1 |
NASEM.A Vision for NSF Earth sciences 2020-2030[M]. Washington, D. C.: National Academies Press, 2020.
|
2 |
NRC. Landscapes on the edge: new horizons for research on Earth’s surface [M]. Washington, D.C.:National Academies Press, 2010.
|
3 |
RIEBE C S, HAHM W J, BRANTLEY S L. Controls on deep critical zone architecture: a historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156.
|
4 |
AN Peijun, ZHANG Zhiqiang, WANG Liwei. Review of Earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1 228-1 234.
|
|
安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1 228-1 234.
|
5 |
HSU Houtse. Geodetic research and detection of interaction between various Earth layers [J]. Journal of Geodesy and Geodynamics, 2002, 22(4): 1-5.
|
|
许厚泽. 地球各圈层相互作用的大地测量研究和检测[J].大地测量与地球动力学, 2002, 22(4): 1-5.
|
6 |
BURBANK D W, ANDERSON R S. Tectonic geomorphology [M]. Chichester, UK: John Wiley & Sons, 2009.
|
7 |
ROE G, WHIPPLE K, FLETCHER J. Feedbacks among climate, erosion, and tectonics in a critical wedge orogen[J]. American Journal of Science, 2008, 308: 815-842.
|
8 |
TOMKIN J H, ROE G H. Climate and tectonic controls on glaciated critical-taper orogens[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 385-397.
|
9 |
WHIPPLE K X, MEADE B J. Orogen response to changes in climatic and tectonic forcing[J]. Earth and Planetary Science Letters, 2006, 243(1/2): 218-228.
|
10 |
ROE G H, STOLAR D B, WILLETT S D. Response of a steady-state critical wedge orogen to changes in climate and tectonic forcing [J]. Special Papers-Geological Society of America, 2006, 398. DOI:10.1130/2005.2398(13 ).
|
11 |
HILLEY G E, STRECKER M R, RAMOS V A. Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold-and-thrust belt, Argentina[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1). DOI:10.1029/2002JB002282 .
|
12 |
DAHLEN F. Critical taper model of fold-and-thrust belts and accretionary wedges[J]. Annual Review of Earth and Planetary Sciences, 1990, 18: 55-99.
|
13 |
DAHLEN F, SUPPE J, Mechanics CLARK S., growth, and erosion of mountain belts [J]. Processes in Continental Lithospheric Deformation, 1988, 218: 161-178.
|
14 |
WOLF S G, HUISMANS R S, BRAUN J, et al. Topography of mountain belts controlled by rheology and surface processes[J]. Nature, 2022, 606(7 914): 516-521.
|
15 |
CRUZ L, MALINSKI J, WILSON A, et al. Erosional control of the kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B9). DOI:10.1029/2010JB007472 .
|
16 |
STOLAR D B, WILLETT S D, ROE G H. Climatic and tectonic forcing of a critical orogen[M]// Tectonics, climate, and landscape evolution. Geological Society of America, 2006.
|
17 |
SIMPSON G. Role of river incision in enhancing deformation[J]. Geology, 2004, 32(4): 341-344.
|
18 |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Crustal channel flows: 1. numerical models with applications to the tectonics of the Himalayan‐Tibetan orogen [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B6). DOI:10.1029/2003JB002809 .
|
19 |
KOONS P O. Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya[J]. American Journal of Science, 2002, 302(9): 749-773.
|
20 |
BEAUMONT C, JAMIESON R A, NGUYEN M, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation [J]. Nature, 2001, 414(6 865): 738-742.
|
21 |
WILLETT S D. Orogeny and orography: the effects of erosion on the structure of mountain belts[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B12): 28 957-28 981.
|
22 |
AVOUAC J P, BUROV E B. Erosion as a driving mechanism of intracontinental mountain growth[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B8): 17 747-17 769.
|
23 |
YE Y H, WU L, COWGILL E, et al. Long-lagged (∼19 Myr) response of accelerated river incision to rock uplift on the northern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2022, 591. DOI:10.1016/j.epsl.2022.117608 .
|
24 |
CLIFT P D, PANDEY D K, KULHANEK D K. Climate-tectonic interactions in the eastern Arabian Sea[J]. Geological Magazine, 2020, 157(6): 829-833.
|
25 |
TU J Y, JI J Q, SUN D X, et al. Thermal structure, rock exhumation, and glacial erosion of the Namche Barwa Peak, constraints from thermochronological data[J]. Journal of Asian Earth Sciences, 2015, 105: 223-233.
|
26 |
GONG J F, JI J Q, ZHOU J, et al. Late Miocene thermal evolution of the eastern Himalayan syntaxis as constrained by Biotite 40Ar/39Ar thermochronology[J]. The Journal of Geology, 2015, 123(4): 369-384.
|
27 |
ZEITLER P K, MELTZER A S, BROWN L, et al. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet [M]// Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau. Geological Society of America Special Papers, 2014: 23-58.
|
28 |
STEER P, SIMOES M, CATTIN R, et al. Erosion influences the seismicity of active thrust faults [J]. Nature Communications, 2014, 5(1): 1-7.
|
29 |
NORTON K, SCHLUNEGGER F. Migrating deformation in the Central Andes from enhanced orographic rainfall [J]. Nature Communications, 2011, 2(1): 1-7.
|
30 |
BERGER A L, GULICK S P, SPOTILA J A, et al. Quaternary tectonic response to intensified glacial erosion in an orogenic wedge [J]. Nature Geoscience, 2008, 1(11): 793-799.
|
31 |
WILLETT S D, SCHLUNEGGER F, PICOTTI V. Messinian climate change and erosional destruction of the central European Alps[J]. Geology, 2006, 34(8): 613-616.
|
32 |
GRUJIC D, COUTAND I, BOOKHAGEN B, et al. Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas[J]. Geology, 2006, 34: 801-804.
|
33 |
REINERS P W, EHLERS T A, MITCHELL S G, et al. Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades [J]. Nature, 2003, 426(6 967): 645-647.
|
34 |
ZEITLER P K, KOONS P O, BISHOP M P, et al. Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion[J]. Tectonics, 2001, 20(5): 712-728.
|
35 |
PEIZHEN Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates [J]. Nature, 2001, 410(6 831): 891-897.
|
36 |
RAYMO M E, RUDDIMAN W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359(6 391): 117-122.
|
37 |
MOLNAR P, ENGLAND P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?[J]. Nature, 1990, 346(6 279): 29-34.
|
38 |
WHIPPLE K X. Can erosion drive tectonics?[J]. Science, 2014, 346(6 212): 918-919.
|
39 |
WHIPPLE K X. The influence of climate on the tectonic evolution of mountain belts [J]. Nature Geoscience, 2009, 2(2): 97-104.
|
40 |
MOLNAR P. The state of interactions among tectonics, erosion, and climate: a polemic[J]. GSA Today, 2009, 19(7): 44-45.
|
41 |
MOLNAR P. Nature, nurture and landscape [J]. Nature, 2003, 426(6 967): 612-613.
|
42 |
PINTER N, BRANDON M T. How erosion builds mountains[J]. Scientific American, 1997, 276(4): 74-79.
|
43 |
DING Yongjian, ZHANG Shiqiang, HAN Tianding, et al. Opportunities and challenges of studies across land surface processes to land surface system sciences[J]. Advances in Earth Science, 2014, 29(4): 443-455.
|
|
丁永建, 张世强, 韩添丁, 等. 由地表过程向地表系统科学研究跨越的机遇与挑战[J]. 地球科学进展, 2014, 29(4): 443-455.
|
44 |
WANG Pinxian. Interactions between Earth’s deep and surface[J]. Advances in Earth Science, 2009, 24(12): 1 331-1 338.
|
|
汪品先. 地球深部与表层的相互作用[J]. 地球科学进展, 2009, 24(12): 1 331-1 338.
|
45 |
DAHLEN F A, SUPPE J, DAVIS D. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 10 087-10 101.
|
46 |
DAVIS D, SUPPE J, DAHLEN F. Mechanics of fold-and-thrust belts and accretionary wedges [J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B2): 1 153-1 172.
|
47 |
Honghua LÜ, LI Youli. Development of tectonic geomorphology study promoted by new methods in China: a viewpoint from reviewing the Tian Shan researches[J]. Advances in Earth Science, 2020, 35(6): 594-606.
|
|
吕红华, 李有利. 不断融入新元素的我国构造地貌学研究: 以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
|
48 |
LIU Jing, ZHANG Jinyu, GE Yukui, et al. Tectonic geomorphology: an interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin, 2018, 63(30): 3 070-3 088.
|
|
刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造—气候—地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63(30): 3 070-3 088.
|
49 |
CHAMPAGNAC J D, VALLA P G, HERMAN F. Late-Cenozoic relief evolution under evolving climate: a review[J]. Tectonophysics, 2014, 614: 44-65.
|
50 |
CHAMPAGNAC J D, MOLNAR P, SUE C, et al. Tectonics, climate, and mountain topography[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B2). DOI:10.1029/2011JB008348 .
|
51 |
ZHANG Xinyu, JI Jianqing, HAN Baofu, et al. Research advances in erosion, rheology of the lower crust and orogeny[J]. Advances in Earth Science, 2006, 21(5): 521-531.
|
|
张新钰, 季建清, 韩宝福, 等. 地表剥蚀、下地壳流变与造山作用研究进展[J]. 地球科学进展, 2006, 21(5): 521-531.
|
52 |
WILLETT S D. Tectonics, climate, and landscape evolution[M]. Boulder, CO:Geological Society of America,2006.
|
53 |
ROE G H. Orographic precipitation[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 645-671.
|
54 |
ROE G H, MONTGOMERY D R, HALLET B. Effects of orographic precipitation variations on the concavity of steady-state river profiles[J]. Geology, 2002, 30(2): 143-146.
|
55 |
WRATT D S, REVELL M J, SINCLAIR M R, et al. Relationships between air mass properties and mesoscale rainfall in New Zealand’s Southern Alps[J]. Atmospheric Research, 2000, 52(4): 261-282.
|
56 |
BOOKHAGEN B, BURBANK D W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya[J]. Geophysical Research Letters, 2006, 33(8).DOI: 10.1029/2006GL026037 .
|
57 |
BURBANK D, BLYTHE A, PUTKONEN J, et al. Decoupling of erosion and precipitation in the Himalayas [J]. Nature, 2003, 426(6 967): 652-655.
|
58 |
BERGER A L, SPOTILA J A. Denudation and deformation in a glaciated orogenic wedge: the St. Elias orogen, Alaska[J]. Geology, 2008, 36(7): 523-526.
|
59 |
KUTZBACH J E, GUETTER P J, RUDDIMAN W F, et al. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18 393-18 407.
|
60 |
FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2 [J]. Science Advances, 2019, 5(10). DOI: 10.1126/sciadv.aax1697 .
|
61 |
TADA R, ZHENG H B, CLIFT P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau[J]. Progress in Earth and Planetary Science, 2016, 3(4). DOI:10.1186/s40645-016-0080-y .
|
62 |
DADSON S J, HOVIUS N, CHEN H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen [J]. Nature, 2003, 426(6 967): 648-651.
|
63 |
KEEFER D K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 1984, 95(4): 406-421.
|
64 |
HILTON R G, WEST A J. Mountains, erosion and the carbon cycle [J]. Nature Reviews Earth & Environment, 2020, 1(6): 284-299.
|
65 |
WAN S M, CLIFT P D, LI A C, et al. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma[J]. Geophysical Research Letters, 2012, 39(15). DOI:10.1029/2012GL052377 .
|
66 |
WEST A J, GALY A, BICKLE M. Tectonic and climatic controls on silicate weathering[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 211-228.
|
67 |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
|
68 |
CHAMBERLIN T C. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis[J]. The Journal of Geology, 1899, 7(6): 545-584.
|
69 |
BERHE A A, HARTE J, HARDEN J W, et al. The significance of the erosion-induced terrestrial carbon sink[J]. BioScience, 2007, 57(4): 337-346.
|
70 |
STALLARD R F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial[J]. Global Biogeochemical Cycles, 1998, 12(2): 231-257.
|
71 |
LUDWIG W, PROBST J L, KEMPE S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1): 23-41.
|
72 |
MEYBECK M. Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282(4): 401-450.
|
73 |
SOULET G, HILTON R G, GARNETT M H, et al. Technical note: in situ measurement of flux and isotopic composition of CO2 released during oxidative weathering of sedimentary rocks[J]. Biogeosciences, 2018, 15(13): 4 087-4 102.
|
74 |
BOUCHEZ J, BEYSSAC O, GALY V, et al. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2 [J]. Geology, 2010, 38(3): 255-258.
|
75 |
PETSCH S T, BERNER R A, EGLINTON T I. A field study of the chemical weathering of ancient sedimentary organic matter[J]. Organic Geochemistry, 2000, 31(5): 475-487.
|
76 |
TORRES M A, WEST A J, LI G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales [J]. Nature, 2014, 507(7 492): 346-349.
|
77 |
CALMELS D, GAILLARDET J, BRENOT A, et al. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River Basin: climatic perspectives[J]. Geology, 2007, 35(11): 1 003-1 006.
|
78 |
WANG Fengyi, JI Jianqing, YU Xiangjiang, et al. Quantitative research on temporal and spatial coupling of precipitation potential energy and erosion intensity in Himalayas[J]. Chinese Journal of Geology, 2017(1): 1-14.
|
|
王峰伊, 季建清, 于祥江, 等. 喜马拉雅降水势能与剥蚀强度时空对应的定量研究[J]. 地质科学, 2017(1): 1-14.
|
79 |
YU X J, JI J Q, WANG F Y, et al. Intensified climate-driven exhumation along the South Himalayan Front since one million years ago[J]. Journal of Asian Earth Sciences, 2017, 136: 50-57.
|
80 |
WHIPPLE K X, TUCKER G E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17 661-17 674.
|
81 |
ADAMS B A, WHIPPLE K X, FORTE A M, et al. Climate controls on erosion in tectonically active landscapes[J]. Science Advances, 2020, 6(42). DOI: 10.1126/sciadv.aaz3166 .
|
82 |
HERMAN F, de DONCKER F, DELANEY I, et al. The impact of glaciers on mountain erosion [J]. Nature Reviews Earth & Environment, 2021, 2(6): 422-435.
|
83 |
COOK S J, SWIFT D A, KIRKBRIDE M P, et al. The empirical basis for modelling glacial erosion rates[J]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-020-14583-8 .
|
84 |
ZEITLER P K, MELTZER A S, KOONS P O, et al. Erosion, Himalayan geodynamics, and the geomorphology of metamorphism [J]. Gsa Today, 2001, 11(1): 4-9.
|
85 |
WHITEHOUSE P L, GOMEZ N, KING M A, et al. Solid Earth change and the evolution of the Antarctic Ice Sheet [J]. Nature communications, 2019, 10(1). DOI:10.1038/s41467-018-08068-y .
|
86 |
DOSER D I, RODRIGUEZ H. A seismotectonic study of the southeastern Alaska region[J]. Tectonophysics, 2011, 497(1/2/3/4): 105-113.
|
87 |
BOLLINGER L, NICOLAS M, MARIN S. Hydrological triggering of the seismicity around a salt diapir in castellane, France[J]. Earth and Planetary Science Letters, 2010, 290(1/2): 20-29.
|
88 |
BETTINELLI P, AVOUAC J P, FLOUZAT M, et al. Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 332-344.
|
89 |
HAMPEL A, HETZEL R, DENSMORE A L. Postglacial slip-rate increase on the Teton normal fault, northern Basin and Range Province, caused by melting of the Yellowstone ice cap and deglaciation of the Teton Range?[J]. Geology, 2007, 35(12): 1 107-1 110.
|
90 |
WHIPPLE K X, MEADE B J. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(F1). DOI: 10.1029/2003JF000019 .
|
91 |
MONTGOMERY D R, DIETRICH W E. Channel initiation and the problem of landscape scale [J]. Science, 1992, 255(5 046): 826-830.
|
92 |
WHIPPLE K X, MEADE B J. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(F1). DOI:10.1029/2003JF000019 .
|
93 |
HUMPHREY N F, RAYMOND C F. Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982-83[J]. Journal of Glaciology, 1994, 40(136): 539-552.
|
94 |
HIRSCHMILLER J, GRUJIC D, BOOKHAGEN B, et al. What controls the growth of the Himalayan foreland fold-and-thrust belt? [J]. Geology, 2014, 42(3): 247-250.
|
95 |
CULLING W E H. Soil creep and the development of hillside slopes[J]. The Journal of Geology, 1963, 71(2): 127-161.
|
96 |
HOWARD A D, KERBY G. Channel changes in badlands[J]. Geological Society of America Bulletin, 1983, 94(6): 739-752.
|
97 |
KOONS P O. Two-sided orogen: collision and erosion from the sandbox to the southern Alps, new Zealand[J]. Geology, 1990, 18(8): 679-682.
|
98 |
JAMIESON R A, BEAUMONT C, NGUYEN M, et al. Interaction of metamorphism, deformation and exhumation in large convergent orogens [J]. Journal of Metamorphic Geology, 2002, 20(1): 9-24.
|
99 |
NELSON K D, ZHAO W J, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results[J]. Science, 1996, 274(5 293): 1 684-1 688.
|
100 |
SIMPSON G, SCHLUNEGGER F. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B6).DOI: 10.1029/2002JB002162 .
|
101 |
KOONS P O, ZEITLER P K, HALLET B. Tectonic aneurysms and mountain building [M]// SHRODER J F. Treatise on geomorphology. San Diego: Academic Press, 2013: 318-349.
|
102 |
FINNEGAN N, HALLET B, MONTGOMERY D, et al. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet[J]. Geological Society of America Bulletin, 2008, 120: 142-155.
|
103 |
SMALL E E, ANDERSON R S. Pleistocene relief production in Laramide Mountain ranges, western United States[J]. Geology, 1998, 26(2): 123-126.
|
104 |
GILCHRIST A R, SUMMERFIELD M A, COCKBURN H A P. Landscape dissection, isostatic uplift, and the morphologic development of orogens[J]. Geology, 1994, 22(11): 963-966.
|
105 |
MORESI L, DUFOUR F, MÜHLHAUS H B. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[J]. Journal of Computational Physics, 2003, 184(2): 476-497.
|
106 |
THIEULOT C. FANTOM: two-and three-dimensional numerical modelling of creeping flows for the solution of geological problems[J]. Physics of the Earth and Planetary Interiors, 2011, 188(1/2): 47-68.
|
107 |
YUAN X P, BRAUN J, GUERIT L, et al. A new efficient method to solve the stream power law model taking into account sediment deposition[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(6): 1 346-1 365.
|
108 |
ELLIS S, FULLSACK P, BEAUMONT C. Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens[J]. Geophysical Journal International, 1995, 120(1): 24-44.
|
109 |
SIMOES M, BEYSSAC O, CHEN Y G. Late Cenozoic metamorphism and mountain building in Taiwan: a review[J]. Journal of Asian Earth Sciences, 2012, 46: 92-119.
|
110 |
HUNTINGTON K W, BLYTHE A E, HODGES K V. Climate change and Late Pliocene acceleration of erosion in the Himalaya[J]. Earth and Planetary Science Letters, 2006, 252(1/2): 107-118.
|
111 |
HERMAN F, SEWARD D, VALLA P G, et al. Worldwide acceleration of mountain erosion under a cooling climate [J]. Nature, 2013, 504(7 480): 423-426.
|
112 |
WOLFE J A. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere: data from fossil plants make it possible to reconstruct Tertiary climatic changes, which may be correlated with changes in the inclination of the Earth’s rotational axis [J]. American Scientist, 1978, 66(6): 694-703.
|
113 |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
|
114 |
YAN L L, ZHANG K J. Is exhumation of UHP terranes limited to low latitudes? [J]. Journal of Geodynamics, 2019, 130: 41-56.
|
115 |
YU Xiangjiang, JI Jianqing, Gong Junfeng, et al. Evidences of rapid erosion driven by climate in the Yarlung Zangbo (Tsangpo) Great Canyon, the eastern Himalayan syntaxis[J]. Chinese Science Bulletin, 2011, 56(10): 765-773.
|
|
于翔江, 季建清, 龚俊峰, 等. 雅鲁藏布大峡谷气候因素引起地壳剥蚀冷却的证据[J]. 科学通报, 2011, 56(10): 765-773.
|
116 |
WOBUS C, HODGES K, WHIPPLE K. Has focused denudation sustained active thrusting at the Himalayan topographic front[J]. Geology, 2003, 31: 861-864.
|
117 |
FINLAYSON D P, MONTGOMERY D R, HALLET B. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas[J]. Geology, 2002, 30(3): 219-222.
|
118 |
SNYDER N P, WHIPPLE K X, TUCKER G E, et al. Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California[J]. Geological Society of America Bulletin, 2000, 112(8): 1 250-1 263.
|
119 |
HODGES K V, HURTADO J M, WHIPPLE K X. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics[J]. Tectonics, 2001, 20(6): 799-809.
|
120 |
BERGER A L, SPOTILA J A, CHAPMAN J B, et al. Architecture, kinematics, and exhumation of a convergent orogenic wedge: a thermochronological investigation of tectonic-climatic interactions within the central St. Elias orogen, Alaska[J]. Earth and Planetary Science Letters, 2008, 270(1/2): 13-24.
|
121 |
CLARK P U, ARCHER D, POLLARD D, et al. The Middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 [J]. Quaternary Science Reviews, 2006, 25(23/24): 3 150-3 184.
|
122 |
CEDERBOM C E, SINCLAIR H D, SCHLUNEGGER F, et al. Climate-induced rebound and exhumation of the European Alps[J]. Geology, 2004, 32(8): 709-712.
|
123 |
BECKER A. The Jura Mountains—an active foreland fold-and-thrust belt? [J]. Tectonophysics, 2000, 321(4): 381-406.
|
124 |
KUHLEMANN J. Post-collisional sediment budget of circum-Alpine basins (Central Europe) [J]. Memorie di Scienze Geologicle Padova, 2000, 52(1): 1-91.
|
125 |
BUTLER R W H. Tectonic evolution of the Himalayan syntaxes: the view from Nanga Parbat[J]. Geological Society, London, Special Publications, 2019, 483(1): 215-254.
|
126 |
KING G E, HERMAN F, GURALNIK B. Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry [J]. Science, 2016, 353(6 301): 800-804.
|
127 |
WANG P, SCHERLER D, JING L Z, et al. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in southern Tibet[J]. Science, 2014, 346(6 212): 978-981.
|
128 |
GODARD V, BOURLES D L, SPINABELLA F, et al. Dominance of tectonics over climate in Himalayan denudation[J]. Geology, 2014, 42(3): 243-246.
|
129 |
BENDICK R, EHLERS T A. Extreme localized exhumation at syntaxes initiated by subduction geometry[J]. Geophysical Research Letters, 2014, 41(16): 5 861-5 867.
|
130 |
ENKELMANN E, ZEITLER P K, GARVER J I, et al. The thermochronological record of tectonic and surface process interaction at the Yakutat-North American collision zone in southeast Alaska[J]. American Journal of Science, 2010, 310(4): 231-260.
|
131 |
HACK J T. Dynamic equilibrium and landscape evolution [J]. Theories of Landform Development, 1975, 1: 87-102.
|
132 |
WILLETT S D, BRANDON M T. On steady states in mountain belts[J]. Geology, 2002, 30(2): 175-178.
|
133 |
LOWE J J, WALKER M. Reconstructing quaternary environments [M]. Abingdon, Oxon:Routledge,2015.
|
134 |
CHEN Jianjun, JI Jianqing, YU Shaoli. Quantitative analysis of geomorphologic response time-scale of the Yarlung Zangbo great canyon[J]. Quaternary Sciences, 2008, 28(2): 264-272.
|
|
陈建军, 季建清, 余绍立. 雅鲁藏布江大峡谷地貌响应时间域的定量计算[J]. 第四纪研究, 2008, 28(2): 264-272.
|
135 |
ZENG Li, GAO Yanhong, JIANG Yingsha, et al. Scale effects of terrain factors on precipitation in East China[J]. Advances in Earth Science, 2022, 37(5): 535-548.
|
|
曾礼, 高艳红, 蒋盈沙, 等. 地形因子对华东地区降水影响的尺度效应研究[J]. 地球科学进展, 2022, 37(5): 535-548.
|
136 |
BARRY R G. Mountain weather and climate [M]. New York:Cambridge University Press, 2008.
|
137 |
MONTGOMERY D R, BALCO G, WILLETT S D. Climate, tectonics, and the morphology of the Andes[J]. Geology, 2001, 29(7): 579-582.
|
138 |
TURCOTTE D, SCHUBERT G. Geodynamics [J]. New York:Cambridge University Press,2014.
|
139 |
PATRIAT P, ACHACHE J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates [J]. Nature, 1984, 311(5 987): 615-621.
|
140 |
WHITTAKER A C. How do landscapes record tectonics and climate?[J]. Lithosphere, 2012, 4(2): 160-164.
|
141 |
HERGARTEN S. Modeling glacial and fluvial landform evolution at large scales using a stream-power approach [J]. Earth Surface Dynamics, 2021, 9(4): 937-952.
|
142 |
DEAL E, PRASICEK G. The sliding ice incision model: a new approach to understanding glacial landscape evolution[J]. Geophysical Research Letters, 2021, 48(1).DOI: 10.1029/2020GL089263 .
|
143 |
BARNHART K R, GLADE R C, SHOBE C M, et al. Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution [J]. Geoscientific Model Development, 2019, 12(4): 1 267-1 297.
|
144 |
TOMKIN J H. Coupling glacial erosion and tectonics at active orogens: a numerical modeling study[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI: 10.1029/2005JF000332 .
|
145 |
WEI Mengmei, FU Suhua, LIU Baoyuan. Quantitative research of water erosion on the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2021, 36(7): 740-752.
|
|
魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
|
146 |
NIU L H, GUO Y T, LI Y, et al. Degradation of river ecological quality in Tibet Plateau with overgrazing: a quantitative assessment using biotic integrity index improved by random forest[J]. Ecological Indicators, 2021, 120. DOI: 10.1016/j.ecolind.2020.106948 .
|
147 |
WANG Lei, LI Xiuping, ZHOU Jing, et al. Hydrological modelling over the Tibetan Plateau: current status and perspective[J]. Advances in Earth Science, 2014, 29(6): 674-682.
|
|
王磊, 李秀萍, 周璟, 等. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
|
148 |
HUNTINGTON K, KLEPEIS K. Challenges and opportunities for research in tectonics: understanding deformation and the processes that link Earth systems, from geologic time to human time[Z]. A community vision document submitted to the US National Science Foundation, 2018.
|
149 |
BROOKS B A, BEVIS M, WHIPPLE K, et al. Orogenic-wedge deformation and potential for great earthquakes in the central Andean backarc [J]. Nature Geoscience, 2011, 4(6): 380-383.
|