1 |
AARKROG A. Input of anthropogenic radionuclides into the world ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(17/18/19/20/21): 2 597-2 606.
|
2 |
HONG G, BASKARAN M, POVINEC P. Artificial radionuclides in the western north Pacific: a review[M]// SHIYOMI M. Global environmental change in the ocean and on land. 2004.
|
3 |
BUESSELER K. Fukushima and ocean radioactivity[J]. Oceanography, 2014, 27(1): 92-105.
|
4 |
LIN W H, MO M T, YU K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018[J]. Marine Pollution Bulletin, 2022, 176. DOI:10.1016/j.marpolbul.2022.113476 .
|
5 |
LIN W H, CHEN L Q, YU W, et al. Radioactive source terms for the Fukushima nuclear accident[J]. Science China Earth Sciences, 2016, 59(1): 214-222.
|
6 |
CHEN Liqi, HE Jianhua, LIN Wuhui, et al. Review on the marine radioactive-pollution monitoring and assessment technology[J]. Engineering Sciences, 2011, 13(10): 34-39, 82.
|
|
陈立奇, 何建华, 林武辉, 等. 海洋核污染的应急监测与评估技术展望[J]. 中国工程科学, 2011, 13(10): 34-39, 82.
|
7 |
LIN Wuhui, CHEN Liqi, HE Jianhua, et al. Review on monitoring marine radioactivity since the Fukushima Nuclear Accident[J]. China Environmental Science, 2015, 35(1): 269-276.
|
|
林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展[J]. 中国环境科学, 2015, 35(1): 269-276.
|
8 |
ZHU L C, XU C K, HOU X L, et al. Determination of ultratrace level 135Cs and 135Cs/137Cs ratio in small volume seawater by chemical separation and thermal ionization mass spectrometry[J]. Analytical Chemistry, 2020, 92(9): 6 709-6 718.
|
9 |
HAN X X, ZHU J J, ZHU Y W, et al. 237Np and 241Am as fingerprints in the major river basins of southern China and north South China Sea: a land-sea perspective[J]. ACS Omega, 2021, 6(41): 26 897-26 909.
|
10 |
QIAO J X, ZHANG H T, STEIER P, et al. An unknown source of reactor radionuclides in the Baltic Sea revealed by multi-isotope fingerprints[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-21059-w .
|
11 |
MEN W, ZHENG J, WANG H, et al. Establishing rapid analysis of Pu isotopes in seawater to study the impact of Fukushima nuclear accident in the northwest Pacific[J]. Scientific Reports, 2018, 8. DOI:10.1038/s41598-018-20151-4 .
|
12 |
LIN Wuhui, CHEN Liqi, YU Wen, et al. The methodology and application of radiation dose assessment for non human species in marine environment [C]// 2014 annual conference of Fujian Ocean Society. Fuzhou, 2014: 326-334.
|
|
林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用[C]// 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会. 福州, 2014: 326-334.
|
13 |
LIN Wuhui, YU Kefu, DU Jinqiu, et al. Consequences of marine ecological environment and our preparedness for Fukushima radioactive wastewater discharge into the ocean[J]. Chinese Science Bulletin, 2021, 66(35): 4 500-4 509.
|
|
林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对[J]. 科学通报, 2021, 66(35): 4 500-4 509.
|
14 |
JOHANSEN M P, RUEDIG E, TAGAMI K, et al. Radiological dose rates to marine fish from the Fukushima Daiichi accident: the first three years across the North Pacific[J]. Environmental Science & Technology, 2015, 49(3): 1 277-1 285.
|
15 |
HONG G H, HAMILTON T F, BASKARAN M, et al. Applications of anthropogenic radionuclides as tracers to investigate marine environmental processes[M]// Advances in isotope geochemistry. Berlin, Heidelberg: Springer, 2011: 367-394.
|
16 |
LIN Wuhui, YU Kefu, WANG Yinghui, et al. Using uranium-series radionuclides as tools for tracing marine sedimentary processes: source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 60-70.
|
|
林武辉, 余克服, 王英辉, 等. 海洋沉积过程的铀系放射性核素示踪技术:物源识别、沉积、再悬浮[J]. 海洋地质与第四纪地质, 2020, 40(1): 60-70.
|
17 |
MOBERG F, FOLKE C. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 1999, 29(2): 215-233.
|
18 |
YU Kefu. Introduction to the science of coral reefs[M]. Beijing: Science Press, 2018.
|
|
余克服. 珊瑚礁科学概论[M]. 北京: 科学出版社, 2018.
|
19 |
YU Kefu, ZHANG Guangxue, WANG Ren. Studies on the coral reefs of the South China Sea: from global change to oil-gas exploration[J]. Advances in Earth Science, 2014, 29(11): 1 287-1 293.
|
|
余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探: 第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1 287-1 293.
|
20 |
YU K F. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1 217-1 229.
|
21 |
RAMOS R D, GOODKIN N F, DRUFFEL E R M, et al. Interannual coral Δ14C records of surface water exchange across the Luzon strait[J]. Journal of Geophysical Research: Oceans, 2019, 124(1): 491-505.
|
22 |
PURDY C B, DRUFFEL E R M, HUGH D L. Anomalous levels of 90Sr and 239,240Pu in Florida corals: evidence of coastal processes[J]. Geochimica et Cosmochimica Acta, 1989, 53(6): 1 401-1 410.
|
23 |
LIN Wuhui, YU Kefu, DENG Fangfang, et al. Fingerprints of radionuclides in modern coral skeletons in the South China Sea[J]. China Environmental Science, 2019, 39(10): 4 279- 4 289.
|
|
林武辉, 余克服, 邓芳芳, 等. 南海现代珊瑚骨骼中放射性核素特征指纹[J]. 中国环境科学, 2019, 39(10): 4 279-4 289.
|
24 |
BAUTISTAVII A T, LIMLINGAN S J M, BAUYON M M T, et al. A historical record of the impact of nuclear activities based on 129I in coral cores in Baler, Philippines: an update[J]. Journal of Environmental Radioactivity, 2021, 227. DOI:10.1016/j.jenvrad.2020.106508 .
|
25 |
SAKAGUCHI A, NOMURA T, STEIER P, et al. Temporal and vertical distributions of anthropogenic 236U in the Japan Sea using a coral core and seawater samples[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 4-13.
|
26 |
FROEHLICH M B, CHAN W Y, TIMS S G, et al. Time-resolved record of 236U and 239,240Pu isotopes from a coral growing during the nuclear testing program at Enewetak Atoll (Marshall Islands)[J]. Journal of Environmental Radioactivity, 2016, 165: 197-205.
|
27 |
LINDAHL P, ANDERSEN M B, KEITH-ROACH M, et al. Spatial and temporal distribution of Pu in the northwest Pacific Ocean using modern coral archives[J]. Environment International, 2012, 40: 196-201.
|
28 |
LUO Qi. Construction of nuclear power energy platform in the South China Sea as soon as possible [J]. China Nuclear Industry, 2014(3): 43.
|
|
罗琦. 尽快开展南海核动力能源平台建设[J]. 中国核工业, 2014(3): 43.
|
29 |
Songze LÜ, LIU Hongjun, CAI Qi, et al. Preliminary study on nuclear safety of nuclear power platforms in marine environments [J]. Science and Technology Innovation Herald, 2016, 13(34): 46-48.
|
|
吕松泽, 刘洪君, 蔡琦, 等. 海洋核动力平台核安全监督初探[J]. 科技创新导报, 2016, 13(34): 46-48.
|
30 |
YU K F, HUA Q, ZHAO J X, et al. Holocene marine 14C reservoir age variability: evidence from 230Th-dated corals in the South China Sea[J]. Paleoceanography, 2010, 25(3). DOI:10.1029/2009PA001831 .
|
31 |
SHEN C D, YU K F, SUN Y M, et al. Interannual variations of bomb radiocarbon during 1977-1998 recorded in coral from Daya Bay, South China Sea[J]. Science in China Series D: Earth Sciences, 2003, 46(10): 1 040-1 048.
|
32 |
ASHRAF M A, AKIB S, MAAH M J, et al. Cesium-137: radio-chemistry, fate, and transport, remediation, and future concerns[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(15): 1 740-1 793.
|
33 |
IAEA. Worldwide Marine Radioactivity Studies (WOMARS): radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.
|
34 |
ZHANG F L, WANG J L, LIU D T, et al. Distribution of 137Cs in the Bohai Sea, Yellow Sea and East China Sea: sources, budgets and environmental implications[J]. Science of the Total Environment, 2019, 672: 1 004-1 016.
|
35 |
WU J W, XIAO X Y, SUN J. Distribution and budget of 137Cs in the China seas[J]. Scientific Reports, 2020, 10(1). DOI:10.1038/s41598-020-65280-x .
|
36 |
NOSHKIN V E, WONG K M, EAGLE R J, et al. Transuranics and other radionuclides in Bikini Lagoon: concentration data retrieved from aged coral sections1[J]. Limnology and Oceanography, 1975, 20(5): 729-742.
|
37 |
BUESSELER K O, CHARETTE M A, PIKE S M, et al. Lingering radioactivity at the Bikini and Enewetak atolls[J]. Science of the Total Environment, 2018, 621: 1 185-1 198.
|
38 |
POVINEC P P, WOODHEAD D, BLOWERS P, et al. Marine radioactivity assessment of Mururoa and Fangataufa atolls[J]. Science of the Total Environment, 1999, 237/238: 249-267.
|
39 |
HUGHES E W, MOLINA M R, ABELLA M K I L, et al. Radiation maps of ocean sediment from the Castle Bravo crater[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(31): 15 420-15 424.
|
40 |
XIAO J, XIAO Y K, JIN Z D, et al. Boron isotopic compositions in growing corals from the South China Sea[J]. Journal of Asian Earth Sciences, 2013, 62: 561-567.
|
41 |
HE P, ALDAHAN A, POSSNERT G, et al. A summary of global 129I in marine waters[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.
|
42 |
MANLEY S L, LOWE C G. Canopy-forming kelps as california's coastal dosimeter: 131I from damaged Japanese reactor measured in Macrocystis pyrifera [J]. Environmental Science & Technology, 2012, 46(7): 3 731-3 736.
|
43 |
BURR G S, MATSUZAKI H, WANG B S, et al. Anthropogenic 129I in the South China Sea and coastal waters around Taiwan[J]. Elementa: Science of the Anthropocene, 2020, 8(1). DOI:10.1525/elementa.2020.064 .
|
44 |
ZHOU P, LI D M, ZHAO L, et al. Radioactive status of seawater and its assessment in the northeast South China Sea and the Luzon Strait and its adjacent areas from 2011 to 2014[J]. Marine Pollution Bulletin, 2018, 131: 163-173.
|
45 |
DENG Fangfang, LIN Wuhui, YU Tao, et al. 90Sr analysis method in the marine sediments[J]. Journal of Nuclear and Radiochemistry, 2015, 37(4): 231-237.
|
|
邓芳芳, 林武辉, 于涛, 等. 海洋沉积物中90Sr的分析方法[J]. 核化学与放射化学, 2015, 37(4): 231-237.
|
46 |
LIN Wuhui, HE Jianhua, YU Kefu, et al. 90Sr in marine environment: comparison of seas surrounding Japan and the South China Sea[J]. Haiyang Xuebao, 2020, 42(10): 47-58.
|
|
林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比[J]. 海洋学报, 2020, 42(10): 47-58.
|
47 |
WATERS C N, SYVITSKI J P M, GAŁUSZKA A, et al. Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.
|
48 |
WU J W, DAI M H, XU Y, et al. Sources and accumulation of Plutonium in a large western Pacific marginal sea: the South China Sea[J]. Science of the Total Environment, 2018, 610/611: 200-211.
|
49 |
SANCHEZ-CABEZA J A, RICO-ESENARO S D, CORCHO-ALVARADO J A, et al. Plutonium in coral archives: a good primary marker for an Anthropocene type section[J]. The Science of the Total Environment, 2021, 771. DOI:10.1016/j.scitotenv.2021.145077 .
|
50 |
GUAN Y J, MAI J Y, WANG H J, et al. Plutonium isotopes and radionuclides in corals around Weizhou land in Beibu Gulf, China[J]. Applied Radiation and Isotopes, 2021, 176. DOI:10.1016/j.apradiso.2021.109873 .
|
51 |
SHAO Yang, YANG Guosheng, ZHANG Jilong, et al. Progress and application on the analysis of anthropogenic radionuclide 236U[J]. Acta Chimica Sinica, 2021, 79(6): 716-728.
|
|
邵阳, 杨国胜, 张继龙, 等. 人工放射性核素236U的分析方法进展及其应用[J]. 化学学报, 2021, 79(6): 716-728.
|
52 |
SAKAGUCHI A, KADOKURA A, STEIER P, et al. Uranium-236 as a new oceanic tracer: a first depth profile in the Japan Sea and comparison with caesium-137[J]. Earth and Planetary Science Letters, 2012, 333/334: 165-170.
|
53 |
WINKLER S R, STEIER P, CARILLI J. Bomb fall-out 236U as a global oceanic tracer using an annually resolved coral core[J]. Earth and Planetary Science Letters, 2012, 359/360(1): 124-130.
|
54 |
LIN W H, YU K F, WANG Y H, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019, 142: 43-53.
|
55 |
ALVES E Q, MACARIO K, ASCOUGH P, et al. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects[J]. Reviews of Geophysics, 2018, 56(1): 278-305.
|
56 |
WU Y, FALLON S J. Prebomb to postbomb 14C history from the west side of Palawan Island: insights into oceanographic changes in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2020, 125(6). DOI:10.1029/2019JC015979 .
|
57 |
DING Ling, QI Yuanzhi, SHAN Sen, et al. Radiocarbon in dissolved organic and inorganic carbon of the South China Sea [J]. Journal of Geophysical Research: Oceans, 2020, 125(4). DOI:10.1029/2020JC016073 .
|
58 |
YANG W F, HUANG Y P, CHEN M, et al. Unusually high 210Po activities in the surface water of the Zhubi Coral Reef Lagoon in the South China Sea[J]. The Science of the Total Environment, 2011, 409(21): 4 612-4 617.
|
59 |
LIN W H, MA H, CHEN L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater[J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.
|
60 |
LIN W H, FENG Y, YU K F, et al. Comparative study of radioactivity levels and radionuclide fingerprints in typical marine ecosystems of coral reefs, mangroves, and hydrothermal vents[J]. Marine Pollution Bulletin, 2020, 152. DOI:10.1016/j.marpolbul.2020.110913 .
|
61 |
BROWN J E, ALFONSO B, AVILA R, et al. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals[J]. Journal of Environmental Radioactivity, 2016, 153: 141-148.
|
62 |
AARKROG A, BAXTER M S, BETTENCOURT A O, et al. A comparison of doses from 137Cs and 210Po in marine food: a major international study[J]. Journal of Environmental Radioactivity, 1997, 34(1): 69-90.
|
63 |
IAEA. Sediment distribution coefficients and concentration factors for Biota in the marine environment, technical report series No. 422[R]. Vienna: IAEA, 2004.
|