地球科学进展 ›› 2023, Vol. 38 ›› Issue (3): 256 -269. doi: 10.11867/j.issn.1001-8166.2022.057

综述与评述 上一篇    下一篇

湖泊沉积脱 -A-三萜类化合物在环境重建中的研究进展与展望
赵青峰 1( ), 孙大洋 2, 何毓新 1( )   
  1. 1.浙江省地学大数据和地球深部资源重点实验室, 浙江大学 地球科学学院, 浙江 杭州 310027
    2.中国电建集团华东勘测设计研究院有限公司, 浙江 杭州 311122
  • 收稿日期:2022-03-08 修回日期:2022-08-23 出版日期:2023-03-10
  • 通讯作者: 何毓新 E-mail:qfzhao@zju.edu.cn;yxhe@zju.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“乌梁素湖沉积物中脱-A-三萜类的结构、成因及其生态环境指示意义”(41877332)

Research Advances and Prospects of des-A-triterpenoids in Environmental Reconstruction of Lake Environments

Qingfeng ZHAO 1( ), Dayang SUN 2, Yuxin HE 1( )   

  1. 1.Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Science, Zhejiang University, Hangzhou 310027, China
    2.Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
  • Received:2022-03-08 Revised:2022-08-23 Online:2023-03-10 Published:2023-03-21
  • Contact: Yuxin HE E-mail:qfzhao@zju.edu.cn;yxhe@zju.edu.cn
  • About author:ZHAO Qingfeng (1998-), male, Haidong City, Qinghai Province, Master student. Research area includes organic geochemistry. E-mail: qfzhao@zju.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Structure, sources, and ecological significance of des-A-triterpenoids in sediments from Lake Wuliangsu”(41877332)

脱-A-三萜类化合物可示踪特定的生源信息,近年来在南美、东非和欧洲湖泊普遍检出并应用于环境重建。其至今未在中国现代湖泊沉积中被检出,因此中国在这方面的相关研究还相对滞后。基于此,通过梳理湖泊沉积脱-A-三萜类化合物的研究进展,系统总结了其结构特征、鉴定方法、生源信息、环境重建的原理及应用案例。然后,首次报道了中国近现代湖泊沉积物中脱-A-三萜类化合物的检出,其中乌梁素海以脱-A-奥利二烯为主,而鄱阳湖以奥利烷和乌散烷型的单烯以及脱-A-羽扇烷为主。最后,评估了中国湖泊沉积的脱-A-三萜化合物的应用潜力,并指出了未来研究的方向:结构鉴定手段的改进,分离纯化技术的开发,中国湖泊数据库的建立以及降解机制的解析等。

Des-A-triterpenoids, diagenetic products of pentacyclic triterpenoids from A-ring degradation, have great potential for tracking specific biological sources in the environment. Although des-A-triterpenoids with lupane, oleanane, arborane, and ursane carbon skeleton structures were presumed to be indicative of terrestrial vascular angiosperms, recent studies have also identified other sources of des-A-triterpenoids in lakes and peatlands, such as algae and aerobic bacteria. Therefore, des-A-triterpenoids are valuable in paleoclimatic and paleoenvironmental reconstructions from the perspectives of specific sources and microbial activities. des-A-triterpenoids could be more useful for source identification than n-alkanes and n-fatty acids, considering that n-alkanes and n-fatty acids have multiple and complex sources. In recent decades, des-A-triterpenoids have been successfully applied in paleoenvironmental reconstructions of lakes from East Africa, South America, and Europe. In China, des-A-triterpenoids have been observed and identified in petroleum, coal, and recent peatland deposits, but no des-A-triterpenoids have been detected in modern lake environments. Therefore, we systematically reviewed the configuration structures, biosynthetic pathways, biological sources, and paleoenvironmental applications of des-A-triterpenoids in lake environments. This review describes a practical methodology for identifying des-A-triterpenoids. In addition, we reported the occurrence of des-A-triterpenoids with different configuration structures and distribution patterns in lakes Wuliangsu and Poyang. For instance, di-unsaturated des-A-triterpenes with oleanane configurations were observed in eight of 21 surface sediments from Lake Wuliangsu. Alternatively, des-A-lupane and mono-unsaturated des-A-triterpenes with oleanane and ursane configurations were observed in samples from a sedimentary core collected from Lake Poyang at a depth of about 3 m. Our findings demonstrate that des-A-triterpenoids have great potential in and challenge paleoenvironmental and biogeochemical reconstructions of Chinese lakes. At the end of the review, we propose further directions and breakthroughs for this research area, such as improving analyzing protocols and technology, identification of the exact biological sources under a specific geological background of lakes, disentanglement of the mechanism of triterpenoid degradation, and application of environmental reconstruction in des-A-triterpenoid research.

中图分类号: 

图1 不同构型的五环三萜类化合物[(a~e)]和对应的脱-A-三萜类化合物[(f~j)]
(a) β-香树脂醇; (b) α-香树脂醇; (c) 羽扇豆醇; (d) 乔木醇; (e) 羊齿醇; (f) 脱-A-奥利烷; (g) 脱-A-乌散烷; (h) 脱-A-羽扇烷; (i) 脱-A-乔木烯; (j) 脱-A-羊齿烯。数字表示碳位,灰色字母表示对应环的编号,灰色箭头表示命名次序
Fig. 1 Different configuration structures of pentacyclic triterpenoids [(a~e)] and des-A-triterpenoids [(f~j)]
(a) β-amyrin; (b) α-amyrin; (c) lupeol; (d) isoarborinol; (e) fernenol; (f) des-A-oleanane; (g) des-A-ursane; (h) des-A-lupane; (i) des-A-arbora-9(11)-ene; (j) des-A-fern-9(11)-ene. Numbers, gray capital characters, and gray arrows denote carbon position, carbon ring, and naming order, respectively
图2 -A-三萜类化合物在全球报道的湖泊分布图(编号具体信息和参考文献详见表1
1~7为古代湖盆,8~22为现代湖泊,编号按报道时间顺序排列
Fig. 2 Distribution of des-A-triterpenoids in global lakes from previous literaturenumbers detail referred in Table 1
1~7 indicates lacustrine basin, and 8~22 indicates modern lake, the numbers are in chronological order
表1-A-三萜类化合物在全球不同湖泊(湖盆)沉积物的检出及其构型
Table 1 Compilation of the occurrences of des-A-triterpenoids in lakes over the global
编号 湖泊(湖盆)名称 研究介质 构型 参考文献
1 Lake Messel 始新世页岩 乔木烷型 49
2 Lake Clarkia 中新世沉积岩 奥利烷型、羽扇烷型 50
3 Puertollano 盆地 晚石炭系沉积岩 奥利烷型、乔木烷型 51
4 Eckfeld Maar 始新世沉积岩 奥利烷型、羽扇烷型、乔木烷型 52
5 辽河盆地 始新世泥岩 奥利烷型、乌散烷型 53
6 Lake Dethlingen 中新世沉积岩 奥利烷型、乌散烷型、羽扇烷型 48
7 珠江口盆地 始新世烃源岩 奥利烷型 23
8 Lake Valencia 沉积柱 乔木烷型 34
9 Lake Sarbsko 沉积柱 羽扇烷型、奥利烷型 35
10 Lake Caçó 沉积柱 羽扇烷型 43
11 Lake Rotsee 沉积柱 奥利烷型、羽扇烷型 36
12 Lake Tasik Perdana 沉积柱 羽扇烷型、奥利烷型 37
13 Lake Kirek 沉积柱 羽扇烷型、奥利烷型 38
14 Lake Murashka 沉积柱 奥利烷型 38
15 Lake Challa 沉积柱 羽扇烷型、奥利烷型、乌散烷型、乔木烷型 39
16 Lake Biển Hồ 沉积柱 羽扇烷型 41
17 Lake Barro Preto 沉积柱 羽扇烷型、奥利烷型、乌散烷型 42
18 Lake Comprido 沉积柱 羽扇烷型、奥利烷型、乌散烷型 42
19 lake Puruzinho 沉积柱 羽扇烷型 42
20 Lake Tapari 沉积柱 羽扇烷型、奥利烷型、乌散烷型 42
21 乌梁素海 表层沉积物 奥利烷型、乌散烷型 本文
22 鄱阳湖 次表层沉积物 羽扇烷型、奥利烷型、乌散烷型 本文
图3 β-香树脂醇和 β-香树脂酮的降解生化反应途径示意图(据参考文献[ 23 57 ]修改)
(a) 3,4-开环-奥利-12-烯-3-脂酸;(b) 脱-A-奥利-5(10),12-二烯;(c) 脱-A-奥利-12-烯;(d) ?;(e) 奥利-2,12-二烯;(f) 奥利烷;(g) 单芳奥利烷;(h) 苉
Fig. 3 Degradation biosynthetic pathways of β-amyrin and β-amyronemodified after references2357])
(a) 3,4-seco-olean-12-en-3-oic-acid; (b) des-A-olean-5(10), 12-diene; (c) des-A-olean-12-ene; (d) chrysene; (e) olean-2,12-diene; (f) oleanane; (g) monoaromatic oleanane; (h) picene
表2-A-三萜类化合物的质谱特征
Table 2 Mass spectral characteristics of des-A-triterpenoids
构型 脱-A-三萜类化合物 分子式 分子量 特征离子碎片(相对强度递减) 参考文献
奥利烷型 脱-A-奥利烷 C24H42 330 330[M],315,191,177,136,109,69 67
脱-A-奥利-13(18)-烯 C24H40 328 109,328[M],313,189,205,119,218
脱-A-奥利-12-烯 C24H40 328 218,203,313,328[M],189,136,219
脱-A-奥利-9,13(18)-二烯 C24H38 326 326[M],311,229,215,203,189,147 62
脱-A-奥利-9,18-二烯 C24H38 326 326[M],311,229,215,203,189,147
脱-A-奥利-5(10),13(18)-二烯 C24H38 326 95,109,121,107,189,204 33
脱-A-奥利-5(10),12-二烯 C24H38 326 108,95,93,109,81,55,136
乌散烷型 脱-A-乌散-13(18)-烯 C24H40 328 313,177,189,121,175,328[M],218 39
脱-A-乌散-12-烯 C24H40 328 218,313,189,231,203,243,328[M 43
脱-A-乌散-5(10),12-二烯 C24H38 326 107,93,121,147,215,326[M],271,203 34
脱-A-乌散-5(10),13(18)-二烯 C24H38 326 107,121,147,130,326[M],311,215,203 62
羽扇烷型 脱-A-羽扇烷 C24H42 330 123,109,149,163,191,287,330[M],177,287,206 40
脱-A-羽扇-5(10),12-二烯 C24H38 326 326[M],311,283,229,215,203,189,147 62
乔木烷萜型 脱-A-乔木-9(11)-烯 C24H40 328 161,313,175,149,119,328[M],191 34
脱-A-乔木-5(10),9(11)-二烯 C24H38 326 326[M],219,173,311,105,120,159,191
脱-A-乔木-5,7,9-三烯 C24H36 324 157,309,145,171,239,324[M],191 40
图4 典型脱-A-三萜类化合物的质谱图(据参考文献[ 34 68 ]修改)
Fig. 4 Mass spectra of typical des-A-triterpenoidsmodified after references3468])
图5 乌梁素海和鄱阳湖沉积物的脱-A-三萜类化合物色谱和质谱图
(a)乌梁素海表层沉积物叠合离子色谱图; (b)鄱阳湖沉积物叠合离子色谱图; (c)脱-A-奥利-5(10), 12-二烯质谱图; (d)脱-A-奥利-13(18)-烯质谱图
Fig. 5 The partial selected ion chromatogram and mass spectral of surface sediment in Lake Wuliangsu and Lake Poyang
(a) The partial selected ion chromatogram of sediment core of Lake Wuliangsu; (b) Partial selected ion chromatogram of sediment core of Lake Poyang; (c) Mass spectra of des-A-olean-5(10),12-diene; (d) Mass spectra of des-A-olean-13(18)-ene
1 YANG Guishan, MA Ronghua, ZHANG Lu, et al. Lake status, major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6): 799-810.
杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810.
2 FAN Chengxin, LIU Min, WANG Shengrui, et al. Research progress and prospect of sediment environment and pollution control in China in recent 20 years[J]. Advances in Earth Science, 2021, 36(4): 346-374.
范成新, 刘敏, 王圣瑞, 等. 近20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
3 SHEN Ji. Progress and prospect of palaeolimnology research in China[J]. Journal of Lake Sciences, 2009, 21(3): 307-313.
沈吉. 湖泊沉积研究的历史进展与展望[J]. 湖泊科学, 2009, 21(3): 307-313.
4 COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185.
5 MAROTTA H, DUARTE C M, SOBEK S, et al. Large CO2 disequilibria in tropical lakes[J]. Global Biogeochemical Cycles, 2009, 23(4). DOI:10.1029/2008GB003434 .
6 PETERS K, WALTERS C, MOLDOWAN J M. The biomarker guide, biomarkers and isotopes in petroleum exploration and Earth history[M]. New York: Cambridge University Press, 2005.
7 EGLINTON T I, EGLINTON G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 1-16.
8 CASTAÑEDA I S, SCHOUTEN S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21/22): 2 851-2 891.
9 XIE S C, YAO T D, KANG S C, et al. Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollution and climate[J]. Organic Geochemistry, 2000, 31(1): 15-23.
10 KILLOPS S D, FREWIN N L. Triterpenoid diagenesis and cuticular preservation[J]. Organic Geochemistry, 1994, 21(12): 1 193-1 209.
11 LANGENHEIM J H. Higher plant terpenoids: a phytocentric overview of their ecological roles[J]. Journal of Chemical Ecology, 1994, 20(6): 1 223-1 280.
12 VERSTEEGH G J M, SCHEFUß E, DUPONT L, et al. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems[J]. Geochimica et Cosmochimica Acta, 2004, 68(3): 411-422.
13 KOCH B P, RULLKÖTTER J, LARA R J. Evaluation of triterpenols and sterols as organic matter biomarkers in a mangrove ecosystem in northern Brazil[J]. Wetlands Ecology and Management, 2003, 11(4): 257-263.
14 BOOT C S, ETTWEIN V J, MASLIN M A, et al. A 35, 000 year record of terrigenous and marine lipids in Amazon Fan sediments[J]. Organic Geochemistry, 2006, 37(2): 208-219.
15 DUAN H Q, TAKAISHI Y, MOMOTA H, et al. Triterpenoids from Tripterygium wilfordii [J]. Phytochemistry, 2000, 53(7): 805-810.
16 CORBET B, ALBRECHT P, OURISSON G. Photochemical or photomimetic fossil triterpenoids in sediments and petroleum[J]. Journal of the American Chemical Society, 1980, 102(3): 1 171-1 173.
17 SIMONEIT B R T, XU Y P, NETO R R, et al. Photochemical alteration of 3-oxygenated triterpenoids: implications for the origin of 3,4-seco-triterpenoids in sediments[J]. Chemosphere, 2009, 74(4): 543-550.
18 TRENDEL J M, LOHMANN F, KINTZINGER J P, et al. Identification of des-A-triterpenoid hydrocarbons occurring in surface sediments[J]. Tetrahedron, 1989, 45(14): 4 457-4 470.
19 JAFFÉ R, ELISMÉ T, CABRERA A C. Organic geochemistry of seasonally flooded rain forest soils: molecular composition and early diagenesis of lipid components[J]. Organic Geochemistry, 1996, 25(1/2): 9-17.
20 CHAFFEE A L, STRACHAN M G, JOHNS R B. Polycyclic aromatic hydrocarbons in Australian coals II. novel tetracyclic components from Victorian brown coal[J]. Geochimica et Cosmochimica Acta, 1984, 48(10): 2 037-2 043.
21 de las HERAS F X, GRIMALT J O, ALBAIGÉS J. Novel c-ring cleaved triterpenoid-derived aromatic hydrocarbons in Tertiary brown coals[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3 379-3 385.
22 SHI Jiyang, XIANG Mingju, HONG Ziqing, et al. Source and evolution of de-A-lupenes and some pentacyclic triterpanoids[J]. Acta Sedimentologica Sinica, 1991, 9(): 26-33.
史继扬, 向明菊, 洪紫青, 等. 五环三萜烷的物源和演化[J]. 沉积学报, 1991, 9(): 26-33.
23 SAMUEL O J, KILDAHL-ANDERSEN G, NYTOFT H P, et al. Novel tricyclic and tetracyclic terpanes in Tertiary deltaic oils: structural identification, origin and application to petroleum correlation[J]. Organic Geochemistry, 2010, 41(12): 1 326-1 337.
24 MA N, HOU D J, SHI H S. Novel tetracyclic terpanes in crude oils and source rock extracts in Pearl River Mouth Basin and their geological significance[J]. Journal of Earth Science, 2014, 25(4): 713-718.
25 RUDRA A, DUTTA S, RAJU S V. The Paleogene vegetation and petroleum system in the tropics: a biomarker approach[J]. Marine and Petroleum Geology, 2017, 86: 38-51.
26 XIAO H, WANG T G, LI M J, et al. Occurrence and distribution of unusual tri- and tetracyclic terpanes and their geochemical significance in some Paleogene oils from China[J]. Energy & Fuels, 2018, 32(7): 7 393-7 403.
27 MÉJANELLE L, RIVIÈRE B, PINTURIER L, et al. Aliphatic hydrocarbons and triterpenes of the Congo deep-sea fan[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 142: 109-124.
28 XU Y P, MEAD R N, JAFFÉ R. A molecular marker-based assessment of sedimentary organic matter sources and distributions in Florida Bay[J]. Hydrobiologia, 2006, 569(1): 179-192.
29 HE D, SIMONEIT B R T, CLOUTIER J B, et al. Early diagenesis of triterpenoids derived from mangroves in a subtropical estuary[J]. Organic Geochemistry, 2018, 125: 196-211.
30 DUAN Y, MA L H. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet Plateau, China)[J]. Organic Geochemistry, 2001, 32(12): 1 429-1 442.
31 HUANG X Y, XUE J T, WANG X X, et al. Paleoclimate influence on early diagenesis of plant triterpenes in the Dajiuhu peatland, central China[J]. Geochimica et Cosmochimica Acta, 2013, 123: 106-119.
32 ZHENG Y H, ZHOU W J, ZHAO L, et al. Compositions of aliphatic des-A-triterpenes in the Hani peat deposit, Northeast China and its biological significance[J]. Chinese Science Bulletin, 2010, 55(21): 2 275-2 281.
33 HUANG X Y, XIE S C, ZHANG C L, et al. Distribution of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit, southern China[J]. Organic Geochemistry, 2008, 39(12): 1 765-1 771.
34 JAFFÉ R, HAUSMANN K B. Origin and early diagenesis of arborinone/isoarborinol in sediments of a highly productive freshwater lake[J]. Organic Geochemistry, 1995, 22(1): 231-235.
35 BECHTEL A, WOSZCZYK M, REISCHENBACHER D, et al. Biomarkers and geochemical indicators of Holocene environmental changes in coastal Lake Sarbsko (Poland) [J]. Organic Geochemistry, 2007, 38(7): 1 112-1 131.
36 NAEHER S, SCHAEFFER P, ADAM P, et al. Maleimides in recent sediments-using chlorophyll degradation products for palaeoenvironmental reconstructions[J]. Geochimica et Cosmochimica Acta, 2013, 119: 248-263.
37 AZIZUDDIN A D, ALI N A M, TAY K S, et al. Characterization and sources of extractable organic matter from sediment cores of an urban lake (Tasik Perdana), Kuala Lumpur, Malaysia[J]. Environmental Earth Sciences, 2014, 71(10): 4 363-4 377.
38 SEREBRENNIKOVA O V, STREL’NIKOVA E B, DUCHKO M A, et al. Org. matter chemistry in bottom sediments of freshwater and salt lakes in Southern Siberia[J]. Water Resources, 2015, 42(6): 798-809.
39 van BREE L G J, RIJPSTRA W I C, AL-DHABI N A, et al. Des-A-lupane in an East African lake sedimentary record as a new proxy for the stable carbon isotopic composition of C3 plants[J]. Organic Geochemistry, 2016, 101: 132-139.
40 van BREE L G J, ISLAM M M, RIJPSTRA W I C, et al. Origin, formation and environmental significance of des-A-arborenes in the sediments of an East African crater lake[J]. Organic Geochemistry, 2018, 125: 95-108.
41 DOIRON K E, SCHIMMELMANN A, NGUYEN-VĂN H, et al. Biomarkers, including botryococcenes, in maar lake sediments from Vietnam record fluctuations in phytoplankton dynamics[C]// 29th international meeting on organic geochemistry. Gothenburg, Sweden: European Association of Geoscientists & Engineers, 2019.
42 LOPES A A, PEREIRA V B, AMORA-NOGUEIRA L, et al. Hydrocarbon sedimentary organic matter composition from different water-type floodplain lakes in the Brazilian Amazon[J]. Organic Geochemistry, 2021, 159. DOI:10.1016/j.orggeochem.2021.104287 .
43 JACOB J, DISNAR J R, BOUSSAFIR M, et al. Contrasted distributions of triterpene derivatives in the sediments of Lake Caçó reflect paleoenvironmental changes during the last 20,000 yrs in NE Brazil[J]. Organic Geochemistry, 2007, 38(2): 180-197.
44 HERNES P J, BENNER R, COWIE G L, et al. Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3 109-3 122.
45 OTTO A, SIMONEIT B R T. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3 505-3 527.
46 OTTO A, WHITE J D, SIMONEIT B R T. Natural product terpenoids in Eocene and Miocene conifer fossils[J]. Science, 2002, 297(5 586): 1 543-1 545.
47 OTTO A, SIMONEIT B R T, REMBER W C. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species[J]. Review of Palaeobotany and Palynology, 2003, 126(3/4): 225-241.
48 REGNERY J, PÜTTMANN W, KOUTSODENDRIS A, et al. Comparison of the paleoclimatic significance of higher land plant biomarker concentrations and pollen data: a case study of lake sediments from the Holsteinian interglacial[J]. Organic Geochemistry, 2013, 61: 73-84.
49 HAUKE V, GRAFF R, WEHRUNG P, et al. Novel triterpene-derived hydrocarbons of the arborane/fernane series in sediments: part II[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3 595-3 602.
50 HUANG Y S, LOCKHEART M J, LOGAN G A, et al. Isotope and molecular evidence for the diverse origins of carboxylic acids in leaf fossils and sediments from the Miocene Lake Clarkia deposit, Idaho, U.S.A[J]. Organic Geochemistry, 1996, 24(3): 289-299.
51 BORREGO A G, BLANCO C G, PÜTTMANN W. Geochemical significance of the aromatic hydrocarbon distribution in the bitumens of the Puertollano oil shales, Spain[J]. Organic Geochemistry, 1997, 26(3/4): 219-228.
52 SABEL M, BECHTEL A, PÜTTMANN W, et al. Palaeoenvironment of the Eocene Eckfeld Maar lake (Germany): implications from geochemical analysis of the oil shale sequence[J]. Organic Geochemistry, 2005, 36(6): 873-891.
53 TUO J C, PHILP R P. Saturated and aromatic diterpenoids and triterpenoids in Eocene coals and mudstones from China[J]. Applied Geochemistry, 2005, 20(2): 367-381.
54 HAUKE V, GRAFF R, WEHRUNG P, et al. Novel triterpene-derived hydrocarbons of arborane/fernane series in sediments. Part I[J]. Tetrahedron, 1992, 48(19): 3 915-3 924.
55 BOUVIER F, RAHIER A, Biogenesis CAMARA B., molecular regulation and function of plant isoprenoids[J]. Progress in Lipid Research, 2005, 44(6): 357-429.
56 NAKAMURA H. Plant-derived triterpenoid biomarkers and their applications in paleoenvironmental reconstructions: chemotaxonomy, geological alteration, and vegetation reconstruction[J]. Researches in Organic Geochemistry, 2019, 35(2): 11-35.
57 ABE I, ROHMER M, PRESTWICH G D. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes[J]. Chemical Reviews, 1993, 93(6): 2 189-2 206.
58 RULLKÖTTER J, PEAKMAN T M, HAVEN H LO TEN. Early diagenesis of terrigenous triterpenoids and its implications for petroleum geochemistry[J]. Organic Geochemistry, 1994, 21(3/4): 215-233.
59 MURRAY A P, SOSROWIDJOJO I B, ALEXANDER R, et al. Oleananes in oils and sediments: evidence of marine influence during early diagenesis? [J]. Geochimica et Cosmochimica Acta, 1997, 61(6): 1 261-1 276.
60 SCHNELL G, SCHAEFFER P, TARDIVON H, et al. Contrasting diagenetic pathways of higher plant triterpenoids in buried wood as a function of tree species [J]. Organic Geochemistry, 2014, 66: 107-124.
61 YANES C, ALVAREZ H, JAFFÉ R. Geochemistry of a tropical lake (Lake Leopoldo) on pseudo-karst topography within the Roraima Group, Guayana Shield, Venezuela[J]. Applied Geochemistry, 2006, 21(6): 870-886.
62 MILLE G, GUILIANO M, ASIA L, et al. Sources of hydrocarbons in sediments of the Bay of Fort de France (Martinique) [J]. Chemosphere, 2006, 64(7): 1 062-1 073.
63 DEVON T K, SCOTT A L. Handbook of naturally occurring compounds[M]. New York: Academic Press, 1975: 378-380.
64 HILL R A, CONNOLLY J D. Triterpenoids[J]. Natural Product Reports, 2018, 35: 1 294-1 329.
65 LOHMANN F, TRENDEL J M, HETRU C, et al. C-29 tritiated β-amyrin: chemical synthesis aiming at the study of aromatization processes in sediments[J]. Journal of Labelled Compounds and Radiopharmaceuticals, 1990, 28(4): 377-386.
66 FREEMAN K H, BOREHAM C J, SUMMONS R E, et al. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis[J]. Organic Geochemistry, 1994, 21(10): 1 037-1 049.
67 LOGAN G A, EGLINTON G. Biogeochemistry of the Miocene lacustrine deposit, at Clarkia, northern Idaho, USA[J]. Organic Geochemistry, 1994, 21(8/9): 857-870.
68 BOREHAM C J, SUMMONS R E, ROKSANDIC Z, et al. Chemical, molecular and isotopic differentiation of organic facies in the Tertiary lacustrine Duaringa oil shale deposit, Queensland, Australia[J]. Organic Geochemistry, 1994, 21(6/7): 685-712.
69 JACOB J, DISNAR J, BOUSSAFIR M, et al. Pentacyclic triterpene methyl ethers in recent lacustrine sediments (Lagoa do Caco, Brazil)[J]. Organic Geochemistry, 2005, 36: 449-461.
70 AMEEN B A, MAJEED S N, ABDUL D A. HPLC analysis of fatty acids and triterpenoids in fruit of Hawthorn (Crataegus azarolus) in Iraqi Kurdistan region[J]. Asian Journal of Chemistry, 2013, 25(5): 2 750-2 754.
71 STEFANOVA M, IVANOV D A, UTESCHER T. Geochemical appraisal of palaeovegetation and climate oscillation in the Late Miocene of Western Bulgaria[J]. Organic Geochemistry, 2011, 42(11): 1 363-1 374.
72 HEMMERS H, GÜLZ P G, MARNER F J, et al. Pentacyclic triterpenoids in epicuticular waxes from Euphorbia lathyris L., Euphorbiaceae[J]. Zeitschrift Für Naturforschung C, 1989, 44(3/4): 193-201.
73 OTTO A, SIMONEIT B R T, REMBER W C. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA[J]. Organic Geochemistry, 2005, 36(6): 907-922.
74 BANTA A B, WEI J H, GILL C C C, et al. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2): 245-250.
75 DIEFENDORF A F, FREEMAN K H, WING S L. Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance[J]. Geochimica et Cosmochimica Acta, 2012, 85: 342-356.
76 STEFANOVA M, IVANOV D A, SIMONEIT B R T. Paleoenvironmental application of Taxodium macrofossil biomarkers from the Bobov Dol coal formation, Bulgaria[J]. International Journal of Coal Geology, 2013, 120: 102-110.
77 FREEMAN K H, HAYES J M, TRENDEL J M, et al. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons[J]. Nature, 1990, 343(6 255): 254-256.
78 HAYES J M, TAKIGIKU R, OCAMPO R, et al. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale[J]. Nature, 1987, 329(6 134): 48-51.
79 HUANG Y S, LOCKHEART M J, COLLISTER J W, et al. Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation: hydrocarbons and alcohols[J]. Organic Geochemistry, 1995, 23(9): 785-801.
80 XU Y P, JAFFÉ R. Biomarker-based paleo-record of environmental change for an eutrophic, tropical freshwater lake, Lake Valencia, Venezuela[J]. Journal of Paleolimnology, 2008, 40(1): 179-194.
81 LIU H, LIU W G. n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2016, 99: 10-22.
82 AICHNER B, HERZSCHUH U, WILKES H. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau[J]. Organic Geochemistry, 2010, 41(7): 706-718.
83 LIU H, LIU W G. Concentration and distributions of fatty acids in algae, submerged plants and terrestrial plants from the northeastern Tibetan Plateau[J]. Organic Geochemistry, 2017, 113: 17-26.
84 STREET-PERROTT F A, HUANG Y, PERROTT R A, et al. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems[J]. Science, 1997, 278(5 342): 1 422-1 426.
85 LIU J G, AN Z S. Leaf wax n-alkane carbon isotope values vary among major terrestrial plant groups: different responses to precipitation amount and temperature, and implications for paleoenvironmental reconstruction[J]. Earth-Science Reviews, 2020, 202. DOI:10.1016/j.earscirev.2020.103081 .
86 LIU W G, YANG H, WANG H Y, et al. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: a dual indicator of paleoenvironment in the Qinghai-Tibet Plateau[J]. Organic Geochemistry, 2015, 83/84: 190-201.
87 BRINCAT D, YAMADA K, ISHIWATARI R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry, 2000, 31(4): 287-294.
88 ANDRAE J W, MCINERNEY F A, SNIDERMAN J M K. Carbon isotope systematics of leaf wax n-alkanes in a temperate lacustrine depositional environment[J]. Organic Geochemistry, 2020, 150. DOI:10.1016/j.orggeochem.2020.104121 .
89 HUANG Xianyu, ZHANG Yiming. An overview of the applications of lipid carbon isotope compositions in the paleoenvironmental and paleoecological reconstructions in lacustrine and peat deposits[J]. Advances in Earth Science, 2019, 34(1): 20-33.
黄咸雨, 张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
90 van GEEL B, GELORINI V, LYARUU A, et al. Diversity and ecology of tropical African fungal spores from a 25, 000-year palaeoenvironmental record in southeastern Kenya[J]. Review of Palaeobotany and Palynology, 2011, 164(3/4): 174-190.
91 CARPENTER S R. Eutrophication of aquatic ecosystems: bistability and soil phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(29): 10 002-10 005.
92 LI H B, XING P, WU Q L. Characterization of the bacterial community composition in a hypoxic zone induced by microcystis blooms in Lake Taihu, China[J]. FEMS Microbiology Ecology, 2012, 79(3): 773-784.
93 KÖBBING J F, PATUZZI F, BARATIERI M, et al. Economic evaluation of common reed potential for energy production: a case study in Wuliangsuhai Lake (Inner Mongolia, China) [J]. Biomass and Bioenergy, 2014, 70: 315-329.
94 WANG X L, WEI J X, BAI N, et al. The phosphorus fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake, China [J]. Environmental Science and Pollution Research, 2018, 25(21): 20 648-20 661.
95 GUO H, HU Q, JIANG T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China[J]. Journal of Hydrology, 2008, 355(1/2/3/4): 106-122.
[1] 程昕, 王小雨, 曹怀仁, 张成君. GDGTs温度指标在青藏高原湖泊的应用潜力分析——以昆仑山黑海为例[J]. 地球科学进展, 2023, 38(9): 967-977.
[2] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[3] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物 GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[4] 贾佳源, 贺娟, 韦兵兵, 贾国东, 李丽. 海洋藻类生物标志物单体氢同位素与表层海水盐度关系研究进展与启示[J]. 地球科学进展, 2022, 37(4): 392-406.
[5] 李莉, 于蒙, 赵美训. 甾醇类单体化合物纯化分析技术及其同位素应用的研究进展[J]. 地球科学进展, 2022, 37(12): 1223-1231.
[6] 肖睿, 包锐, 邢磊. 长链烯酮单体碳 -14同位素分析技术进展与研究意义[J]. 地球科学进展, 2021, 36(12): 1258-1271.
[7] 樊嘉琛, 钱施, 裴宏业, 吴杰, 赵世锦, 党心悦, 杨欢, 谢树成. 微生物醚类化合物在泥炭古环境重建中的应用:进展与问题[J]. 地球科学进展, 2021, 36(12): 1272-1290.
[8] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[9] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[10] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[11] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[12] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[13] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
[14] 兰晨, 陈敬安, 曾艳, 郭建阳, 张润宇, 王敬富, 杨海全, 计永雪. 深水湖泊增氧理论与技术研究进展[J]. 地球科学进展, 2015, 30(10): 1172-1181.
[15] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
阅读次数
全文


摘要