地球科学进展 ›› 2024, Vol. 39 ›› Issue (2): 169 -180. doi: 10.11867/j.issn.1001-8166.2024.004

研究论文 上一篇    下一篇

自然演化碎屑锆石裂变径迹长度影响因素分析
陈鸿 1 , 2( ), 蔡长娥 1 , 2( ), 罗开通 1 , 2, 雷超 1 , 2, 尚文亮 1 , 2   
  1. 1.重庆科技大学 复杂油气田勘探开发重庆市重点实验室, 重庆 401331
    2.重庆科技大学 石油与天然气工程学院, 重庆 401331
  • 收稿日期:2023-07-28 修回日期:2023-12-27 出版日期:2024-02-10
  • 通讯作者: 蔡长娥 E-mail:981801204@qq.com;ccecai@163.com
  • 基金资助:
    国家自然科学基金项目(41802154);重庆科技大学研究生科技创新计划项目(YKJCX2220108)

Influence Factors of the Fission-track Length in Detrital Zircon Obtained from Natural Borehole Samples

Hong CHEN 1 , 2( ), Chang’e CAI 1 , 2( ), Kaitong LUO 1 , 2, Chao LEI 1 , 2, Wenliang SHANG 1 , 2   

  1. 1.Chongqing Key Labrotary of Complex Oil and Gas Exploration and Development, Chongqing University of Science and Technology, Chongqing 401331, China
    2.School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
  • Received:2023-07-28 Revised:2023-12-27 Online:2024-02-10 Published:2024-03-05
  • Contact: Chang’e CAI E-mail:981801204@qq.com;ccecai@163.com
  • About author:CHEN Hong, Master student, research areas include low temperature thermochronology and tectonic geology. E-mail: 981801204@qq.com
  • Supported by:
    the National Natural Science Foundation of China(41802154);The Science and Technology Innovation Fund for Postgraduates of Chongqing University of Science and Technology(YKJCX2220108)

锆石裂变径迹长度是锆石裂变径迹热年代学研究的一个重要参数。基于不同热背景的沉积盆地样品实测数据,分析锆石裂变径迹的退火行为,探讨锆石裂变径迹长度的影响因素。研究表明,Sk1井样品的裂变径迹长度和径迹与结晶C轴夹角之间具有一定的负相关性,即夹角愈小,径迹长度愈长;反之,夹角愈大,径迹长度愈短。Sk1井样品径迹与结晶C轴夹角主要分布在10°~70°,整体分布较随机;而Ku1井样品多分布于高角度(60°~90°),整体分布不随机。Sk1井锆石裂变径迹在沉积盆地开始退火温度为220 ℃,深层样品的平均径迹长度为5.02~5.55 μm;Ku1井锆石裂变径迹在沉积盆地开始退火温度为170 ℃,深层样品的平均径迹长度为8.06~8.31 μm,高温热背景下Sk1井的锆石裂变径迹开始受到沉积盆地影响的温度高于Ku1井。研究认为锆石裂变径迹在不同热背景下的开始退火温度和退火行为产生的差异是由盆地不同的增温速率导致的。Sk1井的中浅层样品平均径迹长度范围为5.85~8.36 μm,Ku1井中浅层样品平均径迹长度为9.21~10.05 μm。2口井中浅层样品的最小年龄大于地层年龄,表明未受到沉积盆地的影响,缩短的径迹长度是受到母源区热事件的影响。对锆石裂变径迹的退火行为和径迹长度影响因素的分析对于油气成藏过程以及烃源岩的热演化史研究具有指导意义。

Zircon fission-track length is an essential parameter for studying annealing behavior. Based on measured data from sedimentary basin samples with different thermal backgrounds, this study investigated the annealing behavior of zircon fission tracks and discussed the factors influencing the fission-track length. The results show that the fission track of the Sk1 sample has a negative correlation with the angle to the C-axis on the fission track; specifically, a smaller angle corresponds to a longer track length, while a larger angle results in a shorter track length. The angle to the C-axis on the fission-track of the Sk1 sample was mainly distributed at 10°~70°, and the overall distribution was relatively random. The Ku1 samples were primarily distributed at high angles (60°~90°), and the overall distribution was not random. The initial annealing temperature of zircon fissions track in the sedimentary basin of Sk1 is 220 °C, and the average track length of deep samples is 5.02~5.55 μm. The initial annealing temperature of the zircon fission track in the sedimentary basin of Ku1 is 170 °C, and the average track length of deep samples is 8.06~8.31 μm. Under a high temperature and thermal background, the temperature at which the zircon fission track of Well Sk1 was affected by the sedimentary basin was higher than that of Well Ku1. The difference in initial annealing temperature and annealing behavior of zircon fission tracks with different thermal backgrounds is attributed to variations in the heating rate. The average track length of the middle and shallow samples in well Sk1 is 5.85~8.36μm; the average track length in the Ku1 well is 9.21~10.05 μm. The minimum age of shallow samples in both wells exceeded the formation age, indicating that they were not affected by the sedimentary basin. Instead, the shortened track length was affected by thermal events in the source.

中图分类号: 

图1 渤海湾盆地和塔里木盆地主要构造单元(a)及采样井位(b)分布图
Fig. 1 The main structural unitsaand sampling wellsblocation distribution maps of Bohai Bay Basin and Tarim Basin
图2 镜下锆石裂变径迹示意图
Fig. 2 The Zircon Fission TrackZFTdiagram under the microscope
表1 Sk1井和 Ku1井样品详细信息及锆石裂变径迹长度测试结果
Table 1 Detailed information of samples from well Sk1 and well Ku1 and test results of zircon fission track length
图3 Sk1井样品的锆石裂变径迹(ZFT)长度与埋深关系图
Fig. 3 The relationship between Zircon Fission TrackZFTlength and buried depth in the well Sk1
图4 Sk1井不同埋深样品裂变径迹条数及长度分布直方图
N为样品中裂变径迹条数
Fig. 4 The number of fission track and length distribution of samples with different buried depths in the well Sk1
N: The number of fission tracks in the sample
图5 Ku1井样品的锆石裂变径迹(ZFT)长度与埋深关系图
Fig. 5 The relationship between Zircon Fission TrackZFTlength and buried depth in the well Ku1
图6 Ku1-01样品和Ku1-05样品裂变径迹长度分布直方图
N为样品中裂变径迹条数
Fig. 6 The distribution of fission track lengths in the Ku1-01 and Ku1-05
N: The number of fission tracks in the sample
图7 Sk1井和Ku1井样品径迹与C轴夹角的分布直方图
Fig. 7 Histogram of the angle to the C-axis in zircon from the well Sk1 and well Ku1
图8 Sk1井碎屑锆石样品裂变径迹长度与结晶C轴夹角关系图
Fig. 8 Relationship between the confined track lengths and the angles to the C-axis in zircon samples from the well Sk1
图9 不同样品裂变径迹长度分布图
(a) Sk1-32样品; (b) Sk1-34样品;(c) Sk1井锆石裂变径迹( L 60)与埋深关系; (d) Sk1-35样品; (e) Sk1-37样品; N为样品中裂变径迹条数
Fig. 9 The fission track length distribution histogram of different samples
(a) The samples of Sk1-32; (b) The samples of Sk1-34; (c) The relationship between the mean track length ( L 60) of Zircon Fission Track (ZFT) and buried depth in the well Sk1; (d) The samples of Sk1-35; (e) The samples of Sk1-37; N:The number of fission tracks in the sample
图10 不同样品裂变径迹长度分布图
(a) Ku1-68样品; (b) Ku1井锆石裂变径迹( L 60)与埋深关系; (c) Ku1-69样品; N为样品中裂变径迹条数
Fig. 10 The fission track length distribution histogram of different samples
(a) The samples of Ku1-68; (b) The relationship between the mean track length ( L 60) of Zircon Fission Track (ZFT) and buried depth in the well Ku1; (c) The samples of Ku1-69; N:The number of fission tracks in the sample
图11 不同采样井样品的锆石裂变径迹(ZFT)最小年龄与温度/埋深关系
Fig. 11 The relationship between the minimum age of Zircon Fission TrackZFTand temperature/buried depth from different sampling wells
表2 锆石裂变径迹( ZFT)的初始径迹长度
Table 2 Initial track length of Zircon Fission TrackZFT
图12 Ku1-05样品和Ku1-09样品裂变径迹长度分布直方图
N为样品中裂变径迹条数
Fig. 12 The fission track length distribution histogram of samples of Ku1-05 and Ku1-09
N: The number of fission tracks in the sample
图13 不同热年代学约束条件的热史演化路径图
(a)利用ZHePRZ、AFTPAZ和AHePRZ得到的热史演化路径;(b)利用AFT和ZFT及(U-Th)/He得到的热史演化路径;1和2表示可能得到的热史演化路径;ZHePRZ:锆石(U-Th)/He部分保留带;AFTPAZ:磷灰石裂变径迹部分退火带;AHePRZ:磷灰石(U-Th)/He部分保留带;ZFTPAZ:锆石裂变径迹部分退火带
Fig. 13 The thermal histories by different thermochronological constraints
(a) The thermal history evolution path is obtained by using ZHePRZ, AFTPAZ, AHePRZ data; (b) The thermal history evolution path is obtained by using apatite and zircon fission track and (U-Th)/He data; 1 and 2 represent possible thermal history evolution paths; ZHePRZ: Zircon(U-Th)/He Partial Reserve Zone; AFTPAZ: Apatite Fission Track Partial Annealing Zone; AHePRZ: Apatite(U-Th)/He Partial Reserve Zone; ZFTPAZ: Zircon Fission Track Partial Annealing Zone
1 PANG Xiongqi, WANG Wenyang, WANG Yingxun, et al. Comparison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica, 2015, 36(10): 1 167-1 187.
庞雄奇, 汪文洋, 汪英勋, 等. 含油气盆地深层与中浅层油气成藏条件和特征差异性比较[J]. 石油学报, 2015, 36(10): 1 167-1 187.
2 SUN Longde, ZOU Caineng, ZHU Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649.
孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6):641-649.
3 YAO Genshun, WU Xianzhu, SUN Zandong, et al. Status and prospects of exploration and exploitation key technologies of the deep oil & gas resources in onshore China [J]. Natural Gas Geoscience, 2017, 28(8): 1 154-1 164.
姚根顺, 伍贤柱, 孙赞东, 等. 中国陆上深层油气勘探开发关键技术现状及展望[J]. 天然气地球科学, 2017, 28(8): 1 154-1 164.
4 JIA Chengzao, PANG Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1 457-1 469.
贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1 457-1 469.
5 MCCORMACK N, CLAYTON G, FERNANDES P. The thermal history of the Upper Palaeozoic rocks of southern Portugal[J]. Marine and Petroleum Geology, 2007, 24(3): 145-150.
6 QIU Nansheng, WANG Jiyang, MEI Qinghua, et al. Constraints of (U-Th)/He ages on Early Paleozoic tectonothermal evolution of the Tarim basin, China[J]. Science China: Earth Sciences, 2010, 40(12): 1 669-1 683.
邱楠生, 汪集旸, 梅庆华, 等. (U-Th)/He年龄约束下的塔里木盆地早古生代构造—热演化[J]. 中国科学:地球科学, 2010, 40(12): 1 669-1 683.
7 QIU Nansheng, CHANG Jian, ZUO Yinhui, et al. Thermal evolution and maturation of Lower Paleozoic source rocks in the Tarim Basin, northwest China[J]. AAPG Bulletin, 2012, 96(5):789-821.
8 GREEN P F, DUDDY I R, LASLETT G M, et al. Thermal annealing of fission tracks in apatite 4. quantitative modelling techniques and extension to geological timescales[J]. Chemical Geology: Isotope Geoscience Section, 1989, 79(2): 155-182.
9 WOLF R A, FARLEY K A, KASS D M. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer[J]. Chemical Geology, 1998, 148(1): 105-114.
10 TAGAMI T, CARTER A, HURFORD A J. Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature[J]. Chemical Geology, 1996, 130(1): 147-157.
11 YAMADA R, MURAKAMI M, TAGAMI T. Statistical modeling of annealing kinetics of fission tracks in zircon: reassessment of laboratory experiments[J]. Chemical Geology, 2007, 236(1): 75-91.
12 BERNET M. A field-based estimate of the zircon fission-track closure temperature[J]. Chemical Geology, 2009, 259(3): 181-189.
13 RAHN M, WANG H J, DUNKL I. A natural long-term annealing experiment for the zircon fission track system in the Songpan-Garzê flysch, China[J]. Terra Nova, 2019, 31(3): 295-305.
14 RAHN M K, BRANDON M T, BATT G E, et al. A zero-damage model for fission-track annealing in zircon[J]. American Mineralogist, 2004, 89(4): 473-484.
15 BERNET M, GARVER J I. Fission-track analysis of detrital zircon[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 205-237.
16 PIDGEON R T, MERLE R E, GRANGE M L, et al. Annealing of radiation damage in zircons from Apollo 14 impact breccia 14311: implications for the thermal history of the breccia[J]. Meteoritics & Planetary Science, 2016, 51(1): 155-166.
17 GARVER J I, KAMP P J J. Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the southern Alps, New Zealand[J]. Tectonophysics, 2002, 349(4): 203-219.
18 BERNET M. Detrital zircon fission-track thermochronology of the present-day Isère River drainage system in the western Alps: no evidence for increasing erosion rates at 5 Ma[J]. Geosciences, 2013, 3(3): 528-542.
19 MARSELLOS A E, GARVER J I. Radiation damage and uranium concentration in zircon as assessed by raman spectroscopy and neutron irradiation[J]. American Mineralogist, 2010, 95(8): 1 192-1 201.
20 TAGAMI T, MATSU’URA S. Thermal annealing characteristics of fission tracks in natural zircons of different ages[J]. Terra Nova, 2019, 31(3): 257-262.
21 CAI Chang’e, QIU Nansheng, LI Huili, et al. Study of the closure temperature of (U-Th)/He in detrital zircon obtained from natural evolution samples[J]. Science China: Earth Sciences, 2020, 63(3): 412-424.
22 LI Huili, QIU Nansheng, JIN Zhijun, et al. Geothermal history of Tarim Basin[J]. Oil & Gas Geology, 2005, 26: 613-617.
李慧莉, 邱楠生, 金之钧, 等. 塔里木盆地的热史[J]. 石油与天然气地质, 2005, 26: 613-617.
23 FENG Changge, LIU Shaowen, WANG Liangshu, et al. Present-day geothermal regime in Tarim Basin, northwest China[J]. Chinese Journal of Geophysics, 2009, 52(11): 2 752-2 762.
冯昌格, 刘绍文, 王良书, 等. 塔里木盆地现今地热特征[J]. 地球物理学报, 2009, 52(11): 2 752-2 762.
24 QIU Nansheng, WEI Gang, LI Cuicui, et al. Distribution features of current geothermal field in the Bohai sea waters[J]. Oil & Gas Geology, 2009, 30(4): 412-419.
邱楠生, 魏刚, 李翠翠, 等. 渤海海域现今地温场分布特征[J]. 石油与天然气地质, 2009, 30(4): 412-419.
25 GARVER J I. Etching zircon age standards for fission-track analysis[J]. Radiation Measurements, 2003, 37(1): 47-53.
26 GALBRAITH R F, LASLETT G M. Statistical modeling of thermal annealing of fission tracks in zircon[J]. Chemical Geology, 1997, 140(1): 123-135.
27 JIAO Yaxian, QIU Nansheng, QUE Yongquan. Effects of fission-track angle to crystallographic C axis in apatite on thermal history[J]. Geoscience, 2013, 27(5): 1 131-1 136.
焦亚先, 邱楠生, 阙永泉. 磷灰石裂变径迹与结晶C轴的夹角对模拟热历史的影响[J]. 现代地质, 2013, 27(5): 1 131-1 136.
28 YAMADA R, TAGAMI T, NISHIMURA S. Assessment of overetching factor for confined fission-track length measurement in zircon[J]. Chemical Geology, 1993, 104(4): 251-259.
29 YAMADA R, TAGAMI T, NISHIMURA S. Confined fission-track length measurement of zircon: assessment of factors affecting the paleotemperature estimate[J]. Chemical Geology, 1995, 119(4): 293-306.
30 CAI Chang’e, QIU Nansheng, CLEBER J. Study on the detrital zircon fission-track ages from natural borehole samples in the Bohai Bay and Tarim Basins with different thermal backgrounds[J]. Geological Journal, 2021, 56(8): 4 189-4 200.
31 REINERS P W, BRANDON M T. Using thermochronology to understand orogenic erosion [J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1):419-466.
32 LASLETT G M, GREEN P F, DUDDY I R, et al. Thermal annealing of fission tracks in apatite 2·A quantitative analysis[J]. Chemical Geology: Isotope Geoscience Section, 1987, 65(1): 1-13.
33 XU Xingbin, WANG Changyong, LIU Mancang, et al. Provenance characteristics of Upper Triassic-Middle Jurassic in the eastern Kuqa depression of Tarim Basin, China and their geological significance[J]. Journal of Earth Sciences and Environment, 2020, 42(2): 172-187.
许兴斌, 王昌勇, 刘满仓, 等. 塔里木盆地库车坳陷东部上三叠统—中侏罗统物源特征及其地质意义[J]. 地球科学与环境学报, 2020, 42(2): 172-187.
34 LI Honghui, LI Yuejun, MA Debo, et al. Syn- and post-collision structures of the South Tianshan orogenic belt: results of the seismic interpretation in the northern Tarim Basin along the South Tianshan[J]. Chinese Journal of Geology, 2020, 55(2):322-338.
李洪辉, 李曰俊, 马德波, 等. 南天山造山带的同碰撞和碰撞后构造——塔里木盆地北部地震解释成果[J]. 地质科学, 2020, 55(2): 322-338.
35 ZHANG Bin, CHEN Wen, SUN Jingbo, et al. The thermal history and uplift process of the Ouxidaban pluton in the South Tianshan orogen: evidence from Ar-Ar and (U-Th)/He[J]. Science China Earth Sciences, 2016, 59: 349-361.
张斌, 陈文, 孙敬博, 等. 南天山欧西达坂岩体热演化历史与隆升过程分析——来自Ar-Ar和(U-Th)/He热年代学的证据[J]. 中国科学:地球科学, 2016, 46(3): 392-405.
36 QIN Yulong, LI Mingze, XIONG Changli, et al. Depositional provinces and tectonic background of the Zhuwo formation in the Jiajika region, western Sichuan Province: evidence from detrital zircon U-Pb ages[J]. Acta Geologica Sinica, 2020, 94(8): 2 400-2 409.
秦宇龙, 李名则, 熊昌利, 等. 川西甲基卡地区侏倭组沉积物源分析——来自碎屑锆石U-Pb年龄证据[J]. 地质学报, 2020, 94(8): 2 400-2 409.
37 CAI Pengrui, WANG Tao, WANG Zongqi, et al. Lopingian to Middle Triassic provenance analysis of sedimentary rocks in the middle segment of the Da Hinggan Mountains: evidence from the heavy mineral assemblage and the detrital zircon U-Pb ages[J]. Acta Petrologica Sinica, 2019, 35(11): 3 549-3 564.
蔡芃睿, 王涛, 王宗起, 等. 大兴安岭中段乐平统—中三叠统沉积物源分析: 来自重矿物组合及碎屑锆石年代学证据[J]. 岩石学报, 2019, 35(11): 3 549-3 564.
38 LAI Hongyu, LIU Liping, ZHANG Yongming, et al. Application of low temperature thermochronology in the fold and thrust belt[J]. Journal of Shandong University of Technology (Natural Science Edition), 2020, 34(6): 1-7.
赖红玉, 刘丽萍, 张永明, 等. 低温热年代学在褶皱冲断带中的应用[J]. 山东理工大学学报(自然科学版), 2020, 34(6): 1-7.
39 GINSTER U, REINERS P W, NASDALA L, et al. Annealing kinetics of radiation damage in zircon[J]. Geochimica et Cosmochimica Acta, 2019, 249: 225-246.
40 BEIRAU T, NIX W, BISMAYER U, et al. Anisotropic mechanical properties of zircon and the effect of radiation damage[J]. Physics and Chemistry of Minerals, 2016, 43(9): 627-638.
[1] 杨隽豪, 王勇生, 白桥, 马威威. 合肥盆地中部中—新生界沉积岩碎屑锆石 LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2022, 37(8): 871-880.
[2] 程昊,徐乃潇. 基于石榴石的变质岩年代学[J]. 地球科学进展, 2020, 35(10): 991-1005.
[3] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[4] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[5] 张沛,周祖翼. 碎屑矿物热年代学研究进展[J]. 地球科学进展, 2008, 23(11): 1130-1140.
[6] 尹金辉,郑勇刚,刘粤霞,卢演俦. 14C样品贝叶斯法日历年龄校正研究进展[J]. 地球科学进展, 2007, 22(3): 297-304.
[7] 何世平,王洪亮,徐学义,张宏飞,任光明. 北祁连东段红土堡基性火山岩锆石LA -IC P-MS U-Pb年代学及其地质意义[J]. 地球科学进展, 2007, 22(2): 143-151.
[8] 黄宝玲,高永军,穆治国. 单颗粒海绿石激光 40Ar- 39Ar定年的新突破[J]. 地球科学进展, 1998, 13(4): 407-408.
阅读次数
全文


摘要