRKE M, BÄRLUND I, van VLIET M T H, et al. Analysing trade-offs between SDGs related to water quality using salinity as a marker[J]. Current Opinion in Environmental Sustainability, 2019, 36: 96-104.
30 ALLEN C, METTERNICHT G, WIEDMANN T. Initial progress in implementing the Sustainable Development Goals (SDGs): a review of evidence from countries[J]. Sustainability Science, 2018, 13(5): 1 453-1 467.
31 SALVIA A L, LEAL FILHO W, BRANDLI L L, et al. Assessing research trends related to sustainable development goals: local and global issues[J]. Journal of Cleaner Production, 2019, 208: 841-849.
32 SACHS J, SCHMIDT-TRAUB G, KROLL C, et al. Sustainable development report 2020[M]. Cambridge, UK: Cambridge University Press, 2021.
33 SACHS J D, KROLL C, LAFORTUNE G, et al. Sustainable development report 2021: the decade of action for the sustainable development goals[R]. Cambridge: Cambridge University Press, 2021.
34 SACHS J, KROLL C, LAFORTUNE G, et al. Sustainable development report 2022[M]. Cambridge, UK: Cambridge University Press, 2022.
35 XUE Lan, WENG Lingfei. The policy opportunities and challenges in China’s implementation of 2030 sustainable development goals[J]. China Soft Science, 2017(1): 1-12.
薛澜, 翁凌飞. 中国实现联合国2030年可持续发展目标的政策机遇和挑战[J]. 中国软科学, 2017(1): 1-12.
36 United Nations. Report of the Inter-agency and expert group on sustainable development goal indicators[R]. New York: United Nations, 2016.
37 United Nations. The sustainable development goals report 2021[R]. New York: United Nations, 2021: 60-61.
38 FU Bojie. The united nations sustainable development goals and the historical tasks of geographic science [J]. Science and Technology Review, 2020, 38(13): 19-24.
傅伯杰.联合国可持续发展目标与地理科学的历史任务[J].科技导报,2020, 38(13): 19-24.
39 GUO Huadong. A project on big Earth data science engineering[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(8): 818-824.
郭华东.地球大数据科学工程[J].中国科学院院刊,2018, 33(8): 818-824.
40 CHEN Jun, REN Huiru, Geng Wen, et al. Quantitative measurement and monitoring Sustainable Development Goals (SDGs) with geospatial information[J]. Geomatics World, 2018, 25(1): 1-7.
陈军,任惠茹,耿雯,等.基于地理信息的可持续发展目标(SDGs)量化评估[J].地理信息世界,2018,25(1): 1-7.
41 COCHRAN F, DANIEL J, JACKSON L, et al. Earth observation-based ecosystem services indicators for national and subnational reporting of the sustainable development goals[J]. Remote Sensing of Environment, 2020, 244. DOI:10.1016/j.rse.2020.111796 .
42 GUO H D, CHEN F, SUN Z C, et al. Big Earth Data: a practice of sustainability science to achieve the sustainable development goals[J]. Science Bulletin, 2021, 66(11): 1 050-1 053.
43 GIULIANI G, MAZZETTI P, SANTORO M, et al. Knowledge generation using satellite Earth observations to support Sustainable Development Goals (SDG): a use case on land degradation[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88. DOI:10.1016/j.jag.2020.102068 .
44 WANG Juanle, WEI Haishuo, YAN Xinrong, et al. Review and perspective for resources and environmental information development and service along the economic corridors of the “Belt and Road” initiative[J]. Journal of Geo-Information Science, 2022, 24(6): 1 019-1 033.
王卷乐, 魏海硕, 严欣荣, 等. “一带一路” 经济走廊资源环境信息开发利用研究进展与展望[J]. 地球信息科学学报, 2022, 24(6): 1 019-1 033.
45 GUO H D, WANG L Z, LIANG D. Big Earth Data from space: a new engine for Earth science[J]. Science Bulletin, 2016, 61(7): 505-513.
46 HASSANI H, HUANG X, MACFEELY S, et al. Big data and the United Nations Sustainable Development Goals (UN SDGs) at a glance[J]. Big Data and Cognitive Computing, 2021, 5(3). DOI:10.3390/bdcc5030028 .
47 WANG Penglong, WANG Bao, XU Bingxin, et al. Progress and prospect of sustainable development goals in underdeveloped mountainous areas[J]. Advances in Earth Science, 2022, 37(9): 937-948.
王鹏龙,王宝,徐冰鑫,等.欠发达山区可持续发展目标研究进展与展望[J].地球科学进展,2022, 37(9): 937-948.
48 KAVVADA A, METTERNICHT G, KERBLAT F, et al. Towards delivering on the sustainable development goals using Earth observations[J]. Remote Sensing of Environment, 2020, 247. DOI:10.1016/j.rse.2020.111930 .
49 GAO Jun, ZHANG Zhonghao, LI Weiyue, et al. Urban sustainable development evaluation with big earth data: data, indicators, and methods[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 940-949.
高峻, 张中浩, 李巍岳, 等. 地球大数据支持下的城市可持续发展评估: 指标、数据与方法[J]. 中国科学院院刊, 2021, 36(8): 940-949.
50 WANG Futao, YU Rencheng, LI Jingxi, et al. Big Earth Data in support of marine sustainable development[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 932-939.
王福涛, 于仁成, 李景喜, 等. 地球大数据支撑海洋可持续发展[J]. 中国科学院院刊, 2021, 36(8): 932-939.
51 HUANG Chunlin, SUN Zhongchang, JIANG Huiping, et al. Big Earth Data supports sustainable cities and communities: progress and challenges[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 914-922.
黄春林, 孙中昶, 蒋会平, 等. 地球大数据助力“可持续城市和社区” 目标实现:进展与挑战[J]. 中国科学院院刊, 2021, 36(8): 914-922.
52 HUANG Lei, JIA Gensuo, FANG Shibo, et al. Big Earth Data for UN sustainable development goals: climate change and action[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 923-931.
黄磊, 贾根锁, 房世波, 等. 地球大数据支撑联合国可持续发展目标:气候变化与应对[J]. 中国科学院院刊, 2021, 36(8): 923-931.
53 LU Shanlong, JIA Li, JIANG Yunzhong, et al. Progress and prospect on monitoring and evaluation of united nations SDG 6 (clean water and sanitation) target[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 904-913.
卢善龙, 贾立, 蒋云钟, 等. 联合国可持续发展目标6(清洁饮水与卫生设施)监测评估:进展与展望[J]. 中国科学院院刊, 2021, 36(8): 904-913.
54 MONDEJAR M E, AVTAR R, DIAZ H L B, et al. Digitalization to achieve sustainable development goals: steps towards a smart green planet[J]. The Science of the Total Environment, 2021, 794. DOI:10.1016/j.scitotenv.2021.148539 .
55 TAMIMINIA H, SALEHI B, MAHDIANPARI M, et al. Google Earth Engine for geo-big data applications: a meta-analysis and systematic review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 152-170.
56 WEISE K, HÖFER R, FRANKE J, et al. Wetland extent tools for SDG 6.6.1 reporting from the Satellite-based Wetland Observation Service (SWOS)[J]. Remote Sensing of Environment, 2020, 247. DOI:10.1016/j.rse.2020.111892 .
57 GUO H D, LIANG D, SUN Z C, et al. Measuring and evaluating SDG indicators with Big Earth Data[J]. Science Bulletin, 2022, 67(17): 1 792-1 801.
58 空天信息创新研究院. 中国科学院发布《地球大数据支撑可持续发展目标报告》[EB/OL]. (2019-09-27) [2023-10-20]. .
59 International Research Center of Big Data for Sustainable Development Goals, Chinese Academy of Sciences (CBAS, CAS). Big Earth Data in support of the sustainable development goals (2020) [R]. Beijing: Science Press,2020.
中国科学院 可持续发展大数据国际研究中心. 地球大数据支撑可持续发展目标报告(2020)[R]. 北京:科学出版社,2020.
60 International Research Center of Big Data for Sustainable Development Goals, Chinese Academy of Sciences (CBAS, CAS). Big Earth Data in support of the sustainable development goals (2021) [R]. Beijing: Science Press,2021.
中国科学院可持续发展大数据国际研究中心. 地球大数据支撑可持续发展目标报告(2021)[R]. 北京:科学出版社,2021.
61 International Research Center of Big Data for Sustainable Development Goals, Chinese Academy of Sciences (CBAS, CAS). Big Earth Data in support of the sustainable development goals (2022) [R]. Beijing: Science Press,2022.
中国科学院可持续发展大数据国际研究中心. 地球大数据支撑可持续发展目标报告(2022)[R]. 北京:科学出版社,2022.
62 CHEN Jun, PENG Shu, ZHAO Xuesheng, et al. Measuring regional progress towards SDGs by combining geospatial and statistical information[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 473-479.
陈军, 彭舒, 赵学胜, 等. 顾及地理空间视角的区域SDGs综合评估方法与示范[J]. 测绘学报, 2019, 48(4): 473-479.
63 WU B F, TIAN F Y, ZHANG M, et al. Cloud services with big data provide a solution for monitoring and tracking sustainable development goals[J]. Geography and Sustainability, 2020, 1(1): 25-32.
64 LI Z L, GONG X Y, JUN C, et al. Functional requirements of systems for visualization of Sustainable Development Goal (SDG) indicators[J]. Journal of Geovisualization and Spatial Analysis, 2020, 4(1). DOI:10.1007/s41651-019-0046-x .
65 HUANG Chunlin, FENG Yaya, GAO Feng, et al. Integrated assessment of SDG progress of national innovation demonstration zones for the 2030 agenda for sustainable development: a case study of Lincang City, Yunnan Province[J]. Advances in Earth Science, 2023, 38(10): 987-998.
黄春林,冯娅娅,高峰,等. 可持续发展议程创新示范区SDGs综合评估——以临沧市为例[J]. 地球科学进展,2023, 38(10): 987-998.
66 SINGH A, KANAUJIA A, SINGH V K, et al. Artificial intelligence for sustainable development goals: bibliometric patterns and concept evolution trajectories[J]. Sustainable Development, 2023. DOI:10.1002/sd.2706 .
67 JAIN A, GUE I H, JAIN P. Research trends, themes, and insights on artificial neural networks for smart cities towards SDG-11[J]. Journal of Cleaner Production, 2023, 412. DOI:10.1016/j.jclepro.2023.137300 .
[1] 王鹏龙, 王宝, 徐冰鑫, 黄悦悦, 高峰, 赵雪雁, 黄春林, 宋晓谕, 周亮. 欠发达山区可持续发展目标研究进展与展望[J]. 地球科学进展, 2022, 37(9): 937-948.
[2] 苗俊霞, 宋晓谕, 冯人和, 权学烽, 高峰, 黄春林, 赵雪雁, 钟方雷, 程清平, 魏彦强. 欠发达山区可持续发展目标相互作用研究[J]. 地球科学进展, 2022, 37(9): 949-962.
[3] 赵雪雁, 王鹤霖, 高峰, 王鹏龙, 王宝. 特色产业助力欠发达山区 SDGs实现[J]. 地球科学进展, 2022, 37(10): 1066-1078.
[4] 袁子峰, 周亮, 黄春林, 高峰, 王宝, 王鹏龙, 李晓恩. 欠发达山地城市人居环境适宜性综合评价[J]. 地球科学进展, 2022, 37(10): 1079-1087.
[5] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向 SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[6] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[7] 魏彦强, 李新, 高峰, 黄春林, 宋晓谕, 王宝, 马瀚青, 王鹏龙. 联合国2030年可持续发展目标框架及中国应对策略[J]. 地球科学进展, 2018, 33(10): 1084-1093.
[8] 周洪建, 王曦. 特别重大自然灾害损失统计内容的国际对比——基于《特别重大自然灾害损失统计制度》和PDNA系统的分析[J]. 地球科学进展, 2017, 32(10): 1030-1038.
[9] 邵珂, 陈建平, 任梦依. 西南印度洋中脊多金属硫化物矿产资源评价方法与指标体系[J]. 地球科学进展, 2015, 30(7): 812-822.
[10] 周洪建, 王丹丹, 袁艺, 郝明月. 中国特别重大自然灾害损失统计的最新进展——《特别重大自然灾害损失统计制度》解析 *[J]. 地球科学进展, 2015, 30(5): 530-538.
[11] 胡庆武,林春峰,余 飞,曾力. 多维GIS矿产评价数据管理系统设计和实现[J]. 地球科学进展, 2010, 25(9): 990-996.
[12] 马建文,李加洪,高志海. 美国NASA建设地球观测科学数据产品生成与应用服务的量化体系综述[J]. 地球科学进展, 2007, 22(5): 521-526.
[13] 潘耀忠,陈志军,聂娟,王秀山. 基于多源遥感的土地利用动态变化信息综合监测方法研究[J]. 地球科学进展, 2002, 17(2): 182-187.
[14] 毛汉英,余丹林. 区域承载力定量研究方法探讨[J]. 地球科学进展, 2001, 16(4): 549-555.
[15] 贾绍凤,毛汉英. 国外可持续发展度量研究综述[J]. 地球科学进展, 1999, 14(6): 596-601.
阅读次数
全文


摘要