1 |
ROSENTRETER J A, BORGES A V, DEEMER B R, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources [J]. Nature Geoscience, 2021, 14(4): 225-230.
|
2 |
Change Intergovernmental Panel on Climate. Climate change 2014: mitigation of climate change[M]. Cambridge, UK: Cambridge University Press, 2015.
|
3 |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks [J]. Nature Geoscience, 2013, 6(10): 813-823.
|
4 |
GÜNTHEL M, DONIS D, KIRILLIN G, et al. Contribution of oxic methane production to surface methane emission in lakes and its global importance [J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-13320-0 .
|
5 |
PEETERS F, HOFMANN H. Oxic methanogenesis is only a minor source of lake-wide diffusive CH4 emissions from lakes [J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-21215-2 .
|
6 |
WANG Q, DORE J E, MCDERMOTT T R. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake [J]. Environmental Microbiology, 2017, 19(6): 2 366-2 378.
|
7 |
DAMM E, HELMKE E, THOMS S, et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean [J]. Biogeosciences, 2010, 7(3): 1 099-1 108.
|
8 |
LIU L Y, XIE G J, DING J, et al. Microbial methane emissions from the non-methanogenesis processes: a critical review [J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.151362 .
|
9 |
KHATUN S, IWATA T, KOJIMA H, et al. Aerobic methane production by planktonic microbes in lakes [J]. Science of the Total Environment, 2019, 696. DOI:10.1016/j.scitotenv.2019.133916 .
|
10 |
BARTOSIEWICZ M, MARANGER R, PRZYTULSKA A, et al. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake [J]. Water Research, 2021, 196. DOI:10.1016/j.watres.2021.116985 .
|
11 |
FLOREZ-LEIVA L, DAMM E, FARÍAS L. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem [J]. Progress in Oceanography, 2013, 112/113: 38-48.
|
12 |
YAN X C, XU X G, WANG M Y, et al. Climate warming and cyanobacteria blooms: looks at their relationships from a new perspective [J]. Water Research, 2017, 125: 449-457.
|
13 |
ZHANG Nan, HE Kai, ZHONG Jicheng, et al. Enhancement and mechanism of algal-derived organic matter deposition on lake sediment methane release[J]. China Environmental Science, 2023, 43(12): 6 641-6 650.
|
|
张楠, 何凯, 钟继承, 等. 藻源性有机质沉降对沉积物甲烷释放促进作用[J]. 中国环境科学, 2023, 43(12): 6 641-6 650.
|
14 |
MA J, XU X G, YU C C, et al. Molecular biomarkers reveal co-metabolism effect of organic detritus in eutrophic lacustrine sediments [J]. Science of the Total Environment, 2020, 698. DOI:10.1016/j.scitotenv.2019.134328 .
|
15 |
HARTMANN J F, GÜNTHEL M, KLINTZSCH T, et al. High spatiotemporal dynamics of methane production and emission in oxic surface water [J]. Environmental Science & Technology, 2020, 54(3): 1 451-1 463.
|
16 |
GROSSART H P, FRINDTE K, DZIALLAS C, et al. Microbial methane production in oxygenated water column of an oligotrophic lake [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19 657-19 661.
|
17 |
LU Yi, ZHANG Wen, LI Tingting, et al. Progress in the simulation of the impacts of sources and sinks on the tempo-spatial variations of the atmospheric methane [J]. Advances in Earth Science, 2015, 30(7): 763-772.
|
|
鲁易, 张稳, 李婷婷, 等. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展, 2015, 30(7): 763-772.
|
18 |
DAMM E, KIENE R P, SCHWARZ J, et al. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP [J]. Marine Chemistry, 2008, 109(1/2): 45-59.
|
19 |
YE W W, ZHANG G L, ZHENG W J, et al. Methane distributions and sea-to-air fluxes in the Pearl River Estuary and the northern South China Sea [J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 167: 34-45.
|
20 |
YE W W, WANG X L, ZHANG X H, et al. Methane production in oxic seawater of the western North Pacific and its marginal seas [J]. Limnology and Oceanography, 2020, 65(10): 2 352-2 365.
|
21 |
KOLOMIJECA A, MARX L, REYNOLDS S, et al. An update on dissolved methane distribution in the subtropical North Atlantic Ocean [J]. Ocean Science, 2022, 18(5): 1 377-1 388.
|
22 |
BOGARD M J, del GIORGIO P A, BOUTET L, et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes [J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms6350 .
|
23 |
TANG K W, MCGINNIS D F, FRINDTE K, et al. Paradox reconsidered: methane oversaturation in well-oxygenated lake waters [J]. Limnology and Oceanography, 2014, 59(1): 275-284.
|
24 |
DONIS D, FLURY S, STÖCKLI A, et al. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake [J]. Nature Communications, 2017, 8. DOI:10.1038/s41467-017-01648-4 .
|
25 |
WANG Q, ALOWAIFEER A, KERNER P, et al. Aerobic bacterial methane synthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(27). DOI:10.1073/pnas.2019229118 .
|
26 |
THOTTATHIL S D, REIS P C J, PRAIRIE Y T. Magnitude and drivers of oxic methane production in small temperate lakes [J]. Environmental Science & Technology, 2022, 56(15): 11 041-11 050.
|
27 |
SCHROLL M, LIU L, EINZMANN T, et al. Methane accumulation and its potential precursor compounds in the oxic surface water layer of two contrasting stratified lakes [J]. Science of the Total Environment, 2023, 903. DOI:10.1016/j.scitotenv.2023.166205 .
|
28 |
BIŽIĆ M. Phytoplankton photosynthesis: an unexplored source of biogenic methane emission from oxic environments [J]. Journal of Plankton Research, 2021, 43(6): 822-830.
|
29 |
ZHAO L, LIN L Z, CHEN M Y, et al. The widespread capability of methylphosphonate utilization in filamentous cyanobacteria and its ecological significance [J]. Water Research, 2022, 217. DOI:10.1016/j.watres.2022.118385 .
|
30 |
TEIKARI J E, FEWER D P, SHRESTHA R, et al. Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane [J]. The ISME Journal, 2018, 12(6): 1 619-1 630.
|
31 |
BEAULIEU J J, DELSONTRO T, DOWNING J A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century [J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09100-5 .
|
32 |
BIŽIĆ M, KLINTZSCH T, IONESCU D, et al. Aquatic and terrestrial cyanobacteria produce methane [J]. Science Advances, 2020, 6(3). DOI:10.1126/sciadv.aax5343 .
|
33 |
KAMAT S S, RAUSHEL F M. The enzymatic conversion of phosphonates to phosphate by bacteria [J]. Current Opinion in Chemical Biology, 2013, 17(4): 589-596.
|
34 |
KARL D M, BEVERSDORF L, BJORKMAN K M, et al. Aerobic production of methane in the sea [J]. Nature Geoscience, 2008, 1(7): 473-478.
|
35 |
YAO M Y, HENNY C, MARESCA J A. Freshwater bacteria release methane as a by-product of phosphorus acquisition [J]. Applied and Environmental Microbiology, 2016, 82(23): 6 994-7 003. DOI:10.1128/aem.02399-16 .
|
36 |
YU X M, DOROGHAZI J R, JANGA S C, et al. Diversity and abundance of phosphonate biosynthetic genes in nature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): 20 759-20 764.
|
37 |
REPETA D J, FERRÓN S, SOSA O A, et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter [J]. Nature Geoscience, 2016, 9(12): 884-887.
|
38 |
BEVERSDORF L J, WHITE A E, BJÖERKMAN K M, et al. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases [J]. Limnology and Oceanography, 2010, 55(4): 1 768-1 778.
|
39 |
MORANA C, BOUILLON S, NOLLA-ARDÈVOL V, et al. Methane paradox in tropical lakes? Sedimentary fluxes rather than pelagic production in oxic conditions sustain methanotrophy and emissions to the atmosphere [J]. Biogeosciences, 2020, 17(20): 5 209-5 221.
|
40 |
LENHART K, KLINTZSCH T, LANGER G, et al. Evidence for methane production by the marine algae Emiliania huxleyi [J]. Biogeosciences, 2016, 13(10): 3 163-3 174.
|
41 |
KLINTZSCH T, LANGER G, NEHRKE G, et al. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment [J]. Biogeosciences, 2019, 16(20): 4 129-4 144.
|
42 |
SUNDA W, KIEBER D J, KIENE R P, et al. An antioxidant function for DMSP and DMS in marine algae [J]. Nature, 2002, 418(6 895): 317-320.
|
43 |
HERSCU-KLUSKA R, MASARWA A, SAPHIER M, et al. Mechanism of the reaction of radicals with peroxides and dimethyl sulfoxide in aqueous solution [J]. Chemistry, 2008, 14(19): 5 880-5 889.
|
44 |
BENZING K, COMBA P, MARTIN B, et al. Nonheme iron-oxo-catalyzed methane formation from methyl thioethers: scope, mechanism, and relevance for natural systems [J]. Chemistry, 2017, 23(43): 10 465-10 472.
|
45 |
ALTHOFF F, BENZING K, COMBA P, et al. Abiotic methanogenesis from organosulphur compounds under ambient conditions [J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms5205 .
|
46 |
HOHENBERGER J, RAY K, MEYER K. The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes [J]. Nature Communications, 2012, 3. DOI:10.1038/ncomms1718 .
|
47 |
BIŽIĆ-IONESCU M, IONESCU D, GÜNTHEL M, et al. Oxic methane cycling: new evidence for methane formation in oxic lake water [M]//STAMS A J M, SOUSA D. Biogenesis of Hydrocarbons. Cham: Springer International Publishing, 2018: 1-22.
|
48 |
KLINTZSCH T, LANGER G, WIELAND A, et al. Effects of temperature and light on methane production of widespread marine phytoplankton [J]. Journal of Geophysical Research-Biogeosciences, 2020, 125(9). DOI:10.1029/2020jg005793 .
|
49 |
PEREZ-CORONEL E, BEMAN J M. Multiple sources of aerobic methane production in aquatic ecosystems include bacterial photosynthesis [J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-34105-y .
|
50 |
GÜNTHEL M, KLAWONN I, WOODHOUSE J, et al. Photosynthesis-driven methane production in oxic lake water as an important contributor to methane emission [J]. Limnology and Oceanography, 2020, 65(12): 2 853-2 865.
|
51 |
ERNST L, STEINFELD B, BARAYEU U, et al. Methane formation driven by reactive oxygen species across all living organisms [J]. Nature, 2022, 603(7 901): 482-487.
|
52 |
HILT S, GROSSART H P, MCGINNIS D F, et al. Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems [J]. Limnology and Oceanography, 2022, 67: S76-S88.
|
53 |
ENAMI S, SAKAMOTO Y, COLUSSI A J. Fenton chemistry at aqueous interfaces [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2): 623-628.
|
54 |
KEPPLER F, ERNST L, POLAG D, et al. ROS-driven cellular methane formation: potential implications for health sciences [J]. Clinical and Translational Medicine, 2022, 12(7). DOI:10.1002/ctm2.905 .
|
55 |
DUNBAR K L, SCHARF D H, LITOMSKA A, et al. Enzymatic carbon-sulfur bond formation in natural product biosynthesis [J]. Chemical Reviews, 2017, 117(8): 5 521-5 577.
|
56 |
ZHOU C Q, PENG Y, YU M T, et al. Severe cyanobacteria accumulation potentially induces methylotrophic methane producing pathway in eutrophic lakes [J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118443 .
|
57 |
ZINDLER C, BRACHER A, MARANDINO C A, et al. Sulphur compounds, methane, and phytoplankton: interactions along a north-south transit in the western Pacific Ocean [J]. Biogeosciences, 2013, 10(5): 3 297-3 311.
|
58 |
MITTLER R. ROS are good [J]. Trends in Plant Science, 2017, 22(1): 11-19.
|
59 |
KEPPLER F, HAMILTON J T G, MCROBERTS W C, et al. Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies [J]. The New Phytologist, 2008, 178(4): 808-814.
|
60 |
MESSENGER D J, MCLEOD A R, FRY S C. The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin [J]. Plant Cell and Environment, 2009, 32(1): 1-9.
|
61 |
ZHENG Y N, HARRIS D F, YU Z, et al. A pathway for biological methane production using bacterial iron-only nitrogenase [J]. Nature Microbiology, 2018, 3(3): 281-286.
|
62 |
BOTHE H, SCHMITZ O, YATES M G, et al. Nitrogen fixation and hydrogen metabolism in cyanobacteria [J]. Microbiology and Molecular Biology Reviews, 2010, 74(4): 529-551.
|
63 |
KENTEMICH T, HAVERKAMP G, BOTHE H. The expression of a third nitrogenase in the Cyanobacterium Anabaena variabilis [J]. Zeitschrift Für Naturforschung C, 1991, 46(3/4): 217-222.
|
64 |
NORTH J A, NARROWE A B, XIONG W L, et al. A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis [J]. Science, 2020, 369(6 507): 1 094-1 098.
|
65 |
BRÖCKER M J, VIRUS S, GANSKOW S, et al. ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis [J]. Journal of Biological Chemistry, 2008, 283(16): 10 559-10 567.
|
66 |
NOMATA J, MIZOGUCHI T, TAMIAKI H, et al. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis—reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus [J]. Journal of Biological Chemistry, 2006, 281(21): 15 021-15 028.
|
67 |
VEDALANKAR P, TRIPATHY B C. Evolution of light-independent protochlorophyllide oxidoreductase [J]. Protoplasma, 2019, 256(2): 293-312.
|
68 |
LUXEM K E, LEAVITT W D, ZHANG X N. Large hydrogen isotope fractionation distinguishes nitrogenase-derived methane from other methane sources [J]. Applied and Environmental Microbiology, 2020, 86(19). DOI:10.1128/aem.00849-20 .
|
69 |
LUPTON F S, MARSHALL K C. Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance [J]. Applied and Environmental Microbiology, 1981, 42(6): 1 085-1 092.
|
70 |
SPIELMEYER A, POHNERT G. Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton [J]. Marine Environmental Research, 2012, 73: 62-69.
|
71 |
BERG A, LINDBLAD P, SVENSSON B H. Cyanobacteria as a source of hydrogen for methane formation [J]. World Journal of Microbiology & Biotechnology, 2014, 30(2): 539-545.
|
72 |
WOOLWAY R I, MERCHANT C J. Worldwide alteration of lake mixing regimes in response to climate change [J]. Nature Geoscience, 2019, 12(4): 271-276.
|
73 |
HUISMAN J, CODD G A, PAERL H W, et al. Cyanobacterial blooms [J]. Nature Reviews Microbiology, 2018, 16(8): 471-483.
|
74 |
MA J J, WANG P F. Effects of rising atmospheric CO2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: a review [J]. Science of the Total Environment, 2021, 754. DOI:10.1016/j.scitotenv.2020.141889 .
|
75 |
YAN K, YUAN Z W, GOLDBERG S, et al. Phosphorus mitigation remains critical in water protection: a review and meta-analysis from one of China’s most eutrophicated lakes [J]. Science of the Total Environment, 2019, 689: 1 336-1 347.
|