地球科学进展 ›› 2023, Vol. 38 ›› Issue (3): 286 -295. doi: 10.11867/j.issn.1001-8166.2022.082

研究论文 上一篇    下一篇

人工放射性核素在珊瑚岛礁系统中的富集与评估
林武辉 1( ), 张帆 1, 余克服 1( ), 马豪 2, 杜金秋 3, 莫珍妮 4, 李英花 4, 何贤文 5, 莫敏婷 1   
  1. 1.广西大学海洋学院 广西南海珊瑚礁研究重点实验室,广西 南宁 530004
    2.清华大学工程物理系,北京 100084
    3.国家海洋环境监测中心,辽宁 大连 116023
    4.广西海洋研究院,广西 南宁 530022
    5.广西壮族自治区辐射环境监督管理站,广西 南宁 530022
  • 收稿日期:2022-07-20 修回日期:2022-09-28 出版日期:2023-03-10
  • 通讯作者: 余克服 E-mail:linwuhui8@163.com;kefuyu@scsio.ac.cn
  • 基金资助:
    国家自然科学基金项目“南海造礁珊瑚对海洋人工放射性核素90Sr源汇过程的指示作用研究”(41906043);“基于40K重建多时间尺度的涠洲岛珊瑚岸礁生长发育历史”(42276044)

Assessment and Enrichment of Artificial Radionuclides in Coral Reef Ecosystems

Wuhui LIN 1( ), Fan ZHANG 1, Kefu YU 1( ), Hao MA 2, Jinqiu DU 3, Zhenni MO 4, Yinghua LI 4, Xianwen HE 5, Minting MO 1   

  1. 1.Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
    2.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
    3.National Marine Environmental Monitoring Center, Dalian Liaoning 116023, China
    4.Guangxi Academy of Oceanography, Nanning 530022, China
    5.Radiation-Environment Management and Monitoring Station of Guangxi Zhuang Autonomous Region, Nanning 530022, China
  • Received:2022-07-20 Revised:2022-09-28 Online:2023-03-10 Published:2023-03-21
  • Contact: Kefu YU E-mail:linwuhui8@163.com;kefuyu@scsio.ac.cn
  • About author:LIN Wuhui (1987-), male, Quanzhou City, Fujian Province, Associate professor. Research areas include measurement, application, and radiological assessment of radionuclides in marine environments. E-mail: linwuhui8@163.com
  • Supported by:
    the National Natural Science Foundation of China “Reef-building coral as bioindicator for tracking the source and sink of artificial radionuclide 90Sr in the South China Sea”(41906043);“Reconstructing history of coral reef development on multiple time-scales derived from 40K proxy in the Weizhou Island, northern South China Sea”(42276044)

珊瑚礁生态系统拥有较高的生物多样性,为人类提供了丰富的生物资源及生态服务功能与价值。我国多处滨海核电站周边存在造礁珊瑚,而南海珊瑚岛礁也是未来海上漂浮核电站重要的潜在应用场景。基于在珊瑚礁中14C、90Sr和137Cs的已有研究,分析了珊瑚礁中关键人工放射性核素的研究动态,提出了基于核素在珊瑚骨骼与海水分配系数的分类原则,探索了低度(137Cs)、中度(129I)和高度(14C>239+240Pu>90Sr,236U)富集的三大类核素在珊瑚骨骼中的富集规律,利用欧盟的ERICA模型开展上述人工放射性核素和天然放射性核素210Po对珊瑚虫的辐射剂量评估,定量计算不同核素对珊瑚虫的剂量率排序依次为14C>90Sr>137Cs>239+240Pu>236U>129I,发现珊瑚虫中人工放射性核素造成的总剂量率(4.73×10-4 μGy/h)显著低于天然放射性核素210Po产生的剂量率(6.60 μGy/h)和无影响的筛选基准水平(10 μGy/h),说明人工放射性核素不会对珊瑚虫种群产生显著的电离辐射危害。系统探讨了人工放射性核素在海水和珊瑚骨骼中的活度水平、分配系数和剂量率,定量揭示了珊瑚岛礁系统中人工放射性核素的富集特征,可为滨海核电对周边造礁珊瑚的影响评估和未来海上漂浮型核电站在南海珊瑚岛礁应用场景下的珊瑚礁生态安全和岛礁居民辐射环境安全评估提供一定的技术支撑。

Coral reef ecosystems are characterized by high primary production and biodiversity, providing rich biological resources and valuable ecosystem goods and services for humans. Reef-building corals survive in coastal areas near several nuclear power plants in China. Additionally, coral islands can potentially support future applications of floating nuclear power plants in remote marine environments for energy supply. Although artificial radionuclides derived from nuclear power plants are released into coral reef ecosystems, there is limited information on the biogeochemical behavior of artificial radionuclides and their radiological impacts on coral reef ecosystems. In this study, key artificial radionuclides, including 14C, 239+240Pu90Sr, 236U, 129I, and 137Cs, were carefully selected and comprehensively investigated from the perspectives of activity concentration, coral skeleton-seawater distribution coefficient (Kd value indicating the ability of enrichment), and radiation dose rates derived from the ERICA model. Based on our previous studies on 14C, 90Sr, and 137Cs in coral reef ecosystems, we reviewed and analyzed the research progress on key artificial radionuclides, which were classified into low-level (Kd ≤1 L/kg), medium-level (1 L/kg<Kd <1 000 L/kg), and high-level (Kd ≥1 000 L/kg) enrichment groups according to the Kd value. The Kd values were ranked in descending order as 14C>239+240Pu>90Sr and 236U>129I>137Cs. The radiation dose rates of the above-mentioned artificial radionuclides and naturally occurring radionuclides of 210Po in coral polyps were simultaneously calculated using the ERICA tool and ranked in the order 14C>90Sr>137Cs> 239+240Pu>236U>129I. The total radiation dose rate of artificial radionuclides was estimated to be 4.73×10-4 μGy/h, which was much lower than the radiation dose rate of 210Po (6.60 μGy/h) and the screening benchmark level of no effect (10 μGy/h). Therefore, artificial radionuclides in the surface seawater of the South China Sea should not pose significant radiological risks to coral polyp populations. Overall, our results provide technical support for the assessment of nuclear safety in coral reef ecosystems in the context of the potential application of floating nuclear power plants in coral islands in the South China Sea.

中图分类号: 

图1 放射性核素在珊瑚虫中的生物富集因子与珊瑚骨骼—海水中的分配系数
Fig. 1 Bioconcentration FactorBCFof radionuclides in coral polyp and coral skeleton-seawater distribution coefficientKdof radionuclides
表1 ERICA模型中参数与珊瑚虫辐射剂量率
Table 1 Parameters in the ERICA tool and radiation dose rate of coral polyp
图2 珊瑚虫中人工放射性核素对总辐射剂量率的贡献比例
Fig. 2 Proportion of artificial radionuclides contributing to total radiation dose rate of coral polyp
图3 珊瑚岛礁系统中珊瑚骨骼的 Kd 值与近海(a)和开阔大洋(b)中沉积物的 Kd 值对比
Fig. 3 Comparison of Kd value of artificial radionuclides in coral skeleton and sediments from the coastal seaaand open oceanbprovided by IAEA
图4 人工放射性核素在海水和珊瑚骨骼中活度关系
灰度定性代表剂量率水平(黑色>深灰色>浅灰色>白色)
Fig. 4 Activities of artificial radionuclides in seawater and coral skeleton
The color is related to radiation dose rate, with a descending order of black color>dark gray color>light gray color>white color
1 AARKROG A. Input of anthropogenic radionuclides into the world ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(17/18/19/20/21): 2 597-2 606.
2 HONG G, BASKARAN M, POVINEC P. Artificial radionuclides in the western north Pacific: a review[M]// SHIYOMI M. Global environmental change in the ocean and on land. 2004.
3 BUESSELER K. Fukushima and ocean radioactivity[J]. Oceanography, 2014, 27(1): 92-105.
4 LIN W H, MO M T, YU K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018[J]. Marine Pollution Bulletin, 2022, 176. DOI:10.1016/j.marpolbul.2022.113476 .
5 LIN W H, CHEN L Q, YU W, et al. Radioactive source terms for the Fukushima nuclear accident[J]. Science China Earth Sciences, 2016, 59(1): 214-222.
6 CHEN Liqi, HE Jianhua, LIN Wuhui, et al. Review on the marine radioactive-pollution monitoring and assessment technology[J]. Engineering Sciences, 2011, 13(10): 34-39, 82.
陈立奇, 何建华, 林武辉, 等. 海洋核污染的应急监测与评估技术展望[J]. 中国工程科学, 2011, 13(10): 34-39, 82.
7 LIN Wuhui, CHEN Liqi, HE Jianhua, et al. Review on monitoring marine radioactivity since the Fukushima Nuclear Accident[J]. China Environmental Science, 2015, 35(1): 269-276.
林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展[J]. 中国环境科学, 2015, 35(1): 269-276.
8 ZHU L C, XU C K, HOU X L, et al. Determination of ultratrace level 135Cs and 135Cs/137Cs ratio in small volume seawater by chemical separation and thermal ionization mass spectrometry[J]. Analytical Chemistry, 2020, 92(9): 6 709-6 718.
9 HAN X X, ZHU J J, ZHU Y W, et al. 237Np and 241Am as fingerprints in the major river basins of southern China and north South China Sea: a land-sea perspective[J]. ACS Omega, 2021, 6(41): 26 897-26 909.
10 QIAO J X, ZHANG H T, STEIER P, et al. An unknown source of reactor radionuclides in the Baltic Sea revealed by multi-isotope fingerprints[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-21059-w .
11 MEN W, ZHENG J, WANG H, et al. Establishing rapid analysis of Pu isotopes in seawater to study the impact of Fukushima nuclear accident in the northwest Pacific[J]. Scientific Reports, 2018, 8. DOI:10.1038/s41598-018-20151-4 .
12 LIN Wuhui, CHEN Liqi, YU Wen, et al. The methodology and application of radiation dose assessment for non human species in marine environment [C]// 2014 annual conference of Fujian Ocean Society. Fuzhou, 2014: 326-334.
林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用[C]// 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会. 福州, 2014: 326-334.
13 LIN Wuhui, YU Kefu, DU Jinqiu, et al. Consequences of marine ecological environment and our preparedness for Fukushima radioactive wastewater discharge into the ocean[J]. Chinese Science Bulletin, 2021, 66(35): 4 500-4 509.
林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对[J]. 科学通报, 2021, 66(35): 4 500-4 509.
14 JOHANSEN M P, RUEDIG E, TAGAMI K, et al. Radiological dose rates to marine fish from the Fukushima Daiichi accident: the first three years across the North Pacific[J]. Environmental Science & Technology, 2015, 49(3): 1 277-1 285.
15 HONG G H, HAMILTON T F, BASKARAN M, et al. Applications of anthropogenic radionuclides as tracers to investigate marine environmental processes[M]// Advances in isotope geochemistry. Berlin, Heidelberg: Springer, 2011: 367-394.
16 LIN Wuhui, YU Kefu, WANG Yinghui, et al. Using uranium-series radionuclides as tools for tracing marine sedimentary processes: source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 60-70.
林武辉, 余克服, 王英辉, 等. 海洋沉积过程的铀系放射性核素示踪技术:物源识别、沉积、再悬浮[J]. 海洋地质与第四纪地质, 2020, 40(1): 60-70.
17 MOBERG F, FOLKE C. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 1999, 29(2): 215-233.
18 YU Kefu. Introduction to the science of coral reefs[M]. Beijing: Science Press, 2018.
余克服. 珊瑚礁科学概论[M]. 北京: 科学出版社, 2018.
19 YU Kefu, ZHANG Guangxue, WANG Ren. Studies on the coral reefs of the South China Sea: from global change to oil-gas exploration[J]. Advances in Earth Science, 2014, 29(11): 1 287-1 293.
余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探: 第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1 287-1 293.
20 YU K F. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1 217-1 229.
21 RAMOS R D, GOODKIN N F, DRUFFEL E R M, et al. Interannual coral Δ14C records of surface water exchange across the Luzon strait[J]. Journal of Geophysical Research: Oceans, 2019, 124(1): 491-505.
22 PURDY C B, DRUFFEL E R M, HUGH D L. Anomalous levels of 90Sr and 239,240Pu in Florida corals: evidence of coastal processes[J]. Geochimica et Cosmochimica Acta, 1989, 53(6): 1 401-1 410.
23 LIN Wuhui, YU Kefu, DENG Fangfang, et al. Fingerprints of radionuclides in modern coral skeletons in the South China Sea[J]. China Environmental Science, 2019, 39(10): 4 279- 4 289.
林武辉, 余克服, 邓芳芳, 等. 南海现代珊瑚骨骼中放射性核素特征指纹[J]. 中国环境科学, 2019, 39(10): 4 279-4 289.
24 BAUTISTAVII A T, LIMLINGAN S J M, BAUYON M M T, et al. A historical record of the impact of nuclear activities based on 129I in coral cores in Baler, Philippines: an update[J]. Journal of Environmental Radioactivity, 2021, 227. DOI:10.1016/j.jenvrad.2020.106508 .
25 SAKAGUCHI A, NOMURA T, STEIER P, et al. Temporal and vertical distributions of anthropogenic 236U in the Japan Sea using a coral core and seawater samples[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 4-13.
26 FROEHLICH M B, CHAN W Y, TIMS S G, et al. Time-resolved record of 236U and 239,240Pu isotopes from a coral growing during the nuclear testing program at Enewetak Atoll (Marshall Islands)[J]. Journal of Environmental Radioactivity, 2016, 165: 197-205.
27 LINDAHL P, ANDERSEN M B, KEITH-ROACH M, et al. Spatial and temporal distribution of Pu in the northwest Pacific Ocean using modern coral archives[J]. Environment International, 2012, 40: 196-201.
28 LUO Qi. Construction of nuclear power energy platform in the South China Sea as soon as possible [J]. China Nuclear Industry, 2014(3): 43.
罗琦. 尽快开展南海核动力能源平台建设[J]. 中国核工业, 2014(3): 43.
29 Songze LÜ, LIU Hongjun, CAI Qi, et al. Preliminary study on nuclear safety of nuclear power platforms in marine environments [J]. Science and Technology Innovation Herald, 2016, 13(34): 46-48.
吕松泽, 刘洪君, 蔡琦, 等. 海洋核动力平台核安全监督初探[J]. 科技创新导报, 2016, 13(34): 46-48.
30 YU K F, HUA Q, ZHAO J X, et al. Holocene marine 14C reservoir age variability: evidence from 230Th-dated corals in the South China Sea[J]. Paleoceanography, 2010, 25(3). DOI:10.1029/2009PA001831 .
31 SHEN C D, YU K F, SUN Y M, et al. Interannual variations of bomb radiocarbon during 1977-1998 recorded in coral from Daya Bay, South China Sea[J]. Science in China Series D: Earth Sciences, 2003, 46(10): 1 040-1 048.
32 ASHRAF M A, AKIB S, MAAH M J, et al. Cesium-137: radio-chemistry, fate, and transport, remediation, and future concerns[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(15): 1 740-1 793.
33 IAEA. Worldwide Marine Radioactivity Studies (WOMARS): radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.
34 ZHANG F L, WANG J L, LIU D T, et al. Distribution of 137Cs in the Bohai Sea, Yellow Sea and East China Sea: sources, budgets and environmental implications[J]. Science of the Total Environment, 2019, 672: 1 004-1 016.
35 WU J W, XIAO X Y, SUN J. Distribution and budget of 137Cs in the China seas[J]. Scientific Reports, 2020, 10(1). DOI:10.1038/s41598-020-65280-x .
36 NOSHKIN V E, WONG K M, EAGLE R J, et al. Transuranics and other radionuclides in Bikini Lagoon: concentration data retrieved from aged coral sections1[J]. Limnology and Oceanography, 1975, 20(5): 729-742.
37 BUESSELER K O, CHARETTE M A, PIKE S M, et al. Lingering radioactivity at the Bikini and Enewetak atolls[J]. Science of the Total Environment, 2018, 621: 1 185-1 198.
38 POVINEC P P, WOODHEAD D, BLOWERS P, et al. Marine radioactivity assessment of Mururoa and Fangataufa atolls[J]. Science of the Total Environment, 1999, 237/238: 249-267.
39 HUGHES E W, MOLINA M R, ABELLA M K I L, et al. Radiation maps of ocean sediment from the Castle Bravo crater[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(31): 15 420-15 424.
40 XIAO J, XIAO Y K, JIN Z D, et al. Boron isotopic compositions in growing corals from the South China Sea[J]. Journal of Asian Earth Sciences, 2013, 62: 561-567.
41 HE P, ALDAHAN A, POSSNERT G, et al. A summary of global 129I in marine waters[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.
42 MANLEY S L, LOWE C G. Canopy-forming kelps as california's coastal dosimeter: 131I from damaged Japanese reactor measured in Macrocystis pyrifera [J]. Environmental Science & Technology, 2012, 46(7): 3 731-3 736.
43 BURR G S, MATSUZAKI H, WANG B S, et al. Anthropogenic 129I in the South China Sea and coastal waters around Taiwan[J]. Elementa: Science of the Anthropocene, 2020, 8(1). DOI:10.1525/elementa.2020.064 .
44 ZHOU P, LI D M, ZHAO L, et al. Radioactive status of seawater and its assessment in the northeast South China Sea and the Luzon Strait and its adjacent areas from 2011 to 2014[J]. Marine Pollution Bulletin, 2018, 131: 163-173.
45 DENG Fangfang, LIN Wuhui, YU Tao, et al. 90Sr analysis method in the marine sediments[J]. Journal of Nuclear and Radiochemistry, 2015, 37(4): 231-237.
邓芳芳, 林武辉, 于涛, 等. 海洋沉积物中90Sr的分析方法[J]. 核化学与放射化学, 2015, 37(4): 231-237.
46 LIN Wuhui, HE Jianhua, YU Kefu, et al. 90Sr in marine environment: comparison of seas surrounding Japan and the South China Sea[J]. Haiyang Xuebao, 2020, 42(10): 47-58.
林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比[J]. 海洋学报, 2020, 42(10): 47-58.
47 WATERS C N, SYVITSKI J P M, GAŁUSZKA A, et al. Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.
48 WU J W, DAI M H, XU Y, et al. Sources and accumulation of Plutonium in a large western Pacific marginal sea: the South China Sea[J]. Science of the Total Environment, 2018, 610/611: 200-211.
49 SANCHEZ-CABEZA J A, RICO-ESENARO S D, CORCHO-ALVARADO J A, et al. Plutonium in coral archives: a good primary marker for an Anthropocene type section[J]. The Science of the Total Environment, 2021, 771. DOI:10.1016/j.scitotenv.2021.145077 .
50 GUAN Y J, MAI J Y, WANG H J, et al. Plutonium isotopes and radionuclides in corals around Weizhou land in Beibu Gulf, China[J]. Applied Radiation and Isotopes, 2021, 176. DOI:10.1016/j.apradiso.2021.109873 .
51 SHAO Yang, YANG Guosheng, ZHANG Jilong, et al. Progress and application on the analysis of anthropogenic radionuclide 236U[J]. Acta Chimica Sinica, 2021, 79(6): 716-728.
邵阳, 杨国胜, 张继龙, 等. 人工放射性核素236U的分析方法进展及其应用[J]. 化学学报, 2021, 79(6): 716-728.
52 SAKAGUCHI A, KADOKURA A, STEIER P, et al. Uranium-236 as a new oceanic tracer: a first depth profile in the Japan Sea and comparison with caesium-137[J]. Earth and Planetary Science Letters, 2012, 333/334: 165-170.
53 WINKLER S R, STEIER P, CARILLI J. Bomb fall-out 236U as a global oceanic tracer using an annually resolved coral core[J]. Earth and Planetary Science Letters, 2012, 359/360(1): 124-130.
54 LIN W H, YU K F, WANG Y H, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019, 142: 43-53.
55 ALVES E Q, MACARIO K, ASCOUGH P, et al. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects[J]. Reviews of Geophysics, 2018, 56(1): 278-305.
56 WU Y, FALLON S J. Prebomb to postbomb 14C history from the west side of Palawan Island: insights into oceanographic changes in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2020, 125(6). DOI:10.1029/2019JC015979 .
57 DING Ling, QI Yuanzhi, SHAN Sen, et al. Radiocarbon in dissolved organic and inorganic carbon of the South China Sea [J]. Journal of Geophysical Research: Oceans, 2020, 125(4). DOI:10.1029/2020JC016073 .
58 YANG W F, HUANG Y P, CHEN M, et al. Unusually high 210Po activities in the surface water of the Zhubi Coral Reef Lagoon in the South China Sea[J]. The Science of the Total Environment, 2011, 409(21): 4 612-4 617.
59 LIN W H, MA H, CHEN L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater[J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.
60 LIN W H, FENG Y, YU K F, et al. Comparative study of radioactivity levels and radionuclide fingerprints in typical marine ecosystems of coral reefs, mangroves, and hydrothermal vents[J]. Marine Pollution Bulletin, 2020, 152. DOI:10.1016/j.marpolbul.2020.110913 .
61 BROWN J E, ALFONSO B, AVILA R, et al. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals[J]. Journal of Environmental Radioactivity, 2016, 153: 141-148.
62 AARKROG A, BAXTER M S, BETTENCOURT A O, et al. A comparison of doses from 137Cs and 210Po in marine food: a major international study[J]. Journal of Environmental Radioactivity, 1997, 34(1): 69-90.
63 IAEA. Sediment distribution coefficients and concentration factors for Biota in the marine environment, technical report series No. 422[R]. Vienna: IAEA, 2004.
[1] 张福乐, 王锦龙, 黄德坤, 于涛, 杜金洲. 福岛核污染水中的人工放射性核素及其在海洋环境中的迁移转化行为[J]. 地球科学进展, 2024, 39(1): 23-33.
[2] 潘晓仪, 李琳琳, 王大伟, 施华斌. 南海典型海底滑坡的触发机制及其潜在海啸灾害评估[J]. 地球科学进展, 2023, 38(2): 192-211.
[3] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[4] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[5] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[6] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[7] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[8] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[9] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[10] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[11] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[12] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[13] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[14] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[15] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
阅读次数
全文


摘要