地球科学进展 ›› 2023, Vol. 38 ›› Issue (3): 270 -285. doi: 10.11867/j.issn.1001-8166.2022.092

综述与评述 上一篇    下一篇

气候—构造—剥蚀相互作用研究进展与展望
鲁学云 1( ), 季建清 1, 王丽宁 2 , 3, 钟大赉 4   
  1. 1.北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871
    2.中国 石油勘探开发研究院,北京 100083
    3.中国石油盆地构造与油气成藏重点实验室,北京 100083
    4.中国科学院地质与地球物理研究所,北京 100029
  • 收稿日期:2022-07-22 修回日期:2022-11-10 出版日期:2023-03-10
  • 基金资助:
    国家自然科学基金项目“喜马拉雅中段与南迦巴瓦构造结变质变形剖面的对比研究”(40472100);“东喜马拉雅构造结剥蚀引起的变形:造山楔和热造山“(41472175)

Research Advances and Prospects of Climate-Tectonic-Erosion Interactions

Xueyun LU 1( ), Jianqing JI 1, Lining WANG 2 , 3, Dalai ZHONG 4   

  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
    2.Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
    3.Key Laboratory of Basin Structure & Hydrocarbon Accumulation, CNPC, Beijing 100083, China
    4.Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2022-07-22 Revised:2022-11-10 Online:2023-03-10 Published:2023-03-21
  • About author:LU Xueyun (1994-), male, Midu County, Yunnan Province, Ph. D student. Research areas include tectonic geomorphology, geosphere interactions and related numerical geodynamic modelling. E-mail: xueyunlu@pku.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “A comparative study on the metamorphic deformation profiles of the Middle Himalayas and the Namche Barwa syntaxis”(40472100);“Deformation induced by erosion in eastern Himalayan syntaxis: the orogenic wedge and hot orogeny”(41472175)

气候—构造—剥蚀相互作用是地表层圈相互作用过程的重要方面,近年来相关的研究已逐渐成为地球科学界的热点。主要从数理分析、数值模拟和野外实证3个方面对近30年来气候—构造—剥蚀相互作用的研究进行了回顾和总结,认为以往因果效应的研究思路在一定程度上限制了地表层圈相互作用研究的发展,造山带更适合作为一个在内、外动力能量驱动下不断演化的开放系统来进行研究。总是趋向于平衡状态演化的造山系统会响应内、外动力条件的变化,同时也会反作用于内、外动力因素,但内、外动力因素之间保持相对独立。造山演化的系统观跳出了以往因果效应的思维局限,从而可以很好地解决气候—构造—剥蚀相互作用研究中存在的争议问题。

Climate-tectonic-erosion interactions have recently become a research hotspot in Earth science as a significant aspect of geosphere interactions near the Earth’s surface. Here, studies related to climate-tectonic-erosion interactions over the past 30 years are reviewed mainly from three fields: analytical treatment, numerical modelling, and field verification, and it is suggested that advancement of near-surface geosphere interaction research has been limited by the thought pattern of cause and effect. Orogenic belts are best viewed as evolving open systems driven by energy from endogenous and exogenous forces. An orogenic system with a tendency towards equilibrium will respond to perturbations in endogenous and exogenous forces and also exert impacts on relatively independent endogenous and exogenous factors. Beyond cause and effect, the system-oriented view of orogenic evolution can resolve controversial issues in the study of climate-tectonic-erosion interactions.

中图分类号: 

图1 气候—构造—剥蚀相互作用
Fig. 1 Interactions among climatetectonics and erosion
表1 河流作用主导的稳态临界楔中气候和构造的相互关系(据参考文献[ 10 ]修改)
Table 1 Interrelationships between climate and tectonics in a fluvial-dominated steady-state critical wedgemodified after reference 10 ])
图2 河流作用主导的造山楔对构造扰动[(a~c)]和气候扰动[(d~f)]的响应 9
左边一列代表了造山楔地形高度(a)、剥蚀通量(b)和岩石抬升速率(c)对增生流在 t=0 Ma时增加2倍(实线)或减少2倍(虚线)后的响应;右边一列代表了造山楔地形高度(d)、剥蚀通量(e)和岩石抬升速率(f)对剥蚀效率在 t=0 Ma时增加2倍(虚线)或减少2倍(实线)后的响应,所有变量已被标准化到初始稳定值(用下标 i表示)
Fig. 2 Response of a fluvial-dominated orogenic wedge to tectonic [(a~c)] and climatic [(d~f)] perturbations 9
Left column illustrates orogen response to either a factor of two increase (solid lines) or decrease (dashed lines) in accretionary flux at time t=0 Ma in terms of topographic relief (a), total erosional efflux(b), and rock uplift rate (c) on the pro-wedge side. Right column illustrates orogen response to either a factor of two increase (dashed lines) or decrease (solid lines) in erosional efficiency at time t=0 Ma in terms of topographic relief (d), total erosional efflux (e), and rock uplift rate (f) on the pro-wedge side. All variables are normalized by their initial steady-state value, denoted by the subscript i
表2 冰川作用主导的稳态临界楔中气候和构造的相互关系(据参考文献[ 8 ]修改)
Table 2 Interrelationships between climate and tectonics in a glacial-dominated steady-state critical wedgemodified after reference 8 ])
图3 剥蚀对山脉抬升的影响(据参考文献[ 22 ]修改)
(a)无剥蚀情况下山脉演化的数值模拟结果,下地壳物质在重力影响下侧向流动造成山脉坍塌;(b)施加一定量剥蚀的情况下山脉演化的数值模拟结果,下地壳物质向山根流动,形成稳定的山脉抬升
Fig. 3 Erosion impacts on mountain growthmodified after reference 22 ])
(a) Numerical modelling results of mountain evolution without erosion, the crustal root below the range is extruded laterally due to gravity, causing mountains to collapse; (b) Numerical modelling results of mountain evolution with a certain amount of erosion, the lower crustal material flows towards the crustal root, forming stable mountain growth
图4 非对称剥蚀对造山演化的影响(数值模拟)(据参考文献[ 21 ]修改)
(a)当湿气来自左侧时的数值模拟结果,彩色区域为模型域,抬升和剥露通过模型域上方扩展的拉格朗日示踪网格表示,且抬升和剥露集中于活动断层上方;(b)当湿气来自右侧时的数值模拟结果,强烈的抬升和剥露均集中于分水岭右侧
Fig. 4 Numerical modelling results showing the effects of asymmetry of erosional efficiency on orogenic evolutionmodified after reference 21 ])
(a) Numerical modelling results when moisture-laden winds arrive from the left. The colored arearepresents the model domain. Uplift and exhumation are indicated by the extension of the Lagrangian tracking mesh on the top of the model domain and they are focused over an active thrust fault. (b) Numerical modelling results when moisture-laden winds arrive from the right. Both uplift and exhumation are focused on the right side of the drainage divide
图5 剥蚀驱动喜马拉雅下地壳流(据参考文献[ 20 ]修改)
(a)垂直于喜马拉雅造山带的构造剖面,MBT:主边界逆冲带,FTB:褶皱逆冲带,MCT:主中央逆冲带,STD:藏南拆离系,LHS:小喜马拉雅变质带,GHS:大喜马拉雅变质带,青藏高原南部快速的剥蚀卸载可以使软弱的下地壳岩石(粉色部分)运动到高原边部;(b)由剥蚀和重力驱动的速度组分(数值模拟结果);(c)强烈变形的拉格朗日示踪网格显示岩石的变形模式(数值模拟结果)
Fig. 5 Erosionally driven channel flow in the Himalayamodified after reference 20 ])
(a) Schematic cross-section perpendicular to the Himalayan orogen. MBT: Main Boundary Thrust, FTB: Fold-Thrust Belt, MCT: Main Central Thrust, STD: South Tibetan Detachment, LHS: Lesser Himalayan Sequences, GHS: Greater Himalayan Sequences. Rapid erosion and removal of material at the southern margin of the Tibetan Plateau allows the movement of a channel of hot, weak ductile rock (pink regions) from beneath the plateau to its margins; (b) The component of rock velocity due to erosion and gravitational effects alone (numerical modelling results); (c) Greatly disrupted Lagrangian tracking mesh showing the deformation pattern resulting from channel flow (numerical modelling results)
图6 造山带作为内、外动力能量驱动下的复杂系统
Fig. 6 Orogenic belt as a complex system driven by energy from endogenic and exogenic forces
1 NASEM.A Vision for NSF Earth sciences 2020-2030[M]. Washington, D. C.: National Academies Press, 2020.
2 NRC. Landscapes on the edge: new horizons for research on Earth’s surface [M]. Washington, D.C.:National Academies Press, 2010.
3 RIEBE C S, HAHM W J, BRANTLEY S L. Controls on deep critical zone architecture: a historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156.
4 AN Peijun, ZHANG Zhiqiang, WANG Liwei. Review of Earth critical zone research[J]. Advances in Earth Science, 2016, 31(12): 1 228-1 234.
安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1 228-1 234.
5 HSU Houtse. Geodetic research and detection of interaction between various Earth layers [J]. Journal of Geodesy and Geodynamics, 2002, 22(4): 1-5.
许厚泽. 地球各圈层相互作用的大地测量研究和检测[J].大地测量与地球动力学, 2002, 22(4): 1-5.
6 BURBANK D W, ANDERSON R S. Tectonic geomorphology [M]. Chichester, UK: John Wiley & Sons, 2009.
7 ROE G, WHIPPLE K, FLETCHER J. Feedbacks among climate, erosion, and tectonics in a critical wedge orogen[J]. American Journal of Science, 2008, 308: 815-842.
8 TOMKIN J H, ROE G H. Climate and tectonic controls on glaciated critical-taper orogens[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 385-397.
9 WHIPPLE K X, MEADE B J. Orogen response to changes in climatic and tectonic forcing[J]. Earth and Planetary Science Letters, 2006, 243(1/2): 218-228.
10 ROE G H, STOLAR D B, WILLETT S D. Response of a steady-state critical wedge orogen to changes in climate and tectonic forcing [J]. Special Papers-Geological Society of America, 2006, 398. DOI:10.1130/2005.2398(13 ).
11 HILLEY G E, STRECKER M R, RAMOS V A. Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold-and-thrust belt, Argentina[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1). DOI:10.1029/2002JB002282 .
12 DAHLEN F. Critical taper model of fold-and-thrust belts and accretionary wedges[J]. Annual Review of Earth and Planetary Sciences, 1990, 18: 55-99.
13 DAHLEN F, SUPPE J, Mechanics CLARK S., growth, and erosion of mountain belts [J]. Processes in Continental Lithospheric Deformation, 1988, 218: 161-178.
14 WOLF S G, HUISMANS R S, BRAUN J, et al. Topography of mountain belts controlled by rheology and surface processes[J]. Nature, 2022, 606(7 914): 516-521.
15 CRUZ L, MALINSKI J, WILSON A, et al. Erosional control of the kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B9). DOI:10.1029/2010JB007472 .
16 STOLAR D B, WILLETT S D, ROE G H. Climatic and tectonic forcing of a critical orogen[M]// Tectonics, climate, and landscape evolution. Geological Society of America, 2006.
17 SIMPSON G. Role of river incision in enhancing deformation[J]. Geology, 2004, 32(4): 341-344.
18 BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Crustal channel flows: 1. numerical models with applications to the tectonics of the Himalayan‐Tibetan orogen [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B6). DOI:10.1029/2003JB002809 .
19 KOONS P O. Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya[J]. American Journal of Science, 2002, 302(9): 749-773.
20 BEAUMONT C, JAMIESON R A, NGUYEN M, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation [J]. Nature, 2001, 414(6 865): 738-742.
21 WILLETT S D. Orogeny and orography: the effects of erosion on the structure of mountain belts[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B12): 28 957-28 981.
22 AVOUAC J P, BUROV E B. Erosion as a driving mechanism of intracontinental mountain growth[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B8): 17 747-17 769.
23 YE Y H, WU L, COWGILL E, et al. Long-lagged (∼19 Myr) response of accelerated river incision to rock uplift on the northern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2022, 591. DOI:10.1016/j.epsl.2022.117608 .
24 CLIFT P D, PANDEY D K, KULHANEK D K. Climate-tectonic interactions in the eastern Arabian Sea[J]. Geological Magazine, 2020, 157(6): 829-833.
25 TU J Y, JI J Q, SUN D X, et al. Thermal structure, rock exhumation, and glacial erosion of the Namche Barwa Peak, constraints from thermochronological data[J]. Journal of Asian Earth Sciences, 2015, 105: 223-233.
26 GONG J F, JI J Q, ZHOU J, et al. Late Miocene thermal evolution of the eastern Himalayan syntaxis as constrained by Biotite 40Ar/39Ar thermochronology[J]. The Journal of Geology, 2015, 123(4): 369-384.
27 ZEITLER P K, MELTZER A S, BROWN L, et al. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet [M]// Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau. Geological Society of America Special Papers, 2014: 23-58.
28 STEER P, SIMOES M, CATTIN R, et al. Erosion influences the seismicity of active thrust faults [J]. Nature Communications, 2014, 5(1): 1-7.
29 NORTON K, SCHLUNEGGER F. Migrating deformation in the Central Andes from enhanced orographic rainfall [J]. Nature Communications, 2011, 2(1): 1-7.
30 BERGER A L, GULICK S P, SPOTILA J A, et al. Quaternary tectonic response to intensified glacial erosion in an orogenic wedge [J]. Nature Geoscience, 2008, 1(11): 793-799.
31 WILLETT S D, SCHLUNEGGER F, PICOTTI V. Messinian climate change and erosional destruction of the central European Alps[J]. Geology, 2006, 34(8): 613-616.
32 GRUJIC D, COUTAND I, BOOKHAGEN B, et al. Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas[J]. Geology, 2006, 34: 801-804.
33 REINERS P W, EHLERS T A, MITCHELL S G, et al. Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades [J]. Nature, 2003, 426(6 967): 645-647.
34 ZEITLER P K, KOONS P O, BISHOP M P, et al. Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion[J]. Tectonics, 2001, 20(5): 712-728.
35 PEIZHEN Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates [J]. Nature, 2001, 410(6 831): 891-897.
36 RAYMO M E, RUDDIMAN W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359(6 391): 117-122.
37 MOLNAR P, ENGLAND P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?[J]. Nature, 1990, 346(6 279): 29-34.
38 WHIPPLE K X. Can erosion drive tectonics?[J]. Science, 2014, 346(6 212): 918-919.
39 WHIPPLE K X. The influence of climate on the tectonic evolution of mountain belts [J]. Nature Geoscience, 2009, 2(2): 97-104.
40 MOLNAR P. The state of interactions among tectonics, erosion, and climate: a polemic[J]. GSA Today, 2009, 19(7): 44-45.
41 MOLNAR P. Nature, nurture and landscape [J]. Nature, 2003, 426(6 967): 612-613.
42 PINTER N, BRANDON M T. How erosion builds mountains[J]. Scientific American, 1997, 276(4): 74-79.
43 DING Yongjian, ZHANG Shiqiang, HAN Tianding, et al. Opportunities and challenges of studies across land surface processes to land surface system sciences[J]. Advances in Earth Science, 2014, 29(4): 443-455.
丁永建, 张世强, 韩添丁, 等. 由地表过程向地表系统科学研究跨越的机遇与挑战[J]. 地球科学进展, 2014, 29(4): 443-455.
44 WANG Pinxian. Interactions between Earth’s deep and surface[J]. Advances in Earth Science, 2009, 24(12): 1 331-1 338.
汪品先. 地球深部与表层的相互作用[J]. 地球科学进展, 2009, 24(12): 1 331-1 338.
45 DAHLEN F A, SUPPE J, DAVIS D. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 10 087-10 101.
46 DAVIS D, SUPPE J, DAHLEN F. Mechanics of fold-and-thrust belts and accretionary wedges [J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B2): 1 153-1 172.
47 Honghua LÜ, LI Youli. Development of tectonic geomorphology study promoted by new methods in China: a viewpoint from reviewing the Tian Shan researches[J]. Advances in Earth Science, 2020, 35(6): 594-606.
吕红华, 李有利. 不断融入新元素的我国构造地貌学研究: 以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
48 LIU Jing, ZHANG Jinyu, GE Yukui, et al. Tectonic geomorphology: an interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin, 2018, 63(30): 3 070-3 088.
刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造—气候—地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63(30): 3 070-3 088.
49 CHAMPAGNAC J D, VALLA P G, HERMAN F. Late-Cenozoic relief evolution under evolving climate: a review[J]. Tectonophysics, 2014, 614: 44-65.
50 CHAMPAGNAC J D, MOLNAR P, SUE C, et al. Tectonics, climate, and mountain topography[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B2). DOI:10.1029/2011JB008348 .
51 ZHANG Xinyu, JI Jianqing, HAN Baofu, et al. Research advances in erosion, rheology of the lower crust and orogeny[J]. Advances in Earth Science, 2006, 21(5): 521-531.
张新钰, 季建清, 韩宝福, 等. 地表剥蚀、下地壳流变与造山作用研究进展[J]. 地球科学进展, 2006, 21(5): 521-531.
52 WILLETT S D. Tectonics, climate, and landscape evolution[M]. Boulder, CO:Geological Society of America,2006.
53 ROE G H. Orographic precipitation[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 645-671.
54 ROE G H, MONTGOMERY D R, HALLET B. Effects of orographic precipitation variations on the concavity of steady-state river profiles[J]. Geology, 2002, 30(2): 143-146.
55 WRATT D S, REVELL M J, SINCLAIR M R, et al. Relationships between air mass properties and mesoscale rainfall in New Zealand’s Southern Alps[J]. Atmospheric Research, 2000, 52(4): 261-282.
56 BOOKHAGEN B, BURBANK D W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya[J]. Geophysical Research Letters, 2006, 33(8).DOI: 10.1029/2006GL026037 .
57 BURBANK D, BLYTHE A, PUTKONEN J, et al. Decoupling of erosion and precipitation in the Himalayas [J]. Nature, 2003, 426(6 967): 652-655.
58 BERGER A L, SPOTILA J A. Denudation and deformation in a glaciated orogenic wedge: the St. Elias orogen, Alaska[J]. Geology, 2008, 36(7): 523-526.
59 KUTZBACH J E, GUETTER P J, RUDDIMAN W F, et al. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18 393-18 407.
60 FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2 [J]. Science Advances, 2019, 5(10). DOI: 10.1126/sciadv.aax1697 .
61 TADA R, ZHENG H B, CLIFT P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau[J]. Progress in Earth and Planetary Science, 2016, 3(4). DOI:10.1186/s40645-016-0080-y .
62 DADSON S J, HOVIUS N, CHEN H, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen [J]. Nature, 2003, 426(6 967): 648-651.
63 KEEFER D K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 1984, 95(4): 406-421.
64 HILTON R G, WEST A J. Mountains, erosion and the carbon cycle [J]. Nature Reviews Earth & Environment, 2020, 1(6): 284-299.
65 WAN S M, CLIFT P D, LI A C, et al. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma[J]. Geophysical Research Letters, 2012, 39(15). DOI:10.1029/2012GL052377 .
66 WEST A J, GALY A, BICKLE M. Tectonic and climatic controls on silicate weathering[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 211-228.
67 GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
68 CHAMBERLIN T C. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis[J]. The Journal of Geology, 1899, 7(6): 545-584.
69 BERHE A A, HARTE J, HARDEN J W, et al. The significance of the erosion-induced terrestrial carbon sink[J]. BioScience, 2007, 57(4): 337-346.
70 STALLARD R F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial[J]. Global Biogeochemical Cycles, 1998, 12(2): 231-257.
71 LUDWIG W, PROBST J L, KEMPE S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1): 23-41.
72 MEYBECK M. Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282(4): 401-450.
73 SOULET G, HILTON R G, GARNETT M H, et al. Technical note: in situ measurement of flux and isotopic composition of CO2 released during oxidative weathering of sedimentary rocks[J]. Biogeosciences, 2018, 15(13): 4 087-4 102.
74 BOUCHEZ J, BEYSSAC O, GALY V, et al. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2 [J]. Geology, 2010, 38(3): 255-258.
75 PETSCH S T, BERNER R A, EGLINTON T I. A field study of the chemical weathering of ancient sedimentary organic matter[J]. Organic Geochemistry, 2000, 31(5): 475-487.
76 TORRES M A, WEST A J, LI G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales [J]. Nature, 2014, 507(7 492): 346-349.
77 CALMELS D, GAILLARDET J, BRENOT A, et al. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River Basin: climatic perspectives[J]. Geology, 2007, 35(11): 1 003-1 006.
78 WANG Fengyi, JI Jianqing, YU Xiangjiang, et al. Quantitative research on temporal and spatial coupling of precipitation potential energy and erosion intensity in Himalayas[J]. Chinese Journal of Geology, 2017(1): 1-14.
王峰伊, 季建清, 于祥江, 等. 喜马拉雅降水势能与剥蚀强度时空对应的定量研究[J]. 地质科学, 2017(1): 1-14.
79 YU X J, JI J Q, WANG F Y, et al. Intensified climate-driven exhumation along the South Himalayan Front since one million years ago[J]. Journal of Asian Earth Sciences, 2017, 136: 50-57.
80 WHIPPLE K X, TUCKER G E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17 661-17 674.
81 ADAMS B A, WHIPPLE K X, FORTE A M, et al. Climate controls on erosion in tectonically active landscapes[J]. Science Advances, 2020, 6(42). DOI: 10.1126/sciadv.aaz3166 .
82 HERMAN F, de DONCKER F, DELANEY I, et al. The impact of glaciers on mountain erosion [J]. Nature Reviews Earth & Environment, 2021, 2(6): 422-435.
83 COOK S J, SWIFT D A, KIRKBRIDE M P, et al. The empirical basis for modelling glacial erosion rates[J]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-020-14583-8 .
84 ZEITLER P K, MELTZER A S, KOONS P O, et al. Erosion, Himalayan geodynamics, and the geomorphology of metamorphism [J]. Gsa Today, 2001, 11(1): 4-9.
85 WHITEHOUSE P L, GOMEZ N, KING M A, et al. Solid Earth change and the evolution of the Antarctic Ice Sheet [J]. Nature communications, 2019, 10(1). DOI:10.1038/s41467-018-08068-y .
86 DOSER D I, RODRIGUEZ H. A seismotectonic study of the southeastern Alaska region[J]. Tectonophysics, 2011, 497(1/2/3/4): 105-113.
87 BOLLINGER L, NICOLAS M, MARIN S. Hydrological triggering of the seismicity around a salt diapir in castellane, France[J]. Earth and Planetary Science Letters, 2010, 290(1/2): 20-29.
88 BETTINELLI P, AVOUAC J P, FLOUZAT M, et al. Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 332-344.
89 HAMPEL A, HETZEL R, DENSMORE A L. Postglacial slip-rate increase on the Teton normal fault, northern Basin and Range Province, caused by melting of the Yellowstone ice cap and deglaciation of the Teton Range?[J]. Geology, 2007, 35(12): 1 107-1 110.
90 WHIPPLE K X, MEADE B J. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(F1). DOI: 10.1029/2003JF000019 .
91 MONTGOMERY D R, DIETRICH W E. Channel initiation and the problem of landscape scale [J]. Science, 1992, 255(5 046): 826-830.
92 WHIPPLE K X, MEADE B J. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(F1). DOI:10.1029/2003JF000019 .
93 HUMPHREY N F, RAYMOND C F. Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982-83[J]. Journal of Glaciology, 1994, 40(136): 539-552.
94 HIRSCHMILLER J, GRUJIC D, BOOKHAGEN B, et al. What controls the growth of the Himalayan foreland fold-and-thrust belt? [J]. Geology, 2014, 42(3): 247-250.
95 CULLING W E H. Soil creep and the development of hillside slopes[J]. The Journal of Geology, 1963, 71(2): 127-161.
96 HOWARD A D, KERBY G. Channel changes in badlands[J]. Geological Society of America Bulletin, 1983, 94(6): 739-752.
97 KOONS P O. Two-sided orogen: collision and erosion from the sandbox to the southern Alps, new Zealand[J]. Geology, 1990, 18(8): 679-682.
98 JAMIESON R A, BEAUMONT C, NGUYEN M, et al. Interaction of metamorphism, deformation and exhumation in large convergent orogens [J]. Journal of Metamorphic Geology, 2002, 20(1): 9-24.
99 NELSON K D, ZHAO W J, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results[J]. Science, 1996, 274(5 293): 1 684-1 688.
100 SIMPSON G, SCHLUNEGGER F. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B6).DOI: 10.1029/2002JB002162 .
101 KOONS P O, ZEITLER P K, HALLET B. Tectonic aneurysms and mountain building [M]// SHRODER J F. Treatise on geomorphology. San Diego: Academic Press, 2013: 318-349.
102 FINNEGAN N, HALLET B, MONTGOMERY D, et al. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet[J]. Geological Society of America Bulletin, 2008, 120: 142-155.
103 SMALL E E, ANDERSON R S. Pleistocene relief production in Laramide Mountain ranges, western United States[J]. Geology, 1998, 26(2): 123-126.
104 GILCHRIST A R, SUMMERFIELD M A, COCKBURN H A P. Landscape dissection, isostatic uplift, and the morphologic development of orogens[J]. Geology, 1994, 22(11): 963-966.
105 MORESI L, DUFOUR F, MÜHLHAUS H B. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[J]. Journal of Computational Physics, 2003, 184(2): 476-497.
106 THIEULOT C. FANTOM: two-and three-dimensional numerical modelling of creeping flows for the solution of geological problems[J]. Physics of the Earth and Planetary Interiors, 2011, 188(1/2): 47-68.
107 YUAN X P, BRAUN J, GUERIT L, et al. A new efficient method to solve the stream power law model taking into account sediment deposition[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(6): 1 346-1 365.
108 ELLIS S, FULLSACK P, BEAUMONT C. Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens[J]. Geophysical Journal International, 1995, 120(1): 24-44.
109 SIMOES M, BEYSSAC O, CHEN Y G. Late Cenozoic metamorphism and mountain building in Taiwan: a review[J]. Journal of Asian Earth Sciences, 2012, 46: 92-119.
110 HUNTINGTON K W, BLYTHE A E, HODGES K V. Climate change and Late Pliocene acceleration of erosion in the Himalaya[J]. Earth and Planetary Science Letters, 2006, 252(1/2): 107-118.
111 HERMAN F, SEWARD D, VALLA P G, et al. Worldwide acceleration of mountain erosion under a cooling climate [J]. Nature, 2013, 504(7 480): 423-426.
112 WOLFE J A. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere: data from fossil plants make it possible to reconstruct Tertiary climatic changes, which may be correlated with changes in the inclination of the Earth’s rotational axis [J]. American Scientist, 1978, 66(6): 694-703.
113 ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
114 YAN L L, ZHANG K J. Is exhumation of UHP terranes limited to low latitudes? [J]. Journal of Geodynamics, 2019, 130: 41-56.
115 YU Xiangjiang, JI Jianqing, Gong Junfeng, et al. Evidences of rapid erosion driven by climate in the Yarlung Zangbo (Tsangpo) Great Canyon, the eastern Himalayan syntaxis[J]. Chinese Science Bulletin, 2011, 56(10): 765-773.
于翔江, 季建清, 龚俊峰, 等. 雅鲁藏布大峡谷气候因素引起地壳剥蚀冷却的证据[J]. 科学通报, 2011, 56(10): 765-773.
116 WOBUS C, HODGES K, WHIPPLE K. Has focused denudation sustained active thrusting at the Himalayan topographic front[J]. Geology, 2003, 31: 861-864.
117 FINLAYSON D P, MONTGOMERY D R, HALLET B. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas[J]. Geology, 2002, 30(3): 219-222.
118 SNYDER N P, WHIPPLE K X, TUCKER G E, et al. Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California[J]. Geological Society of America Bulletin, 2000, 112(8): 1 250-1 263.
119 HODGES K V, HURTADO J M, WHIPPLE K X. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics[J]. Tectonics, 2001, 20(6): 799-809.
120 BERGER A L, SPOTILA J A, CHAPMAN J B, et al. Architecture, kinematics, and exhumation of a convergent orogenic wedge: a thermochronological investigation of tectonic-climatic interactions within the central St. Elias orogen, Alaska[J]. Earth and Planetary Science Letters, 2008, 270(1/2): 13-24.
121 CLARK P U, ARCHER D, POLLARD D, et al. The Middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 [J]. Quaternary Science Reviews, 2006, 25(23/24): 3 150-3 184.
122 CEDERBOM C E, SINCLAIR H D, SCHLUNEGGER F, et al. Climate-induced rebound and exhumation of the European Alps[J]. Geology, 2004, 32(8): 709-712.
123 BECKER A. The Jura Mountains—an active foreland fold-and-thrust belt? [J]. Tectonophysics, 2000, 321(4): 381-406.
124 KUHLEMANN J. Post-collisional sediment budget of circum-Alpine basins (Central Europe) [J]. Memorie di Scienze Geologicle Padova, 2000, 52(1): 1-91.
125 BUTLER R W H. Tectonic evolution of the Himalayan syntaxes: the view from Nanga Parbat[J]. Geological Society, London, Special Publications, 2019, 483(1): 215-254.
126 KING G E, HERMAN F, GURALNIK B. Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry [J]. Science, 2016, 353(6 301): 800-804.
127 WANG P, SCHERLER D, JING L Z, et al. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in southern Tibet[J]. Science, 2014, 346(6 212): 978-981.
128 GODARD V, BOURLES D L, SPINABELLA F, et al. Dominance of tectonics over climate in Himalayan denudation[J]. Geology, 2014, 42(3): 243-246.
129 BENDICK R, EHLERS T A. Extreme localized exhumation at syntaxes initiated by subduction geometry[J]. Geophysical Research Letters, 2014, 41(16): 5 861-5 867.
130 ENKELMANN E, ZEITLER P K, GARVER J I, et al. The thermochronological record of tectonic and surface process interaction at the Yakutat-North American collision zone in southeast Alaska[J]. American Journal of Science, 2010, 310(4): 231-260.
131 HACK J T. Dynamic equilibrium and landscape evolution [J]. Theories of Landform Development, 1975, 1: 87-102.
132 WILLETT S D, BRANDON M T. On steady states in mountain belts[J]. Geology, 2002, 30(2): 175-178.
133 LOWE J J, WALKER M. Reconstructing quaternary environments [M]. Abingdon, Oxon:Routledge,2015.
134 CHEN Jianjun, JI Jianqing, YU Shaoli. Quantitative analysis of geomorphologic response time-scale of the Yarlung Zangbo great canyon[J]. Quaternary Sciences, 2008, 28(2): 264-272.
陈建军, 季建清, 余绍立. 雅鲁藏布江大峡谷地貌响应时间域的定量计算[J]. 第四纪研究, 2008, 28(2): 264-272.
135 ZENG Li, GAO Yanhong, JIANG Yingsha, et al. Scale effects of terrain factors on precipitation in East China[J]. Advances in Earth Science, 2022, 37(5): 535-548.
曾礼, 高艳红, 蒋盈沙, 等. 地形因子对华东地区降水影响的尺度效应研究[J]. 地球科学进展, 2022, 37(5): 535-548.
136 BARRY R G. Mountain weather and climate [M]. New York:Cambridge University Press, 2008.
137 MONTGOMERY D R, BALCO G, WILLETT S D. Climate, tectonics, and the morphology of the Andes[J]. Geology, 2001, 29(7): 579-582.
138 TURCOTTE D, SCHUBERT G. Geodynamics [J]. New York:Cambridge University Press,2014.
139 PATRIAT P, ACHACHE J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates [J]. Nature, 1984, 311(5 987): 615-621.
140 WHITTAKER A C. How do landscapes record tectonics and climate?[J]. Lithosphere, 2012, 4(2): 160-164.
141 HERGARTEN S. Modeling glacial and fluvial landform evolution at large scales using a stream-power approach [J]. Earth Surface Dynamics, 2021, 9(4): 937-952.
142 DEAL E, PRASICEK G. The sliding ice incision model: a new approach to understanding glacial landscape evolution[J]. Geophysical Research Letters, 2021, 48(1).DOI: 10.1029/2020GL089263 .
143 BARNHART K R, GLADE R C, SHOBE C M, et al. Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution [J]. Geoscientific Model Development, 2019, 12(4): 1 267-1 297.
144 TOMKIN J H. Coupling glacial erosion and tectonics at active orogens: a numerical modeling study[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2). DOI: 10.1029/2005JF000332 .
145 WEI Mengmei, FU Suhua, LIU Baoyuan. Quantitative research of water erosion on the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2021, 36(7): 740-752.
魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
146 NIU L H, GUO Y T, LI Y, et al. Degradation of river ecological quality in Tibet Plateau with overgrazing: a quantitative assessment using biotic integrity index improved by random forest[J]. Ecological Indicators, 2021, 120. DOI: 10.1016/j.ecolind.2020.106948 .
147 WANG Lei, LI Xiuping, ZHOU Jing, et al. Hydrological modelling over the Tibetan Plateau: current status and perspective[J]. Advances in Earth Science, 2014, 29(6): 674-682.
王磊, 李秀萍, 周璟, 等. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
148 HUNTINGTON K, KLEPEIS K. Challenges and opportunities for research in tectonics: understanding deformation and the processes that link Earth systems, from geologic time to human time[Z]. A community vision document submitted to the US National Science Foundation, 2018.
149 BROOKS B A, BEVIS M, WHIPPLE K, et al. Orogenic-wedge deformation and potential for great earthquakes in the central Andean backarc [J]. Nature Geoscience, 2011, 4(6): 380-383.
[1] 拓守廷, 王文涛. 国际大洋钻探 2050科学框架及其对未来大洋钻探发展的启示[J]. 地球科学进展, 2022, 37(10): 1049-1053.
[2] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[3] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[4] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[5] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[6] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[7] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[8] 张学珍, 于志博, 郑景云, 郝志新. 植物挥发性有机物的气候与环境效应研究进展[J]. 地球科学进展, 2015, 30(11): 1198-1209.
[9] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[10] 丁永建, 张世强, 韩添丁, 南卓铜. 由地表过程向地表系统科学研究跨越的机遇与挑战[J]. 地球科学进展, 2014, 29(4): 443-455.
[11] 王卷乐, 林海, 冉盈盈, 周玉洁, 宋佳, 杜佳. 面向数据共享的地球系统科学数据分类探讨[J]. 地球科学进展, 2014, 29(2): 265-274.
[12] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[13] WuGuoxiong, LinHai, ZouXiaolei, LiuBoqi, HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[14] 丁永建,周成虎,邵明安,陈亚宁,张甘霖,张世强,韩添丁,南卓铜. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.
[15] 曾庆存,林朝晖. 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010, 25(1): 1-6.
阅读次数
全文


摘要