1 |
TIAN H Q, XU R T, CANADELL J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7 828): 248-256.
|
2 |
CRUTZEN P J, EHHALT D H. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer[J]. Ambio, 1977, 6(2/3): 112-117.
|
3 |
LIN Hua. Research status and prospect of marine nitrous oxide[J]. Advances in Geosciences, 2014(3): 115-121.
|
|
林华. 海洋氧化亚氮研究现状与展望[J]. 地球科学前沿, 2014(3): 115-121.
|
4 |
CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles [M]// STOCKER T, QIN F D, PLATTNER G K. Change climate 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2003: 465-570.
|
5 |
RODOLFI L, CHINI ZITTELLI G, BASSI N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnology and Bioengineering, 2009, 102(1): 100-112.
|
6 |
SHILTON A N, POWELL N, GUIEYSSE B. Plant based phosphorus recovery from wastewater via algae and macrophytes[J]. Current Opinion in Biotechnology, 2012, 23(6): 884-889.
|
7 |
ZHAO B T, SU Y X. Process effect of microalgal-carbon dioxide fixation and biomass production: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 121-132.
|
8 |
WEATHERS P J. N2O evolution by green algae[J]. Applied and Environmental Microbiology, 1984, 48(6): 1 251-1 253.
|
9 |
WEATHERS P J, NIEDZIELSKI J J. Nitrous oxide production by cyanobacteria[J]. Archives of Microbiology, 1986, 146(2): 204-206.
|
10 |
GUIEYSSE B, PLOUVIEZ M, COILHAC M, et al. Nitrous oxide (N2O) production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts[J]. Biogeosciences, 2013, 10(10): 6 737-6 746.
|
11 |
MENGIS M, GÄCHTER R, WEHRLI B. Sources and sinks of nitrous oxide (N2O) in deep lakes[J]. Biogeochemistry, 1997, 38(3): 281-301.
|
12 |
WANG H J, WANG W D, YIN C Q, et al. Littoral zones as the “hotspots” of nitrous oxide (N2O) emission in a hyper-eutrophic lake in China[J]. Atmospheric Environment, 2006, 40(28): 5 522-5 527.
|
13 |
BANGE H, FREING A, KOCK A, et al. Marine pathways to nitrous oxide[J]. Nitrous Oxide & Climate Change, 2010. DOI:10.4324/9781849775113 .
|
14 |
NEVISON C D, WEISS R F, ERICKSON D J III. Global oceanic emissions of nitrous oxide[J]. Journal of Geophysical Research: Oceans, 1995, 100(C8): 15 809-15 820.
|
15 |
COHEN Y, GORDON L I. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production[J]. Deep Sea Research, 1978, 25(6): 509-524.
|
16 |
PIEROTTI D, RASMUSSEN R A. Nitrous oxide measurements in the eastern tropical Pacific Ocean[J]. Tellus, 1980, 32(1): 56-72.
|
17 |
SMITH C J, DELAUNE R D, PATRICK W H. Nitrous oxide emission from Gulf Coast wetlands[J]. Geochimica et Cosmochimica Acta, 1983, 47(10): 1 805-1 814.
|
18 |
OUDOT C, ANDRIE C, MONTEL Y. Nitrous oxide production in the tropical Atlantic Ocean[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1990, 37(2): 183-202.
|
19 |
MORELL J M, CAPELLA J, MERCADO A, et al. Nitrous oxide fluxes in Caribbean and tropical Atlantic waters: evidence for near surface production[J]. Marine Chemistry, 2001, 74(2/3): 131-143.
|
20 |
MCCRACKIN M L, ELSER J J. Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition[J]. Global Biogeochemical Cycles, 2011, 25(4). DOI:10.1029/2010GB003897 .
|
21 |
XIAO Q T, XU X F, ZHANG M, et al. Coregulation of nitrous oxide emissions by nitrogen and temperature in China’s third largest freshwater lake (Lake Taihu)[J]. Limnology and Oceanography, 2019, 64(3): 1 070-1 086.
|
22 |
MIAO Y Q, HUANG J, DUAN H T, et al. Spatial and seasonal variability of nitrous oxide in a large freshwater lake in the lower reaches of the Yangtze River, China[J]. Science of the Total Environment, 2020, 721. DOI:10.1016/j.scitotenv.2020.137716 .
|
23 |
FERRÓN S, HO D T, JOHNSON Z I, et al. Air-water fluxes of N2O and CH4 during microalgae (Staurosira sp.) cultivation in an open raceway pond[J]. Environmental Science & Technology, 2012, 46(19): 10 842-10 848.
|
24 |
ALCÁNTARA C, MUÑOZ R, NORVILL Z, et al. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater[J]. Bioresource Technology, 2015, 177: 110-117.
|
25 |
MEZZARI M P, SILVA M L B, NICOLOSO R S, et al. Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate[J]. Bioresource Technology, 2013, 149: 327-332.
|
26 |
HARTER T, BOSSIER P, VERRETH J, et al. Carbon and nitrogen mass balance during flue gas treatment with Dunaliella salina cultures[J]. Journal of Applied Phycology, 2013, 25(2): 359-368.
|
27 |
The American Society of Limnology and Oceanography, Inc. Nitrous oxide production by estuarine epiphyton[J]. Limnology and Oceanography, 1993, 38(2): 435-441.
|
28 |
NI W, ZHU Z. Gaseous nitrogen losses and nitrous oxide emission from a flooded paddy soil as affected by illumination and copper addition[J]. Biology and Fertility of Soils, 2001, 34(6): 460-462.
|
29 |
KWON Y S, RHEE T S, KIM S Y, et al. Fragilariopsis kerguelensis response to iron enrichment regarding its growth, uptake of nutrients and trace metals, and changes in CO2, CH4, and N2O[J]. Ocean Science Journal, 2014, 49(4): 449-463.
|
30 |
PLOUVIEZ M, SHILTON A, PACKER M A, et al. N2O emissions during microalgae outdoor cultivation in 50L column photobioreactors[J]. Algal Research, 2017, 26: 348-353.
|
31 |
BURLACOT A, RICHAUD P, GOSSET A, et al. Algal photosynthesis converts nitric oxide into nitrous oxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2 704-2 709.
|
32 |
BAUER S K, GROTZ L S, CONNELLY E B, et al. Reevaluation of the global warming impacts of algae-derived biofuels to account for possible contributions of nitrous oxide[J]. Bioresource Technology, 2016, 218: 196-201.
|
33 |
PLOUVIEZ M, WHEELER D, SHILTON A, et al. The biosynthesis of nitrous oxide in the green Alga Chlamydomonas reinhardtii [J]. The Plant Journal, 2017, 91(1): 45-56.
|
34 |
McLEOD A R, BRAND T, CAMPBELL C N, et al. Ultraviolet radiation drives emission of climate-relevant gases from marine phytoplankton[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(9). DOI:10.1029/2021JG006345 .
|
35 |
STIEF P, KAMP A, THAMDRUP B, et al. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels[J]. Frontiers in Microbiology, 2016, 7. DOI:10.3389/fmieb.2016.00098 .
|
36 |
KAMP A, STIEF P, KNAPPE J, et al. Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia[J]. PLoS ONE, 2013, 8(12). DOI:10.1371/journal.pone.0082605 .
|
37 |
FABISIK F, GUIEYSSE B, PROCTER J, et al. Nitrous oxide (N2O) synthesis by the freshwater Cyanobacterium Microcystis aeruginosa [J]. Biogeosciences, 2023, 20(3): 687-693.
|
38 |
BÉCHET Q, PLOUVIEZ M, CHAMBONNIÈRE P, et al. Environmental impacts of full-scale algae cultivation[M]// Microalgae-based biofuels and bioproducts. Amsterdam: Elsevier, 2017: 505-525.
|
39 |
FAGERSTONE K D, QUINN J C, BRADLEY T H, et al. Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation[J]. Environmental Science & Technology, 2011, 45(21): 9 449-9 456.
|
40 |
HAYATSU M, TAGO K, SAITO M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification[J]. Soil Science and Plant Nutrition, 2008, 54(1): 33-45.
|
41 |
WANG C X, ZHU G B, WANG Y, et al. Nitrous oxide reductase gene (nosZ) and N2O reduction along the littoral gradient of a eutrophic freshwater lake[J]. Journal of Environmental Sciences (China), 2013, 25(1): 44-52.
|
42 |
CROFT M T, LAWRENCE A D, RAUX-DEERY E, et al. Algae acquire vitamin B12 through a symbiotic relationship with bacteria[J]. Nature, 2005, 438(7 064): 90-93.
|
43 |
RIDLEY C J A, DAY J G, SMITH A G. Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green Alga Lobomonas rostrata and the bacterium Mesorhizobium loti [J]. Journal of Applied Phycology, 2018, 30(2): 995-1 003.
|
44 |
PLOUVIEZ M, SHILTON A, PACKER M A, et al. Nitrous oxide emissions from microalgae: potential pathways and significance[J]. Journal of Applied Phycology, 2019, 31(1): 1-8.
|
45 |
TISCHNER R, PLANCHET E, KAISER W M. Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana [J]. FEBS Letters, 2004, 576(1/2): 151-155.
|
46 |
GUPTA K J, IGAMBERDIEV A U. The anoxic plant mitochondrion as a nitrite: no reductase[J]. Mitochondrion, 2011, 11(4): 537-543.
|
47 |
FOLGOSA F, MARTINS M C, TEIXEIRA M. Diversity and complexity of flavodiiron NO/O2 reductases[J]. FEMS Microbiology Letters, 2018, 365(3). DOI:10.1093/femsle/fnx267 .
|
48 |
HIGGINS S A, WELSH A, ORELLANA L H, et al. Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils[J]. Applied and Environmental Microbiology, 2016, 82(10): 2 919-2 928.
|
49 |
HAHN J, JUNGE C. Atmospheric nitrous oxide: a critical review[J]. Zeitschrift Für Naturforschung A, 1977, 32(2): 190-214.
|
50 |
MIRANDA K M, KATORI T, TORRE C L, et al. Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in vivo[J]. Journal of Medicinal Chemistry, 2005, 48: 8 220-8 228.
|
51 |
GUPTA K J, FERNIE A R, KAISER W M, et al. On the origins of nitric oxide[J]. Trends in Plant Science, 2011, 16(3): 160-168.
|
52 |
SAKIHAMA Y, NAKAMURA S, YAMASAKI H. Nitric oxide production mediated by nitrate reductase in the green Alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms[J]. Plant and Cell Physiology, 2002, 43(3): 290-297.
|
53 |
JAHANGIR M M R, FENTON O, MÜLLER C, et al. In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland[J]. Water Research, 2017, 111: 254-264.
|
54 |
SALK K R, ERLER D V, EYRE B D, et al. Unexpectedly high degree of anammox and DNRA in seagrass sediments: description and application of a revised isotope pairing technique[J]. Geochimica et Cosmochimica Acta, 2017, 211: 64-78.
|
55 |
AALTO S L, ASMALA E, JILBERT T, et al. Autochthonous organic matter promotes DNRA and suppresses N2O production in sediments of the coastal Baltic Sea[J]. Estuarine, Coastal and Shelf Science, 2021, 255. DOI:10.1016/j.ecss.2021.107369 .
|
56 |
KAMP A, BEER D D, NITSCH J L, et al. Diatoms respire nitrate to survive dark and anoxic conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5 649-5 654.
|
57 |
ARMBRUST E V. The life of diatoms in the world’s oceans[J]. Nature, 2009, 459(7 244): 185-192.
|
58 |
PIÑA-OCHOA E, HØGSLUND S, GESLIN E, et al. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(3): 1 148-1 153.
|
59 |
RISGAARD-PETERSEN N, LANGEZAAL A M, INGVARDSEN S, et al. Evidence for complete denitrification in a benthic foraminifer[J]. Nature, 2006, 443(7 107): 93-96.
|
60 |
ZHOU Z M, TAKAYA N, NAKAMURA A, et al. Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi[J]. Journal of Biological Chemistry, 2002, 277(3): 1 892-1 896.
|
61 |
KIM S W, FUSHINOBU S, ZHOU S M, et al. Eukaryotic nirK genes encoding copper-containing nitrite reductase: originating from the protomitochondrion?[J]. Applied and Environmental Microbiology, 2009, 75(9): 2 652-2 658.
|
62 |
DAIBER A, SHOUN H, ULLRICH V. Nitric oxide reductase (P450nor) from Fusarium oxysporum [J]. Journal of Inorganic Biochemistry, 2005, 99(1): 185-193.
|
63 |
TAKASAKI K, SHOUN H, YAMAGUCHI M, et al. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol role of acetyl coa synthetase in anaerobic atp synthesis[J]. Journal of Biological Chemistry, 2004, 279(13): 12 414-12 420.
|
64 |
BOWLER C, ALLEN A E, BADGER J H, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7 219): 239-244.
|
65 |
ARMBRUST E V, BERGES J A, BOWLER C, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism[J]. Science, 2004, 306(5 693): 79-86.
|
66 |
BOWLER C, VARDI A, ALLEN A E. Oceanographic and biogeochemical insights from diatom genomes[J]. Annual Review of Marine Science, 2010, 2: 333-365.
|
67 |
SANDERS R, HENSON S. Ecological carbon sequestration in the oceans and climate change[M]// Global environmental change. Dordrecht: Springer, 2014: 125-131.
|
68 |
CICERONE R J. Analysis of sources and sinks of atmospheric nitrous oxide (N2O)[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18 265-18 271.
|
69 |
CODISPOTI L A, CHRISTENSEN J P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific Ocean[J]. Marine Chemistry, 1985, 16(4): 277-300.
|
70 |
FARÍAS L, FAÚNDEZ J, FERNÁNDEZ C, et al. Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures[J]. PLoS ONE, 2013, 8(5). DOI:10.1371/journal.pone.0063956 .
|
71 |
MOZEN M M, BURRIS R H. The incorporation of 15N-labelled nitrous oxide by nitrogen fixing agents[J]. Biochimica et Biophysica Acta, 1954, 14: 577-578.
|
72 |
BURGESS B K, LOWE D J. Mechanism of molybdenum nitrogenase[J]. Chemical Reviews, 1996, 96(7): 2 983-3 012.
|
73 |
HOCH G E, SCHNEIDER K C, BURRIS R H. Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules[J]. Biochimica et Biophysica Acta, 1960, 37(2): 273-279.
|
74 |
SHESTAKOV A F, SHILOV A E. On the coupled oxidation-reduction mechanism of molecular nitrogen fixation[J]. Russian Chemical Bulletin, 2001, 50(11): 2 054-2 059.
|
75 |
PLOUG H, BERGKVIST J. Oxygen diffusion limitation and ammonium production within sinking diatom aggregates under hypoxic and anoxic conditions[J]. Marine Chemistry, 2015, 176: 142-149.
|
76 |
HIETANEN S, MOISANDER P H, KUPARINEN J, et al. No sign of denitrification in a Baltic Sea cyanobacterial bloom[J]. Marine Ecology Progress Series, 2002, 242: 73-82.
|
77 |
TUOMAINEN J M, HIETANEN S, KUPARINEN J, et al. Baltic Sea cyanobacterial bloom contains denitrification and nitrification genes, but has negligible denitrification activity[J]. FEMS Microbiology Ecology, 2003, 45(2): 83-96.
|
78 |
KLAWONN I, BONAGLIA S, BRÜCHERT V, et al. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates[J]. The ISME Journal, 2015, 9(6): 1 456-1 466.
|
79 |
ULLOA O, CANFIELD D E, DELONG E F, et al. Microbial oceanography of anoxic oxygen minimum zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 15 996-16 003.
|
80 |
BIANCHI D, WEBER T S, KIKO R, et al. Global niche of marine anaerobic metabolisms expanded by particle microenvironments[J]. Nature Geoscience, 2018, 11(4): 263-268.
|