[1]Baker N R. Chlorophyll fluorescence: A probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 2008, 59: 89-113.
[2]Shen Yuqi, Xu Binbin, Shi Xiaori, et al. On some basic problems of Laser Fluorescence Remote Sensing on vegetations[J]. Remote Sensing of Environment China, 1992, 7(1):22-33.[沈玉其, 徐彬彬, 石晓日, 等. 关于植被激光荧光遥感的若干基本问题[J]. 环境遥感, 1992, 7(1): 22-33.]
[3]Zhang Yongjiang, Liu Liangyun, Hou Mingyu, et al. Process in remote sensing of vegetation chlorophyll fluorescence[J]. Journal of Remote Sensing, 2009, 13(5): 963-978. [张永江, 刘良云, 侯名语, 等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报, 2009, 13(5): 963-978.]
[4]Ounis A, Cerovic Z G, Briantais J M, et al. Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies[J]. Remote Sensing of Environment, 2001, 76: 33-48.
[5]European Space Agency. ESA SP-1313/4 candidate earth explorer core missions— Reports for assessment: FLEX-FLuorescence EXplorer[R]. 2008.
[6]Moya I. A new instrument for passive remote sensing1. Measurements of sunlight-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2004, 91(2): 186-197.
[7]Meroni M, Colombo R. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer[J]. Remote Sensing of Environment, 2006, 103(4): 438-448.
[8]Alonso L, Gómez-chova L, Vila-francés J, et al. Improved fraunhofer line discrimination method for vegetation fluorescence Quantification[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 620-624.
[9]Meroni M, Busetto L, Colombo R, et al. Performance of spectral fitting methods for vegetation fluorescence quantification[J]. Remote Sensing of Environment, 2010, 114(2): 363-374.
[10]Meroni M, Rossini M, Guanter L, et al. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications[J]. Remote Sensing of Environment, 2009, 113(10): 2 037-2 051.
[11]Damm A, Erler A, Hillen W, et al. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2011, 115(8): 1 882-1 892.
[12]Dobrowski S Z, Pushnik J C, Zarco-Tejada P J, et al. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale[J]. Remote Sensing of Environment, 2005, 97(3): 403-414.
[13]Zarco-Tejada P J, Pushnik J C, Dobrowski S, et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[J]. Remote Sensing of Environment, 2003,84: 283-294.
[14]Pérez-Priego O, Zarco-Tejada P J, Miller J R, et al. Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll Fluorescence In-Filling of the O2-A Band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2 860-2 869.
[15]Pedrós R, Goulas Y, Jacquemoud S, et al. FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model[J]. Remote Sensing of Environment, 2010, 114(1): 155-167.
[16]Zarco-Tejada P J, Miller J R, Pedrós R, et al. FluorMODgui V3.0: A graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence[J]. Computers & Geosciences, 2006, 32(5): 577-591.
[17]Van der Tol C, Verhoef W, Rosema A. A model for chlorophyll fluorescence and photosynthesis at leaf scale[J]. Agricultural and Forest Meteorology, 2009, 149(1): 96-105.
[18]Middleton E M, Corp L A, Campbell P K E. Comparison of measurements and FluorMOD simulations for solar-induced chlorophyll fluorescence and reflectance of a corn crop under nitrogen treatments[J]. International Journal of Remote Sensing, 2008, 29: 5 193-5 213.
[19]Rascher U, Gioli B, Miglietta F. FLEX-Fluorescence Explorer: A remote sensing approach to quantify spatio-temporal variations of photosynthetic efficiency from space[C]∥Energy from the Sun: 14th International Congress on Photosysthesis. Glasgow:Springer, 2008.
[20]Liu Liangyun, Zhang Yongjiang, Wang Jihua, et al. Detecting photosynthesis Fluorescence under natural sun light based on fraunhofer line[J]. Journal of Remote Sensing, 2006, 10(1):130-137.[刘良云, 张永江, 王纪华, 等. 利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J]. 遥感学报, 2006, 10(1): 130-137.]
[21]Sun Gang, Liu Liangyun, Zheng Wengang, et al. Development of a solar-induced cholophyll fluorescence moniter based on fraunhofer lineprinciple[J]. Transactions of the Chinese Society of Agricultural Machinery, 2009, 40:248-251. [孙刚, 刘良云, 郑文刚, 等. 基于夫琅和费暗线原理的太阳诱导叶绿素荧光仪[J]. 农业机械学报, 2009, 40: 248-251.]
[22]Sobrino J A, Franch B, Hidalgo V. Fluorescence estimation in the framework of the CEFLES2 campaign[J]. International Journal of Remote Sensing, 2011, 32(10): 5 875-5 889.
[23]Zarco-Tejada P J, Berni J A J, Suárez L, et al. Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection[J]. Remote Sensing of Environment, 2009, 113(6): 1 262-1 275.
[24]Joiner J, Yoshida Y, Vasilkov A P, et al.First observations of global and seasonal terrestrial chlorophyll fluorescence from space[J].Biogeosciences, 2011, 8(3): 637-651.
[25]Malenovsky Z, Mishra K B, Zemek F, et al. Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence[J]. Journal of experimental botany, 2009, 60(11): 2 987-3 004.
[26]Rascher U, Agati G, Alonso L, et al. CEFLES2: The remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands[J]. Biogeosciences, Copernicus Publications, 2009, 6(7): 1 181-1 198.
[27]Campbell P K E, Middleton E M, Corp L A, et al. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance[J]. Science of the Total Environment, 2008,404(2/3): 433-439.
[28]Zarco-Tejada P J, Miller J R, Mohammed G H, et al. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery[J]. Journal of Environmental Quality, 2002, 31(5): 1 433-1 441.
[29]Zhang Yongjiang,Zhao Chunjiang,Liu Liangyun,et al. Preliminary study on the effects of water stress on maize leaf physiological status through passive chlorophyll fluorescence detection[J].Transactions of the CSAE,2006,22(9):39-43.[张永江, 赵春江, 刘良云, 等. 被动荧光探测水分胁迫对玉米叶片影响的初步研究[J].农业工程学报, 2006, 22(9): 39-43.]
[30]Zhang Yongjiang, Huang Wenjiang, Wang Jihua, et al. Chlorophyll fluorescence sensing to detect striple rust in wheat(triticum aestivum L) fields based on fraunhofer lines[J]. Scientia Agricultura Sinica, 2007, 40(1): 78-83.[张永江, 黄文江, 王纪华, 等. 基于Fraunhofer线的小麦条锈病荧光遥感探测[J]. 中国农业科学, 2007, 40(1): 78-83.]
[31]Grace J,Nichol C,Disney M, et al. Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence?[J]. Global Change Biology, 2007, 13(7): 1 484-1 497.
[32]Damm A, Elbers J, Erler A, et al. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP)[J]. Global Change Biology, 2010, 16(1): 171-186.
[33]Cheng Zhanhui, Liu Liangyun. Estimating light-use efficiency by the separated solar-induced chlorophyll fluorescence from canopy spectral data[J]. Journal of Remote Sensing, 2010, 14(2):364-371.[程占慧,刘良云.冠层光能利用率的叶绿素荧光光谱探测[J]. 遥感学报, 2010, 14(2): 364-371.] |