1 |
QIN Tongchun, CHENG Guoming, WANG Haigang. The latest progress of research on land subsidence abroad and its inspiration to China[J]. Geological Bulletin of China, 2018, 37(): 503-509.
|
|
秦同春, 程国明, 王海刚. 国际地面沉降研究进展的启示[J]. 地质通报, 2018, 37(): 503-509.
|
2 |
LIU Y L, LIU J Q, XIA X F, et al. Land subsidence of the Yellow River Delta in China driven by river sediment compaction[J]. Science of the Total Environment, 2021, 750. DOI:10.1016/j.scitotenv.2020.142165 .
|
3 |
CAVALIÉ O, SLADEN A, KELNER M. Detailed quantification of delta subsidence, compaction and interaction with man-made structures: the case of the NCA airport, France[J]. Natural Hazards and Earth System Sciences, 2015, 15(9): 1 973-1 984.
|
4 |
HIGGINS S A, OVEREEM I, STECKLER M S, et al. InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(8): 1 768-1 781.
|
5 |
MEEHL G A, WASHINGTON W M, COLLINS W D, et al. How much more global warming and sea level rise? [J]. Science, 2005, 307(5 716): 1 769-1 772.
|
6 |
ERICSON J P, VÖRÖSMARTY C J, LAWRENCE D S, et al. Effective sea-level rise and deltas: causes of change and human dimension implications[J]. Global and Planetary Change, 2006, 50(1/2): 63-82.
|
7 |
WANG G Y, LI P, LI Z H, et al. Coastal dam inundation assessment for the Yellow River Delta: measurements, analysis and scenario[J]. Remote Sensing, 2020, 12(21). DOI:10.3390/rs12213658 .
|
8 |
PAOLA C, TWILLEY R R, EDMONDS D A, et al. Natural processes in delta restoration: application to the Mississippi Delta[J]. Annual Review of Marine Science, 2011, 3: 67-91.
|
9 |
XIAO Hongfei, WANG Dong, BIAN Zhigang. Study on the characteristics of sea level change in the Bohai and Yellow Seas based on ERA5 dataset[J]. Transactions of Oceanology and Limnology, 2020(5): 9-15.
|
|
肖鸿飞, 王冬, 边志刚. 基于ERA5数据集的黄渤海海平面变化特征研究[J]. 海洋湖沼通报, 2020(5): 9-15.
|
10 |
YU Yifa. Advance of the researches on the variations of Mean-Sea-Level (MSL) in the coastal waters of China[J]. Journal of Ocean University of Qingdao, 2004, 34(5): 713-719.
|
|
于宜法. 中国近海海平面变化研究进展[J]. 中国海洋大学学报(自然科学版), 2004, 34(5): 713-719.
|
11 |
ZHANG Jie. Sea level change in coastal China Seas during the 21st based on SSPs scenarios[D]. Zhoushan: Zhejiang Ocean University, 2022.
|
|
张洁. 基于SSPs情景下21世纪中国近海海平面变化[D]. 舟山: 浙江海洋大学, 2022.
|
12 |
HU Zhibo, GUO Jinyun, TAN Zhengguang, et al. Sea level variation in Hong Kong determined with TOPEX/Poseidon and tide gauge[J]. Journal of Geodesy and Geodynamics, 2014, 34(4): 56-59.
|
|
胡志博, 郭金运, 谭争光, 等. 由TOPEX/Poseidon和验潮站监测香港海平面变化[J]. 大地测量与地球动力学, 2014, 34(4): 56-59.
|
13 |
MU D P, XU T H, XU G C. Detecting coastal ocean mass variations with GRACE mascons[J]. Geophysical Journal International, 2019, 217(3): 2 071-2 080.
|
14 |
XU Tianhe, YANG Yuanyuan, MU Dapeng, et al. Causes of coastal sea level change[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1 750-1 757.
|
|
徐天河, 杨元元, 穆大鹏, 等. 近海海平面变化成因分析[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1 750-1 757.
|
15 |
XU Tianhe, MU Dapeng, YAN Haoming, et al. The causes of contemporary sea level rise over recent two decades:progress and challenge[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1 294-1 305.
|
|
徐天河, 穆大鹏, 闫昊明, 等. 近 20 年海平面变化成因研究进展及挑战 [J].测绘学报, 51(7): 1 294-1 305.
|
16 |
ZHANG Tong, YU Yongqiang, XIAO Cunde, et al. Interpretation of IPCC AR6 report: monitoring and projections of global and regional sea level change[J]. Climate Change Research, 2022, 18 (1): 12-18.
|
|
张通, 俞永强, 效存德, 等. IPCC AR6解读:全球和区域海平面变化的监测和预估[J]. 气候变化研究进展, 2022, 18 (1): 12-18.
|
17 |
de WIT K, LEXMOND B R, STOUTHAMER E, et al. Identifying causes of urban differential subsidence in the Vietnamese Mekong delta by combining InSAR and field observations[J]. Remote Sensing, 2021, 13(2). DOI:10.3390/rs13020189 .
|
18 |
XU B, FENG G C, LI Z W, et al. Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: a case study of Shenzhen, China[J]. Remote Sensing, 2016, 8(8). DOI:10.3390/rs8080652 .
|
19 |
ERBAN L E, GORELICK S M, ZEBKER H A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam[J]. Environmental Research Letters, 2014, 9(8). DOI:10.1088/1748-9326/9/8/084010 .
|
20 |
HIGGINS S A. Review: advances in delta-subsidence research using satellite methods[J]. Hydrogeology Journal, 2016, 24(3): 587-600.
|
21 |
HUSSAIN M A, CHEN Z L, SHOAIB M, et al. Sentinel-1A for monitoring land subsidence of coastal city of Pakistan using Persistent Scatterers In-SAR technique[J]. Scientific Reports, 2022, 12. DOI:10.1038/s41598-022-09359-7 .
|
22 |
GEBREMICHAEL E, SULTAN M, BECKER R, et al. Assessing land deformation and sea encroachment in the Nile delta: a radar interferometric and inundation modeling approach[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 3 208-3 224.
|
23 |
YAO Wenyi, GAO Yajun, ZHANG Xiaohua. Relationship evolution between runoff and sediment transport in the Yellow River and related scientific issues[J]. Science of Soil and Water Conservation, 2020, 18(4): 1-11.
|
|
姚文艺, 高亚军, 张晓华. 黄河径流与输沙关系演变及其相关科学问题[J]. 中国水土保持科学, 2020, 18(4): 1-11.
|
24 |
CHENG Xia, ZHANG Yonghong, DENG Min, et al. Analysis of recent surface deformation of the Yellow River Delta based on Sentinel-1A satellite[J]. Science of Surveying and Mapping, 2020, 45(2): 43-51.
|
|
程霞, 张永红, 邓敏, 等. Sentinel-1A卫星的黄河三角洲近期地表形变分析[J]. 测绘科学, 2020, 45(2): 43-51.
|
25 |
WANG H J, WU X, BI N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review[J]. Global and Planetary Change, 2017, 157: 93-113.
|
26 |
WANG S, FU B J, PIAO S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 38-41.
|
27 |
LIU Y, HUANG H J. Characterization and mechanism of regional land subsidence in the Yellow River Delta, China[J]. Natural Hazards, 2013, 68(2): 687-709.
|
28 |
ZHANG Y, LIU Y L, ZHANG X Y, et al. Correlation analysis between land-use/cover change and coastal subsidence in the Yellow River Delta, China: reviewing the past and prospecting the future[J]. Remote Sensing, 2021, 13(22). DOI:10.3390/rs13224563 .
|
29 |
WANG S Y, ZHANG G, CHEN Z W, et al. Surface deformation extraction from small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) using coherence-optimized baseline combinations[J]. GIScience & Remote Sensing, 2022, 59(1): 295-309.
|
30 |
BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2 375-2 383.
|
31 |
ZHAO Xiuying, WANG Yaoqiang, LI Hongyu, et al. Design and implementation of seed spread algorithm for calculations of source flood submerge area based on DEM[J]. Science & Technology Review, 2012, 30(8): 61-64.
|
|
赵秀英, 王耀强, 李洪玉, 等. 基于DEM的有源淹没算法设计与实现: 以种子蔓延法为例[J]. 科技导报, 2012, 30(8): 61-64.
|
32 |
FOX-KEMPER B, HEWITT H T, XIAO C, et al. Ocean, cryosphere and sea level change [M]// IPCC. Climate change 2021: the physical science basis. Cambridge: Cambridge University Press, 2021.
|
33 |
YANG Jie, HUANG Xin. The 30 m annual land cover and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13: 3 907-3 925.
|
34 |
GE Daqing. Research on key technology of InSAR monitoring of regional land subsidence[D]. Beijing: China University of Geosciences (Beijing), 2013.
|
|
葛大庆. 区域性地面沉降InSAR监测关键技术研究[D]. 北京: 中国地质大学(北京), 2013.
|
35 |
HOU Zhandong. Comparison and analysis of the spatial interpolation methods of the urban ground subsidence monitoring data[J]. Geospatial Information, 2020, 18(8): 106-109.
|
|
侯占东. 城市地面沉降监测数据的插值方法对比分析[J]. 地理空间信息, 2020, 18(8): 106-109.
|
36 |
DAWSON R, HALL J, SAYERS P, et al. Sampling-based flood risk analysis for fluvial dike systems[J]. Stochastic Environmental Research and Risk Assessment, 2005, 19(6): 388-402.
|
37 |
LIU Xiaoshuai, TAO Qiuxiang, NIU Chong, et al. Comparative analysis and verification of DInSAR and SBAS InSAR in mining subsidence monitoring[J]. Progress in Geophysics, 2022, 37(5): 1 825-1 833.
|
|
刘晓帅, 陶秋香, 牛冲, 等. DInSAR与SBAS InSAR矿区地面沉降监测能力对比分析与验证[J]. 地球物理学进展, 2022, 37(5): 1 825-1 833.
|
38 |
ZHANG Yi. Spatial-temporal variations and distribution characteristics in subsidence due to the natural consolidation and compaction of sediment in the Yellow River Delta, China[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2018.
|
|
张翼. 黄河三角洲浅层沉积物固结压实的时空变化及分布特征[D]. 青岛:中国科学院海洋研究所, 2018.
|
39 |
HIGGINS S, OVEREEM I, TANAKA A, et al. Land subsidence at aquaculture facilities in the Yellow River Delta, China[J]. Geophysical Research Letters, 2013, 40(15): 3 898-3 902.
|
40 |
HERRERA-GARCÍA G, EZQUERRO P, TOMÁS R, et al. Mapping the global threat of land subsidence[J]. Science, 2021, 371(6 524): 34-36.
|
41 |
WANG H J, BI N S, SAITO Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: causes and environmental implications in its estuary[J]. Journal of Hydrology, 2010, 391(3/4): 302-313.
|