地球科学进展 ›› 2024, Vol. 39 ›› Issue (1): 23 -33. doi: 10.11867/j.issn.1001-8166.2024.001

综述与评述 上一篇    下一篇

福岛核污染水中的人工放射性核素及其在海洋环境中的迁移转化行为
张福乐 1 , 2( ), 王锦龙 1( ), 黄德坤 2, 于涛 2, 杜金洲 1   
  1. 1.华东师范大学 河口海岸学国家重点实验室, 上海 200241
    2.自然资源部第三海洋研究所, 福建 厦门 361005
  • 收稿日期:2023-08-29 修回日期:2023-12-10 出版日期:2024-01-10
  • 通讯作者: 王锦龙 E-mail:zhangfule@tio.org.cn;jlwang@sklec.ecnu.edu.cn
  • 基金资助:
    福建省海洋物理与地质过程重点实验室开放基金项目(KLMPG-22-01);中国博士后科学基金项目(2022M723708)

Artificial Radionuclides in the Fukushima Nuclear Contaminated Water and Their Migration and Transformation Behaviors in the Marine Environment

Fule ZHANG 1 , 2( ), Jinlong WANG 1( ), Dekun HUANG 2, Tao YU 2, Jinzhou DU 1   

  1. 1.State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    2.Third Institute of Oceanography, Ministry of Natural Resource, Xiamen Fujian 361005, China
  • Received:2023-08-29 Revised:2023-12-10 Online:2024-01-10 Published:2024-01-26
  • Contact: Jinlong WANG E-mail:zhangfule@tio.org.cn;jlwang@sklec.ecnu.edu.cn
  • About author:ZHANG Fule, Associate professor, research area includes isotopic oceanography. E-mail: zhangfule@tio.org.cn
  • Supported by:
    the Fujian Provincial Key Laboratory of Marine Physical and Geological Processes(KLMPG-22-01);The China Postdoctoral Science Foundation(2022M723708)

2023年8月24日,日本政府启动福岛核污染水排海,这将进一步增加对海洋生态环境的辐射风险。分析了福岛核污染水中主要人工放射性核素的浓度,估算了其在福岛核污染水中的储量。根据东京电力公司公布的数据发现,截至2023年3月,福岛核污染水储罐中3H的浓度为1.9×105~25.0×105 Bq/L,明显超出日本法律允许的3H的最大排放浓度(6×104 Bq/L);部分核污染水储罐中90Sr和129I的浓度也高于日本法律允许的90Sr和129I的最大排放浓度(30 Bq/L和9 Bq/L)。经估算,在排海前福岛核污染水中3H和129I的储量分别为0.9 PBq和6.2×109 Bq,这与核事故阶段3H和129I泄漏到海洋中的量(0.1~1.0 PBq和6.9×109 Bq)相当。此外,进一步对福岛核污染水中典型放射性核素(如3H、14C、60Co、90Sr、129I、134,137Cs和239,240Pu等)在海洋环境中的迁移转化行为进行了论述,重点介绍了福岛放射性核素在太平洋海域的迁移路径,及其在海洋沉积物上的吸附和海洋生物中的富集行为。期望为中国应对福岛核污染水排海提供一定的科学依据和见解。

On August 24, 2023, the Japanese government started discharging the Fukushima Nuclear Contaminated Water (FNCW) into the North Pacific. This process is bound to pose radiation risks for the marine ecological environment. In this study, we analyzed the concentrations of major artificial radionuclides in the FNCW and estimated their inventories. Based on the data provided by the Tokyo Electric Power Company, we found that the concentrations of 3H in FNCW tanks as of March 2023 ranged from 1.9×105 to 25.0×105 Bq/L, significantly exceeding the maximum release concentration for 3H (6×104 Bq/L) allowed by Japanese law. In addition, the concentrations of 90Sr and 129I in some FNCW tanks were higher than the corresponding maximum release concentrations (30 Bq/L for 90Sr and 9 Bq/L for 129I) allowed by Japanese law. The inventories of 3H and 129I in the FNCW before the discharge were estimated to be 0.9 and 6.2×109 Bq, respectively, i.e., comparable to the leakage amounts of 3H (0.1~1.0 PBq) and 129I (6.9×109 Bq) to the ocean during the nuclear accident stage. We further discuss the migration and behavior of typical Fukushima radionuclides (e.g., 3H, 14C, 60Co, 90Sr, 129I, 134, 137Cs, and 239, 240Pu) in marine environments from three aspects: transport of Fukushima radionuclides by ocean currents in the Pacific; sediment adsorption to radionuclides; and marine biota uptake of radionuclides. This study is expected to provide scientific foundations and insights for radiation monitoring and risk assessment, which may be required for an appropriate response to the discharge of the FNCW.

中图分类号: 

图1 以“福岛”为关键词的百度搜索指数
Fig. 1 Baidu search index with “Fukushima” as the keyword
表1 福岛核污染水中典型放射性核素的基本信息
Table 1 Basic information of the typical radionuclides in the Fukushima Nuclear Contaminated WaterFNCW
图2 2023331日福岛核污染水中放射性核素浓度水平 14
实线和虚线分别代表世界卫生组织推荐的饮用水中各核素的限制浓度和日本法律允许的最大排放浓度
Fig. 2 Box and whisker plots of radionuclide levels in the Fukushima Nuclear Contaminated Wateras of March 312023 14
The solid line and dashed line indicate the limitation concentration of radionuclides in drinking-water recommended by WHO and maximum release concentrations allowed by Japanese law
表2 福岛核污染水中各放射性核素的储量及其与福岛核事故中各核素向海洋泄漏量的对比
Table 2 The estimated inventories of the radionuclides in the Fukushima Nuclear Contaminated Water and their comparison with the total release to the ocean during the Fukushima nuclear accident
图3 北太平洋洋流示意图以及福岛核事故后 134Cs137Cs的观测数据 21 26 - 30
Fig. 3 Ocean circulations in the North Pacific and the observational data of 134Cs and 137Cs after the Fukushima nuclear accident 21 26 - 30
表3 各放射性核素在海洋沉积物的分配系数( Kd ) (L/kg)
Table 3 Distribution coefficientKdof radionuclides in marine sediments
图4 国际原子能机构推荐的放射性核素在不同海洋生物中的富集因子 45
Fig. 4 Concentration factors for different marine organisms recommended by International Atomic Energy Agency 45
1 Tokyo Electric Power Company (TEPCO). Treated water portal sites[EB/OL]. [2023-08-17]. .
2 Tokyo Electric Power Company (TEPCO). Water management at Fukushima Daiichi[R]. Tokyo: TEPCO, 2021.
3 LIN Wuhui, YU Kefu, DU Jinqiu, et al. Consequences of marine ecological environment and our preparedness for Fukushima radioactive wastewater discharge into the ocean[J]. Chinese Science Bulletin, 2021, 66(35): 4 500-4 509.
林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对[J]. 科学通报, 2021, 66(35): 4 500-4 509.
4 GUO Ran. Realistic obstacles and future trend of international law viewed from the incident of Fukushima nuclear waste water discharging into the sea[J]. Journal of Guizhou University (Social Science), 2021, 39(5): 111-115, 124.
郭冉. 从福岛核废水排海事件看国际法的现实障碍与未来走向[J]. 贵州大学学报(社会科学版), 2021, 39(5): 111-115, 124.
5 LU Y L, YUAN J J, DU D, et al. Monitoring long-term ecological impacts from release of Fukushima radiation water into ocean[J]. Geography and Sustainability, 2021, 2(2): 95-98.
6 ROSSI V, van SEBILLE E, GUPTA A SEN, et al. Multi-decadal projections of surface and interior pathways of the Fukushima cesium-137 radioactive plume[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2013, 80: 37-46.
7 BUESSELER K, DAI M H, AOYAMA M, et al. Fukushima Daiichi-derived radionuclides in the ocean: transport, fate, and impacts[J]. Annual Review of Marine Science, 2017, 9: 173-203.
8 LIU Y, GUO X Q, LI S W, et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations[J]. National Science Review, 2021, 9(1). DOI: 10.1093/nsr/nwab209 .
9 International Atomic Energy Agency (IAEA). The Fukushima Daiichi Accident[M]. Vienna: IAEA, 2015.
10 YE Changqing, LI Jun, LI Weibo, et al. The comparison of toxicity classification of radionuclides[J]. Radiation Protection Bulletin, 1999, 19(3): 3-6.
叶常青, 李钧, 李玮博, 等. 放射性核素毒性分组的比较[J]. 辐射防护通讯, 1999, 19(3): 3-6.
11 World Health Organization (WHO). Guidelines for drinking-water quality[M]. 4th edition. Malta: WHO, 2011.
12 International Commission on Radiological Protection (ICRP). Compendium of dose coefficients based on ICRP publication 60[M]. Vienna: ICRP, 2012.
13 BUESSELER K O. Opening the floodgates at Fukushima[J]. Science, 2020, 369(6 504): 621-622.
14 Tokyo Electric Power Company Holdings. Radiation concentration estimates for each tank area (as of March 31, 2023)[R]. Tokyo: Tokyo Electric Power Company Holdings, 2023.
15 KAIZER J, AOYAMA M, KUMAMOTO Y, et al. Tritium and radiocarbon in the western North Pacific waters: post-Fukushima situation[J]. Journal of Environmental Radioactivity, 2018, 184: 83-94.
16 POVINEC P P, AOYAMA M, BIDDULPH D, et al. Cesium, iodine and tritium in NW Pacific waters-a comparison of the Fukushima impact with global fallout[J]. Biogeosciences, 2013, 10(8): 5 481-5 496.
17 POVINEC P P, HIROSE K, AOYAMA M. Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact[J]. Environmental Science & Technology, 2012, 46(18): 10 356-10 363.
18 CASACUBERTA N, MASQUÉ P, GARCIA-ORELLANA J, et al. 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident[J]. Biogeosciences, 2013, 10(6): 3 649-3 659.
19 HOU X L, POVINEC P P, ZHANG L Y, et al. Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget[J]. Environmental Science & Technology, 2013, 47(7): 3 091-3 098.
20 du BOIS P B, LAGUIONIE P, BOUST D, et al. Estimation of marine source-term following Fukushima Dai-ichi accident[J]. Journal of Environmental Radioactivity, 2012, 114: 2-9.
21 AOYAMA M, KAJINO M, TANAKA T Y, et al. 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean[J]. Journal of Oceanography, 2016, 72(1): 67-76.
22 INOMATA Y, AOYAMA M, TSUBONO T, et al. Spatial and temporal distributions of 134Cs and 137Cs derived from the TEPCO Fukushima Daiichi Nuclear Power Plant accident in the North Pacific Ocean by using optimal interpolation analysis[J]. Environmental Science: Processes & Impacts, 2016, 18(1): 126-136.
23 TSUBONO T, MISUMI K, TSUMUNE D, et al. Evaluation of radioactive cesium impact from atmospheric deposition and direct release fluxes into the North Pacific from the Fukushima Daiichi nuclear power plant[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 115: 10-21.
24 Tokyo Electric Power Company Holdings. Mid-and-long-term decommissioning action plan[R]. Tokyo: Tokyo Electric Power Company Holdings, 2021.
25 ZHAO C, WANG G, ZHANG M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima Daiichi nuclear plant[J]. Marine Pollution Bulletin, 2021, 169. DOI: 10.1016/j.marpolbul.2021.112515 .
26 SMITH J N, BROWN R M, WILLIAMS W J, et al. Arrival of the Fukushima radioactivity plume in North American continental waters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(5): 1 310-1 315.
27 YOSHIDA S, MACDONALD A M, JAYNE S R, et al. Observed eastward progression of the Fukushima 134Cs signal across the North Pacific[J]. Geophysical Research Letters, 2015, 42(17): 7 139-7 147.
28 SMITH J N, ROSSI V, BUESSELER K O, et al. Recent transport history of Fukushima radioactivity in the northeast Pacific Ocean[J]. Environmental Science & Technology, 2017, 51(18): 10 494-10 502.
29 KUMAMOTO Y, AOYAMA M, HAMAJIMA Y, et al. Southward spreading of the Fukushima-derived radiocesium across the Kuroshio Extension in the North Pacific[J]. Scientific Reports, 2014, 4(1): 1-9.
30 KAERIYAMA H, SHIMIZU Y, AMBE D, et al. Southwest intrusion of 134Cs and 137Cs derived from the Fukushima Dai-ichi Nuclear Power Plant accident in the western North Pacific[J]. Environmental Science & Technology, 2014, 48(6): 3 120-3 127.
31 BUESSELER K, AOYAMA M, FUKASAWA M. Impacts of the Fukushima nuclear power plants on marine radioactivity[J]. Environmental Science & Technology, 2011, 45(23): 9 931-9 935.
32 BUESSELER K O, JAYNE S R, FISHER N S, et al. Fukushima-derived radionuclides in the ocean and biota off Japan[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 5 984-5 988.
33 RYPINA I I, JAYNE S R, YOSHIDA S, et al. Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison[J]. Biogeosciences, 2013, 10(7): 4 973-4 990.
34 BEHRENS E, SCHWARZKOPF F U, LÜBBECKE J F, et al. Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima[J]. Environmental Research Letters, 2012, 7(3). DOI:10.1088/1748-9326/7/3/034004 .
35 INOUE M, TAKEHARA R, HANAKI S, et al. Distributions of radiocesium and radium isotopes in the western Bering Sea in 2018[J]. Marine Chemistry, 2020, 225. DOI:10.1016/j.marchem.2020.103843 .
36 KUMAMOTO Y, AOYAMA M, HAMAJIMA Y, et al. Radiocesium in the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2015 and 2017[J]. Polar Science, 2019, 21: 228-232.
37 HUANG D K, LIN J, DU J Z, et al. The detection of Fukushima-derived radiocesium in the Bering Sea and Arctic Ocean six years after the nuclear accident[J]. Environmental Pollution, 2020, 256. DOI:10.1016/j.envpol.2019.113386 .
38 TAKATA H, KUSAKABE M, INATOMI N, et al. Appearances of Fukushima Daiichi Nuclear Power Plant-derived 137Cs in coastal waters around Japan: results from marine monitoring off nuclear power plants and facilities, 1983-2016[J]. Environmental Science & Technology, 2018, 52(5): 2 629-2 637.
39 MEN W, HE J H, WANG F F, et al. Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident[J]. Scientific Reports, 2015, 5(1): 1-9.
40 ZHAO L J, LIU D T, WANG J L, et al. Spatial and vertical distribution of radiocesium in seawater of the East China Sea[J]. Marine Pollution Bulletin, 2018, 128: 361-368.
41 ZHOU P, LI D M, ZHAO L, et al. Radioactive status of seawater and its assessment in the northeast South China Sea and the Luzon Strait and its adjacent areas from 2011 to 2014[J]. Marine Pollution Bulletin, 2018, 131: 163-173.
42 WU J W, ZHOU K B, DAI M H. Impacts of the Fukushima nuclear accident on the China Seas: evaluation based on anthropogenic radionuclide 137Cs[J]. Chinese Science Bulletin, 2013, 58(4): 552-558.
43 WANG F F, MEN W, YU T, et al. Intrusion of Fukushima-derived radiocesium into the East China Sea and the northeast South China Sea in 2011-2015[J]. Chemosphere, 2022, 294. DOI:10.1016/j.chemosphere.2022.133546 .
44 ZHAO Chang, QIAO Fangli, WANG Guansuo, et al. Simulation and prediction of 137Cs from the Fukushima accident in the China Seas[J]. Chinese Science Bulletin, 2014, 59(34): 3 416-3 423.
赵昌, 乔方利, 王关锁, 等. 福岛核事故泄漏进入海洋的137Cs对中国近海影响的模拟与预测[J]. 科学通报, 2014, 59(34): 3 416-3 423.
45 IAEA. Sediment distribution coefficients and concentration factors for biota in the marine environment[R]. Vienna: IAEA, 2004.
46 TAKATA H, AONO T, TAGAMI K, et al. A new approach to evaluate factors controlling elemental sediment-seawater distribution coefficients (Kd ) in coastal regions, Japan[J]. Science of the Total Environment, 2016, 543: 315-325.
47 FISHER N S, FOWLER S W, BOISSON F, et al. Radionuclide bioconcentration factors and sediment partition coefficients in Arctic Seas subject to contamination from dumped nuclear wastes[J]. Environmental Science & Technology, 1999, 33(12): 1 979-1 982.
48 CARROLL J, BOISSON F, FOWLER S W, et al. Radionuclide adsorption to sediments from nuclear waste dumping sites in the Kara Sea[J]. Marine Pollution Bulletin, 1997, 35(7/8/9/10/11/12): 296-304.
49 WANG Jinalin, LIN Zhiqing, ZHENG Jianlu. Adsorption of radionuclides by the particulate matter from the surface sediment of Daya Bay[J]. Oceanologia et Limnologia Sinica, 1994, 25(4): 422-428.
王建林, 林植青, 郑建禄. 大亚湾近岸沉积物对人工放射性核素的吸附[J]. 海洋与湖沼, 1994, 25(4): 422-428.
50 DU J Z, SONG H Q, MU D H, et al. Sorption/desorption of radioruthenium on the surface sediments of Daya Bay, China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(1): 119-122.
51 ZHONG Qiangqiang, LIU Jianan, Du Jinzhou. Adsorption/desorption of 85Sr (90Sr), 137Cs, 65Zn, and 60Co in the nearshore region of the East China Sea[C]// Progress report on China nuclear science & technology. Baotou, 2019: 562-570.
钟强强, 刘建安, 杜金洲. 沉积物/海水体系中85Sr(90Sr), 137Cs, 65Zn和60Co的吸附, 解吸特性[C]//中国核科学学术进展报告. 包头, 2019: 562-570.
52 ZHANG F L, WANG J L, LIU D T, et al. Distribution of 137Cs in the Bohai Sea, Yellow Sea and East China Sea: sources, budgets and environmental implications[J]. Science of the Total Environment, 2019, 672: 1 004-1 016.
53 PERIÁÑEZ R, SUH K S, BYUNG-IL M, et al. Numerical modeling of the releases of 90Sr from Fukushima to the ocean: an evaluation of the source term[J]. Environmental Science & Technology, 2013, 47(21): 12 305-12 313.
54 KIM Y, CHO S, KANG H D, et al. Radiocesium reaction with illite and organic matter in marine sediment[J]. Marine Pollution Bulletin, 2006, 52(6): 659-665.
55 TACHI Y, SATO T, TAKEDA C, et al. Key factors controlling radiocesium sorption and fixation in river sediments around the Fukushima Daiichi Nuclear Power Plant. Part 2: sorption and fixation behaviors and their relationship to sediment properties[J]. Science of the Total Environment, 2020, 724. DOI:10.1016/j.scitotenv.2020.138097 .
56 TAKATA H, TAGAMI K, AONO T, et al. Distribution coefficients (Kd ) of strontium and significance of oxides and organic matter in controlling its partitioning in coastal regions of Japan[J]. Science of the Total Environment, 2014, 490: 979-986.
57 中华人民共和国水利部. 中国河流泥沙公报[M]. 北京: 中国水利水电出版社, 2020.
58 FAN Dejiang, YANG Zuosheng, MAO Deng, et al. Clay minerals and geochemistry of the sediments from the Yangtze and Yellow Rivers[J]. Marine Geology & Quaternary Geology, 2001, 21(4): 7-12.
范德江, 杨作升, 毛登, 等. 长江与黄河沉积物中粘土矿物及地化成分的组成[J]. 海洋地质与第四纪地质, 2001, 21(4): 7-12.
59 Ministry of Agriculture, Forestry and Fisheries (MAFF). Results of the monitoring on radioactivity level in fisheries products[R]. Tokyo: MAFF, 2011.
60 WANG Zhihai, FU Hongzhong, LIAO Jun. Emergency monitoring of response to Fukushima nuclear accident in Shandong Province[J]. Chinese Journal of Radiological Health, 2014, 23(4): 352-354.
王治海, 付宏忠, 廖俊. 山东省应对福岛核事故应急监测[J]. 中国辐射卫生, 2014, 23(4): 352-354.
61 HUNT G J, BAILEY T A, JENKINSON S B, et al. Enhancement of tritium concentrations on uptake by marine biota: experience from UK coastal waters[J]. Journal of Radiological Protection: Official Journal of the Society for Radiological Protection, 2010, 30(1): 73-83.
62 McCUBBIN D, LEONARD K S, BAILEY T A, et al. Incorporation of organic tritium (3H) by marine organisms and sediment in the Severn Estuary/Bristol Channel (UK)[J]. Marine Pollution Bulletin, 2001, 42(10): 852-863.
63 WILLIAMS J L, RUSS R M, McCUBBIN D, et al. An overview of tritium behaviour in the Severn Estuary (UK)[J]. Journal of Radiological Protection, 2001, 21(4): 337-344.
64 JAESCHKE B C, MILLWARD G E, MOODY A J, et al. Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, Mytilus edulis [J]. Environmental Pollution, 2011, 159(1): 274-280.
65 FIÉVET B, du BOIS P B, VOISEUX C. Concentration factors and biological half-lives for the dynamic modelling of radionuclide transfers to marine biota in the English Channel[J]. Science of the Total Environment, 2021, 791. DOI:10.1016/j.scitotenv.2021.148193 .
66 MASUDA T, YOSHIOKA T. Estimation of radiation dose from ingested tritium in humans by administration of deuterium-labelled compounds and food[J]. Scientific Reports, 2021, 11(1): 1-15.
67 TANI T, ISHIKAWA Y. A deuterium tracer experiment for simulating accumulation and elimination of organically bound tritium in an edible flatfish, olive flounder[J]. Science of the Total Environment, 2023, 903. DOI:10.1016/j.scitotenv.2023.166792 .
68 ZALEWSKA T, SUPLIŃSKA M. Fish pollution with anthropogenic 137Cs in the southern Baltic Sea[J]. Chemosphere, 2013, 90(6): 1 760-1 766.
69 JOHANSEN M P, RUEDIG E, TAGAMI K, et al. Radiological dose rates to marine fish from the Fukushima Daiichi accident: the first three years across the North Pacific[J]. Environmental Science & Technology, 2015, 49(3): 1 277-1 285.
70 YAO Zhipeng, WANG Jinlong, BI Qianqian, et al. Distribution of 137Cs in biotas from the Zhoushan fishing ground and evaluation of radiological dose rates after the Fukushima accident from 2011 to 2012[J]. Ecology and Environmental Sciences, 2023, 32(4): 715-721.
姚志鹏, 王锦龙, 毕倩倩, 等. 福岛核事故后2011—2012年舟山渔场生物样品中137Cs的分布及剂量评估[J]. 生态环境学报, 2023, 32(4): 715-721.
71 ZALEWSKA T, SANIEWSKI M, SUPLIŃSKA M, et al. 90Sr in fish from the southern Baltic Sea, coastal lagoons and freshwater lake[J]. Journal of Environmental Radioactivity, 2016, 158: 38-46.
72 FUJIMOTO K, MIKI S, KAERIYAMA H, et al. Use of otolith for detecting strontium-90 in fish from the harbor of Fukushima Dai-ichi Nuclear Power Plant[J]. Environmental Science & Technology, 2015, 49(12): 7 294-7 301.
73 Japan Chemical Analysis Center (JCAC). Radioactive survey data in Japan[R]. Chiba: JCAC, 2010.
74 MEN W, DENG F F, HE J H, et al. Radioactive impacts on nekton species in the Northwest Pacific and humans more than one year after the Fukushima nuclear accident[J]. Ecotoxicology and Environmental Safety, 2017, 144: 601-610.
75 TANG Fenghua, WANG Jinlong, LIU Dantong, et al. Distribution of fukushima accident-derived radionuclides in Neon flying squid in the North Pacific Ocean[J]. Journal of Agro-Environment Science, 2013, 32(10): 2 066-2 071.
唐峰华, 王锦龙, 刘丹彤, 等. 日本福岛核泄漏典型人工放射性核素在北太平洋柔鱼渔场的分布[J]. 农业环境科学学报, 2013, 32(10): 2 066-2 071.
76 HORIGUCHI T, YOSHII H, MIZUNO S, et al. Decline in intertidal biota after the 2011 Great East Japan Earthquake and Tsunami and the Fukushima nuclear disaster: field observations[J]. Scientific Reports, 2016, 6(1): 1-12.
77 MADIGAN D J, BAUMANN Z, FISHER N S. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9 483-9 486.
78 GUAN Weibing, DING Huateng, XUAN Fujun, et al. Environmental effects on upstream migration of glass eels (Anguilla japonica) in Yangtze Estuary[J]. Marine Science Bulletin, 2009, 28(2):65-70.
管卫兵, 丁华腾, 宣富君, 等. 长江口环境条件对日本鳗鲡(Anguilla japonica)鳗苗溯河洄游的影响[J]. 海洋通报, 2009, 28(2):65-70.
79 LIN Wuhui, HE Jianhua, YU Kefu, et al. 90Sr in marine environment: comparison of seas surrounding Japan and the South China Sea[J]. Acta Oceanologica Sinica, 2020, 42(10): 47-58.
林武辉, 何建华, 余克服, 等. 海洋中90Sr: 日本周边海域与南海的对比[J]. 海洋学报, 2020, 42(10): 47-58.
80 LIN Wuhui, ZHANG Fan, YU Kefu, et al. Assessment and enrichment of artificial radionuclides in coral reef ecosystems[J]. Advances in Earth Science, 2023, 38(3): 286-295.
林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估[J]. 地球科学进展, 2023, 38(3): 286-295.
81 LI Shuqing. Radioactivity level off the coast of China[M]. Beijing: Ocean Press, 1987.
李树庆. 中国近海放射性水平[M]. 北京: 海洋出版社, 1987.
82 ZHU H M, LI S Q, WU F S, et al. Radioactivity in the coastal waters of the Bohai and Yellow Seas of China[J]. Journal of Environmental Radioactivity, 1991, 14(3): 193-209.
83 中华人民共和国卫生部. 中国环境放射性水平与卫生评价[M]. 北京:人民卫生出版社, 1992.
[1] 林武辉, 张帆, 余克服, 马豪, 杜金秋, 莫珍妮, 李英花, 何贤文, 莫敏婷. 人工放射性核素在珊瑚岛礁系统中的富集与评估[J]. 地球科学进展, 2023, 38(3): 286-295.
[2] 劳齐斌, 矫立萍, 陈法锦, 陈立奇. 北极区域传统和新型POPs研究进展[J]. 地球科学进展, 2017, 32(2): 128-138.
阅读次数
全文


摘要