地球科学进展 ›› 2005, Vol. 20 ›› Issue (6): 618 -626. doi: 10.11867/j.issn.1001-8166.2005.06.0618

研究论文 上一篇    下一篇

晚中新世植被变更与光合作用演化
贺娟,汪品先   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2004-06-07 修回日期:2005-02-07 出版日期:2005-06-25
  • 通讯作者: 贺娟
  • 基金资助:

    国家重点基础研究发展规划项目“地球圈层相互作用中的深海过程和深海记录”(编号:G2000078500)资助.

VEGETATION CHANGE IN LATE MIOCENE AND EVOLUTION OF PHOTOSYNTHESIS

HE Juan; WANG Pinxian   

  1. Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2004-06-07 Revised:2005-02-07 Online:2005-06-25 Published:2005-06-25

光合作用酶Rubisco出现于太古代,对于以后地质时期里大气的CO2降低并不适应。晚中新世大幅度扩展的C4植物,就是光合作用演化的一种途径,适应于CO2浓度较低的大气,也适应于温暖而季节性干旱的季风气候。C4与C3植物碳同位素的重大差异,又为利用古土壤和哺乳类牙齿珐琅质的δ13C分辨C3、C4植物在植被中的比例提供了条件。自从发现巴基斯坦晚中新世古土壤层δ13C突变以来的10余年,围绕着C4植物扩展究竟反映季风气候,CO2浓度下降,还是干旱化,国内外学术界展开了热烈的讨论,至今尚属未解之谜,但从中可以吸取研究地球系统演变的经验教训。

Rubisco, an ancient photosynthetic enzyme of Archean origin, became increasingly inefficient with reduction of atmospheric CO2 levels in the later geological history. The remarkable expansion of C4 biomass in late Miocene was an adaptive evolution in photosynthesis, as C4 photosynthesis was more adaptive to the lower concentration of CO2, as well as to monsoonal climate with warmer temperature and seasonal aridity. Given the significant difference in carbon isotope between C3 and C4 plants, the δ13C of paleosols and mammalian tooth enamels was widely used as an indicator of proportions of C3 to C4 plants in vegetation. Since the discovery of the dramatic shift of δ13C in the late Miocene paleosol from Pakistan over 10 years ago, the expansion of C4 biomass then has become a matter of hot debate within the scientific community: whether it was caused by monsoon climate, decreasing atmospheric CO2 level, or aridification?Though it remains an enigma up to now, there are useful lessons to be drawn from a brief review of the story as presented in this paper.

中图分类号: 

[1] Cerling T E, Quade J, Wang Y, et al. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators [J]. Nature, 1989, 341: 138-139.
[2] Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the lastest Miocene in northern Pakistan [J]. Nature, 1989, 342: 163-166.
[3] Latorre C, Quade J, McIntosh W C. The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas [J]. Earth and Planetary Science Letters, 1997, 146: 83-96.
[4] Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary [J]. Nature, 1997, 389: 153-158. 
[5] Han Jiamao, Wang Guoan, Liu Tungsheng. Appearance of C4 plants and global changes [J]. Earth Science Frontiers,2002, 9(1):233-243.[韩家懋,王国安,刘东生.C4植物的出现与全球环境变化[J].地学前缘,2002, 9(1):233-243.]
[6] Prescott L M, Harley J P, Klein D A. Microbioloty (fifth edition)[M].Beijing: Higher Education Press,2003.[Prescott L M, Harley J P, Klein D A.微生物学(第5版)[M].北京:高等教育出版社,2003.]
[7] Dismukes G C, Klimov V V, Baranov, et al. The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis [J]. Proceedings of the National Academy of Sciences, 2001, 98: 2 170-2 175.
[8] Catling D C, Zahnle K J, Mckay C. Biogenic methane, hydrogen escape, and irreversible osidation of Early Earth [J]. Science, 2001, 293: 839-843.
[9] Li Liren. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO):Structure, function and assembling[A]. In: Yu Shuwen,Tang Zhangcheng, eds.Plant Physiology and Molecular Biology,(2 nd)[C]. Beijing: Science Press,  2001.223-236.[李立人.核酮糖-1,5-二磷酸羧化/加氧酶的结构、功能及组装[A].见:余叔文,汤章城植物生理与分子生物学[C].北京:科学出版社,2001.223-236.]
[10] Sage R F, Monson R K. C4 Plant Biology [A]. In: Mooney H A eds. The Physiological Ecology Series[C]. Academic Press, 1999.
[11] Nisbet E G, Sleep N H. The habitat and nature of early life [J]. Nature, 2001, 409: 1 083-1 091.
[12] Badger M R, Andrews T J, Whitney S M, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae [J]. Canadian Journal of Botany, 1998, 76: 1 052-1 071.
[13] Riebesell U. Carbon fix for a diatom [J]. Nature, 2000, 407: 959-960. 
[14] Yang Shijie. Plant Biology[M]. Beijing: Science Press, 2000.[杨世杰.植物生物学[M].北京: 科学出版社,2000.]
[15] Chen Yuezeng.General Biology[M].Beijing: Higher Education Press,1997.[陈阅增主编.普通生物学[M].北京:高等教育出版社,1997.]
[16] Cerling T E, Wang Y, Quade J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene [J]. Nature, 1993, 361: 344-345.
[17] Cerling T E. Late Cenozoic vegetation change, atmospheric CO2, and tectonics [A]. In: Ruddiman W F ed. Tectonic Uplift and Climate Change [C]. New York: Plenum Press, 1997.
[18] Passey B H, Cerling T E, Perkins M E, et al. Environmental change in the great plains: An isotopic record from fossil horses [J]. The Journal of Geology, 2002, 10: 123-140.
[19] Wu Naiqin,Lü Houyuan,Nie Gaozhong, et al. The study of phytoliths in C3 and C4 grasses and it’s paleoecological significance[J]. Quaternary Science, 1992,3: 241-251.[吴乃琴,吕厚远,聂高众,等.C3和C4植物化石的研究及其古生态意义[J].第四纪研究,1992,3: 241-251.]
[20] Liu Weiguo , Ning Youfeng, An Zhisheng,et al. Response of organic carbon in modern and ancient soils to vegetation changes in Loess Plateau[J]. Science in China,2002,32(10):830-836.[刘卫国,宁有丰,安芷生,等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J].中国科学,2002,32(10):830-836.][21] Still C J, Berry J A, Collatz G J, et al. Global distribution of C3 and C4 vegetation: Carboncycle implications [J]. Global Biogeochemical Cycles, 2003, 17 (1) : 1-14.
[22] Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: Evidence from stable isotopes in paleosols [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115: 91-116.
[23] Morgan M E, Kingston J D, Marino B D. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya [J]. Nature, 1994, 1994: 162-164.
[24] Pagani M, Freeman K H, Arthur M A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses [J]. Science, 1999, 285: 876-879.
[25] Kuypers M M M, Pancost R D, Sinninghe Damste J S. A large and abrupt fall in atmospheric CO2 concentriting during Cretaceous times [J]. Nature, 1999, 399: 342-345.
[26] Gale J, Rachmilevith S, Reuveni J, et al. The high oxygen atmosphere toward the end-Cretaceous: A possible contributing factor to the K/T boundary extinctions and to the emergence of C4 species [J]. Journal of Experimental Botany, 2001, 52 (357): 801-809.
[27] De Wit M J, Ghosh J G, de Villiers S, et al. Multiple organic carbon isotope reversals across the Permo-Triassic boundary of terrestrial gondwana sequences: Clues to extinction patterns and delayed ecosystem recovery [J]. Journal of Geology, 2002, 110: 227-240.
[28] Ding Z L, Yang S L. C3/C4 vegetation evolution over the last 7.0-Myr in the Chinese Loess Plateau: Evidence from pedogenic carbonate δ13C [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160: 297-299.
[29] Jia G, Peng P, Zhao Q, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China sea [J]. Geology, 2003, 31: 1 093-1 096.[30] Retallack G J. Cenozoic expansion of grasslands and climatic cooling[J]. Journal of Geology, 2001, 109: 407-426. 
[31] Bobe R, Behrensmeyer A K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207: 399-420. 
[32] Des Marais D J.When did photosynthesis emerge on Earth? [J]. Science, 2000, 289:1 703-1 705.
[33] Reinfelder J R, Kraepiel A M L, Morel F M M. Unicellular C4 photosynthesis in a marine diatom [J]. Nature, 2000,407(6 807): 996-999.
[34] Smith F A, White J W C. Modern calibration of phytolith carbon isotope signatures for C3/C4 paleograssland reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207: 277-304. 
[35] Dickens A F, Gélinas Y, Masiello C A, et al. Reburial of fossil organic carbon in marine sediments [J]. Nature, 2004, 427: 336-339.
[36] Weissert H, Bernasconi S W. An Earth on fire [J]. Nature, 2004, 428: 130-132.
[37] Pearson P N, Palmer M R. Middle Eocene seawater pH and atmospheric carbon dioxide concertrations [J]. Science, 1999, 284: 1 824-1 826.
[38] Kerr R A. Slide into ice ages not carbon dioxide's fault? [J].Science, 1999, 284: 1 743-1 746.
[39] Bains S, Corfield R M, Norris R D. Mechanisms of climate warming at the end of the Paleocene[J]. Science, 1999, 285: 724-727.
[40] Cowling S A. Plants and temperature-CO2 uncoupling [J]. Science, 1999, 285: 1 500-1 501.
[41] Strömberg C A E,Ferance R S. The evolution of grass-dominated eosystems during the late Cenozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207: 199-201.
[42] Falkowski P G, Katz M E, Knoll A H, et al. The evolution of modern eukaryotic phytoplankton[J]. Science, 2004, 305: 354-360.

[1] 李朝柱,张晓,许元斌,饶志国. 黄土高原地区晚中新世以来陆地植被C 3/C 4植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.
[2] 王冉,刘志刚,杨沛琦. 植物日光诱导叶绿素荧光的遥感原理及研究进展[J]. 地球科学进展, 2012, 27(11): 1221-1228.
[3] 苏 翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.
[4] 饶志国,朱照宇,陈发虎,张家武. 黄土有机质稳定碳同位素研究进展[J]. 地球科学进展, 2006, 21(1): 62-69.
阅读次数
全文


摘要