地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1221

综述与评述 上一篇    下一篇

植物日光诱导叶绿素荧光的遥感原理及研究进展
王 冉,刘志刚*,杨沛琦   
  1. 1.遥感科学国家重点实验室,北京师范大学,北京 100875;2.北京师范大学地理学与遥感科学学院,北京 100875;3.北京师范大学环境遥感与数字城市北京市重点实验室,北京 100875
  • 收稿日期:2011-11-27 修回日期:2012-07-21 出版日期:2012-11-10
  • 通讯作者: 刘志刚(1976-),男,江西南城人,副教授,主要从事植被高光谱遥感、遥感影像分类等方面的研究. E-mail:zhigangliu@bnu.edu.cn
  • 基金资助:

    遥感科学国家重点实验室自由探索项目“面向农作物早期水分胁迫遥感监测的冠层荧光成像观测与分析”(编号:ZY129);中央高校基本科研业务费专项资金项目“多尺度、多角度成像光谱测量与模型验证”(编号:2009SD-72);国家自然科学基金青年科学基金项目“基于主动支持向量机的遥感影像分类研究”(编号:40701101)资助.

Principle and Progress in Remote Sensing of Vegetation Solar-induced Chlorophyll Fluorescence

Wang Ran, Liu Zhigang, Yang Peiqi   

  1. 1.State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and the Institute of Remote Sensing Applications of Chinese Academy of Sciences, Beijing 100875, China;2.School of Geography, Beijing Normal University, Beijing 100875, China; 3.Beijing Key Laboratory of
    Environmental Remote Sensing and Digital City, Beijing Normal University, Beijing 100875, China
  • Received:2011-11-27 Revised:2012-07-21 Online:2012-11-10 Published:2012-11-10

日光诱导叶绿素荧光(SolarInduced Fluorescence,SIF)与植被光合作用关系密切,可能成为研究植物光合作用及相关参数的新型遥感手段。总结了SIF的提取算法、遥感模型、传感器以及在植被早期胁迫探测和光能利用率估算等领域应用的最新进展,并提出了SIF遥感有待解决的关键问题。

Due to the tight relationship between solar-induced chlorophyll fluorescence(SIF) and photosynthesis of vegetation, SIF may be used as a new method of remote sensing to investigate the parameters in vegetation photosynthesis. This paper firstly summarizes and reviews the SIF exacting methods from vegetation apparent reflectance spectrum, SIF models of remote sensing, the feasiblity of instruments of remote sensing in detecting SIF and the application of SIF in light use efficiency and detection of vegetation stress. Then, the development trends and the prospect of remote sensing of chlorophyll fluorescence in the future are discussed.

中图分类号: 

[1]Baker N R. Chlorophyll fluorescence: A  probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 2008, 59: 89-113.

[2]Shen Yuqi, Xu Binbin, Shi Xiaori, et al. On some basic problems of Laser Fluorescence Remote Sensing on vegetations[J]. Remote Sensing of Environment China, 1992, 7(1):22-33.[沈玉其, 徐彬彬, 石晓日, 等. 关于植被激光荧光遥感的若干基本问题[J]. 环境遥感, 1992, 7(1): 22-33.]

[3]Zhang Yongjiang, Liu Liangyun, Hou Mingyu, et al. Process in remote sensing of vegetation chlorophyll fluorescence[J]. Journal of Remote Sensing, 2009, 13(5): 963-978. [张永江, 刘良云, 侯名语, 等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报, 2009, 13(5): 963-978.]

[4]Ounis A, Cerovic Z G, Briantais J M, et al. Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies[J]. Remote Sensing of Environment, 2001, 76: 33-48.

[5]European Space Agency. ESA SP-1313/4 candidate earth explorer core missions— Reports for assessment: FLEX-FLuorescence EXplorer[R]. 2008.

[6]Moya I. A new instrument for passive remote sensing1. Measurements of sunlight-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2004, 91(2): 186-197.

[7]Meroni M, Colombo R. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer[J]. Remote Sensing of Environment, 2006, 103(4): 438-448.

[8]Alonso L, Gómez-chova L, Vila-francés J, et al. Improved fraunhofer line discrimination method for vegetation fluorescence Quantification[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 620-624.

[9]Meroni M, Busetto L, Colombo R, et al. Performance of spectral fitting methods for vegetation fluorescence quantification[J]. Remote Sensing of Environment, 2010, 114(2): 363-374.

[10]Meroni M, Rossini M, Guanter L, et al. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications[J]. Remote Sensing of Environment, 2009, 113(10): 2 037-2 051.

[11]Damm A, Erler A, Hillen W, et al. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2011, 115(8): 1 882-1 892.

[12]Dobrowski S Z, Pushnik J C, Zarco-Tejada P J, et al. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale[J]. Remote Sensing of Environment, 2005, 97(3): 403-414.

[13]Zarco-Tejada P J, Pushnik J C, Dobrowski S, et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[J]. Remote Sensing of Environment, 2003,84: 283-294.

[14]Pérez-Priego O, Zarco-Tejada P J, Miller J R, et al. Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll Fluorescence In-Filling of the O2-A Band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2 860-2 869.

[15]Pedrós R, Goulas Y, Jacquemoud S, et al. FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model[J]. Remote Sensing of Environment, 2010, 114(1): 155-167.

[16]Zarco-Tejada P J, Miller J R, Pedrós R, et al. FluorMODgui V3.0: A graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence[J]. Computers & Geosciences, 2006, 32(5): 577-591.

[17]Van der Tol C, Verhoef W, Rosema A. A model for chlorophyll fluorescence and photosynthesis at leaf scale[J]. Agricultural and Forest Meteorology, 2009, 149(1): 96-105.

[18]Middleton E M, Corp L A, Campbell P K E. Comparison of measurements and FluorMOD simulations for solar-induced chlorophyll fluorescence and reflectance of a corn crop under nitrogen treatments[J]. International Journal of Remote Sensing, 2008, 29: 5 193-5 213.

[19]Rascher U, Gioli B, Miglietta F. FLEX-Fluorescence Explorer: A remote sensing approach to quantify spatio-temporal variations of photosynthetic efficiency from space[C]∥Energy from the Sun: 14th International Congress on Photosysthesis. Glasgow:Springer, 2008.

[20]Liu Liangyun, Zhang Yongjiang, Wang Jihua, et al. Detecting photosynthesis Fluorescence under natural sun light based on fraunhofer line[J]. Journal of Remote Sensing, 2006, 10(1):130-137.[刘良云, 张永江, 王纪华, 等. 利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J]. 遥感学报, 2006, 10(1): 130-137.]

[21]Sun Gang, Liu Liangyun, Zheng Wengang, et al. Development of a solar-induced cholophyll fluorescence moniter based on fraunhofer lineprinciple[J]. Transactions of the Chinese Society of Agricultural Machinery, 2009, 40:248-251. [孙刚, 刘良云, 郑文刚, 等. 基于夫琅和费暗线原理的太阳诱导叶绿素荧光仪[J]. 农业机械学报, 2009, 40: 248-251.]

[22]Sobrino J A, Franch B, Hidalgo V. Fluorescence estimation in the framework of the CEFLES2 campaign[J]. International Journal of Remote Sensing, 2011, 32(10): 5 875-5 889.

[23]Zarco-Tejada P J, Berni J A J, Suárez L, et al. Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection[J]. Remote Sensing of Environment, 2009, 113(6): 1 262-1 275.

[24]Joiner J, Yoshida Y, Vasilkov A P, et al.First observations of global and seasonal terrestrial chlorophyll fluorescence from space[J].Biogeosciences, 2011, 8(3): 637-651.

[25]Malenovsky Z, Mishra K B, Zemek F, et al. Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence[J]. Journal of experimental botany, 2009, 60(11): 2 987-3 004.

[26]Rascher U, Agati G, Alonso L, et al. CEFLES2: The remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands[J]. Biogeosciences, Copernicus Publications, 2009, 6(7): 1 181-1 198.

[27]Campbell P K E, Middleton E M, Corp L A, et al. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance[J]. Science of the Total Environment, 2008,404(2/3): 433-439.

[28]Zarco-Tejada P J, Miller J R, Mohammed G H, et al. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery[J]. Journal of Environmental Quality, 2002, 31(5): 1 433-1 441.

[29]Zhang Yongjiang,Zhao Chunjiang,Liu Liangyun,et al. Preliminary study on the effects of water stress on maize leaf physiological status through passive chlorophyll fluorescence detection[J].Transactions of the CSAE,2006,22(9):39-43.[张永江, 赵春江, 刘良云, 等. 被动荧光探测水分胁迫对玉米叶片影响的初步研究[J].农业工程学报, 2006, 22(9): 39-43.]

[30]Zhang Yongjiang, Huang Wenjiang, Wang Jihua, et al. Chlorophyll fluorescence sensing to detect striple rust in wheat(triticum aestivum L) fields based on fraunhofer lines[J]. Scientia Agricultura Sinica, 2007, 40(1): 78-83.[张永江, 黄文江, 王纪华, 等. 基于Fraunhofer线的小麦条锈病荧光遥感探测[J]. 中国农业科学, 2007, 40(1): 78-83.]

[31]Grace J,Nichol C,Disney M, et al. Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence?[J]. Global Change Biology, 2007, 13(7): 1 484-1 497.

[32]Damm A, Elbers J, Erler A, et al. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP)[J]. Global Change Biology, 2010, 16(1): 171-186.

[33]Cheng Zhanhui, Liu Liangyun. Estimating light-use efficiency by the separated solar-induced chlorophyll fluorescence from canopy spectral data[J]. Journal of Remote Sensing, 2010, 14(2):364-371.[程占慧,刘良云.冠层光能利用率的叶绿素荧光光谱探测[J]. 遥感学报, 2010, 14(2): 364-371.]

[1] 苏 翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.
[2] 贺娟;汪品先. 晚中新世植被变更与光合作用演化[J]. 地球科学进展, 2005, 20(6): 618-626.
阅读次数
全文


摘要