地球科学进展 ›› 2018, Vol. 33 ›› Issue (4): 350 -360. doi: 10.11867/j.issn.1001-8166.2018.04.0350

综述与评述 上一篇    下一篇

海平面上升及其风险管理
温家洪( ), 袁穗萍, 李大力, 王璐阳, 张敏, 杜士强   
  1. 上海师范大学地理系, 上海 200234
  • 收稿日期:2017-07-30 修回日期:2017-12-12 出版日期:2018-04-20
  • 基金资助:
    *国家自然科学基金项目“长江三角洲复合极端洪涝灾害风险评估与稳健决策研究——以上海为例”(编号:5161101688)和“基于径—潮流能耗的长江口南支河势稳定性研究”(编号:41701001) 资助.

Sea Level Rise and Its Risk Management

Jiahong Wen( ), Suiping Yuan, Dali Li, Luyang Wang, Min Zhang, Shiqiang Du   

  1. Department of Geography, Shanghai Normal University, Shanghai 200234, China
  • Received:2017-07-30 Revised:2017-12-12 Online:2018-04-20 Published:2018-05-24
  • About author:

    First author: Wen Jiahong(1966-), male, Xingguo County, Jiangxi Province, Professor. Research areas include natural disaster risk analysis and management, climate change adaptation.E-mail:jhwen@shnu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Sustainable solutions for managing compound flood risks under future uncertainties: The case of Shanghai City and the Yangtze River Delta Region”(No. 5161101688) and “Study on the regime equilibrium of Yangtze Estuary’s South Branch based on energy dissipation under consistent framework of river and tide”(No.41701001).

海平面上升是人为气候变暖最为严重的后果之一。近年来海平面上升及其风险管理研究与实践取得了突破性进展:①海平面上升作为一种致灾因子,需要预测未来可能的情景及其概率,并关注低概率高影响的上限情景。为此,近年来发展了完全概率估计方法,以典型浓度路径和共享社会经济路径情景为条件,对未来海平面上升进行多情景及其概率估算。②在高排放情景下,冰盖模式模拟得出南极冰盖到2100年对海平面的贡献高达0.781.50 m,远高出IPCC第五次报告的估计。③21世纪末的全球平均海平面(GMSL)上限由原来的2.0 m调高为2.5 m,并指出21世纪之后,海平面上升仍很可能加速,但上升的不确定性将增大。④发展了综合考虑极端情景和中间情景、适应对策路径和稳健决策等方法,进行长周期关键项目决策、规划和风险管理,以管理海平面上升的潜在影响和风险。海平面上升及其风险管理研究今后需要加强监测、分析和模拟来预测不同时间尺度全球、区域和地方海平面上升的情景和概率,加强冰盖的动力过程和突变研究,减小海平面上升预测的不确定性,评估其上限情景,加强深度不确定性下的风险决策方法及其应用研究,以满足沿海地区气候变化适应规划和风险管理决策的需求。

Sea level rise is among the most severe societal consequences of anthropogenic climate change. Significant advance has been achieved in recent years in the study of future sea level rise and its risk management practice: ①Sea level rise is considered as a kind of hazard,its future plausible scenarios and their probabilities are necessary to be predicted and estimated,and the upper limit with very low probability and high consequences should be emphasized. For this purpose,a complete probability distribution framework has been developed to predict the scenarios and probabilities of future sea level rise with Representative Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs) in recent years. ② For a high emissions scenario,it was found that Antarctic Ice Sheet might make a contribution to Global Mean Sea Level (GMSL) rise as high as 78150 cm (mean value 114 cm) by 2100. For the same scenario,the IPCC Fifth Assessment Report gave an Antarctic contribution of only -8+14 cm (mean value 4 cm). ③ Recent studies recommended a revised worst-case (Extreme) GMSL rise scenario of 2.5 m from previous 2.0 m by 2100. It is recognized that GMSL rise will not stop at 2100; rather,it will continue to rise for centuries afterwards,but the degree of uncertainty related to sea level rise will increase. ④ Approaches of combining the upper-bound scenario and a central estimate or mid-range scenario, Adaptation Pathways and robust decision-making are developed to provide a set of long-term planning envelope. These decision-making methods are used widely in coastal risk management related to future sea level rise. Sea level rise and its risk management need to enhance monitoring,analysis and simulation to predict the global,regional and local seal level rise scenarios and the probabilities with different time scales,reduce the estimate uncertainty, assess its upper limits, and enhance decision methods and their application under deep uncertain, in order to meet the needs of climate change adaptation planning,decision-making and long-term risk management in coastal regions.

中图分类号: 

表1 2100年GMSL(中位值)情景的超越概率 [ 38 ](单位:%)
Table 1 Probability of exceeding GMSL(median value)scenarios in 2100 [ 38 ](unit:%)
表1 2100年GMSL(中位值)情景的超越概率 [ 38 ](单位:%)
Table 1 Probability of exceeding GMSL(median value)scenarios in 2100 [ 38 ](unit:%)
表2 自2000年起算的GMSL上升情景(19年的平均中值) [ 4 ](单位:m)
Table 2 GMSL rise scenario heights in meters for 19-year averages centered on decade through 2200 initiating in year 2000(only median values are shown) [ 4 ](unit:m)
表2 自2000年起算的GMSL上升情景(19年的平均中值) [ 4 ](单位:m)
Table 2 GMSL rise scenario heights in meters for 19-year averages centered on decade through 2200 initiating in year 2000(only median values are shown) [ 4 ](unit:m)
图1 气候模拟典型浓度路径(RCP)下,与排放相关的海平面上升条件概率预估示意图 [ 4 ]
Fig.1 Schematic showing the intersection of scenario approaches with emission-dependent (conditional) probabilistic projections of sea level rise under the climate modeling community’s Representative Concentration Pathways (RCP) [ 4 ]
图1 气候模拟典型浓度路径(RCP)下,与排放相关的海平面上升条件概率预估示意图 [ 4 ]
Fig.1 Schematic showing the intersection of scenario approaches with emission-dependent (conditional) probabilistic projections of sea level rise under the climate modeling community’s Representative Concentration Pathways (RCP) [ 4 ]
[1] Wong P P, Losada I J, Gattuso J P, et al.Coastal systems and low-lying areas[M]∥Field C B, Barros V R, Dokken D J, et al, eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 361-409.
[2] Nicholls R J, Hanson S E, Lowe J A, et al. Sea-level scenarios for evaluating coastal impacts[J]. Climate Change, 2014, 5(1): 129-150.
doi: 10.1002/wcc.253     URL    
[3] Hinkel J, Jaeger C, Nicholls R J, et al. Sea-level rise scenarios and coastal risk management[J]. Nature Climate Change, 2015, 5(3): 188-190.
doi: 10.1038/nclimate2505     URL    
[4] Sweet W V, Kopp R E, Weaver C P, et al. Global and Regional sea Level Rise Scenarios for the United States[R]. NOAA Technical Report NOS CO-OPS 083. Silver Spring, Maryland: National Oceanic and Atmospheric Administration,2017.
[5] DeConto R M, Pollard D. Contribution of Antarctica to past and future sea-level rise[J]. Nature, 2016, 531(7 596): 591-597.
doi: 10.1038/nature17145     URL     pmid: 27029274
[6] Oppenheimer M, Alley R B.How high will the seas rise?[J]. Science, 2016, 354(6 318): 1 375-1 377.
doi: 10.1126/science.aak9460     URL     pmid: 27980170
[7] Pollard D, DeConto R M, Alley R B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure[J]. Earth and Planetary Science Letters, 2015, 412: 112-121.
[8] Massondelmotte V, Schulz M, Abeouchi A, et al.Information from Paleoclimate Archives[M]∥Stocker T F, Qin D, Plattner G K, et al,eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 384-464.
[9] Kopp R E, Simons F J, Mitrovica J X, et al. A probabilistic assessment of sea level variations within the last interglacial stage[J]. Geophysical Journal International, 2013, 193(2):711-716.
doi: 10.1093/gji/ggt029     URL    
[10] Dutton A, Lambeck K.Ice volume and sea level during the last interglacial[J]. Science, 2012, 337(6 091):216.
doi: 10.1126/science.1205749     URL     pmid: 22798610
[11] Potter E K.Links between climate and sea levels for the past three million years[J]. Nature, 2002, 419(6 903):199.
doi: 10.1038/nature01089     URL    
[12] Nerem R S, Chambers D P, Choe C, et al. Estimating mean sea level change from the TOPEX and Jason altimeter missions[J]. Marine Geodesy, 2010, 33(S1): 435-446.
doi: 10.1080/01490419.2010.491031     URL    
[13] Church J A, White N J.Sea-level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics, 2011, 32(4/5): 585-602.
doi: 10.1007/s10712-011-9119-1     URL    
[14] Hay C C, Morrow E, Kopp R E, et al. Probabilistic reanalysis of twentieth-century sea-level rise[J]. Nature, 2015, 517(7 535): 481-484.
doi: 10.1038/nature14093     URL     pmid: 25629092
[15] Kopp R E, Kemp A C, Bittermann K, et al. Temperature-driven global sea-level variability in the Common Era[J]. Proceedings of the National Academy of Sciences, 2016, 113(11): E1434-E1441.
doi: 10.1073/pnas.1517056113     URL     pmid: 26903659
[16] Church J A, Clark P U, Cazenave A, et al.Sea level change[M]∥Stocker T F, Qin D, Plattner G K, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,2013: 1 137-1 216.
[17] O’Neill B C, Kriegler E, Ebi K L, et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change, 2017, 42: 169-180.
doi: 10.1016/j.gloenvcha.2015.01.004     URL    
[18] Nauels A, Rogelj J, Schleussner C F, et al. Linking sea level rise and socioeconomic indicators under the shared socioeconomic pathways[J]. Environmental Research Letters, 2017,(12):114012.
doi: 10.1088/1748-9326/aa92b6     URL    
[19] Moore J C, Grinsted A, Zwinger T, et al. Semiempirical and process-based global sea level projections[J]. Reviews of Geophysics, 2013, 51(3):484-522.
doi: 10.1002/rog.20015     URL    
[20] Rahmstorf S.A semi-empirical approach to projecting future sea-level rise[J]. Science, 2007, 315(5 810):368-370.
doi: 10.1126/science.1135456     URL    
[21] Thomas M, Pidgeon N, Whitmarsh L, et al. Expert judgements of sea-level rise at the local scale[J].Journal of Risk Research, 2016, 19(5): 664-685.
doi: 10.1080/13669877.2015.1043568     URL    
[22] Horton R, Little C, Gornitz V, ,et al. New York City panel on climate change. New York City panel on climate change2015 report. Chapter 2: Sea level rise and coastal storms[J]. Annals of the New York Academy of Sciences, 2015, 1 336(1):36-44.
[23] Bamber J L, Aspinall W P.An expert judgement assessment of future sea level rise from the ice sheets[J]. Nature Climate Change, 2013, 3(4):424-427.
doi: 10.1038/nclimate1778     URL    
[24] Cheng Heqin, Wang Dongmei, Chen Jiyu.Research and prediction of the trend of relative sea level change in Shanghai area in 2030 and forecast the progress of[J]. Climate Change Research, 2015, 11(4): 231-238.
[程和琴, 王冬梅, 陈吉余. 2030年上海地区相对海平面变化趋势的研究和预测[J]. 气候变化研究进展, 2015, 11(4): 231-238.]
doi: 10.3969/j.issn.1673-1719.2015.04.001     URL    
[25] Jackson L P, Jevrejeva S.A probabilistic approach to 21st century regional sea-level projections using RCP and high-end scenarios[J]. Global and Planetary Change, 2016, 146: 179-189.
doi: 10.1016/j.gloplacha.2016.10.006     URL    
[26] Kopp R E, Broccoli A, Horton B P, et al. Assessing New Jersey’s Exposure to Sea-Level Rise and Coastal Storms: Report of the New Jersey Climate Adaptation Alliance Science and Technical Advisory Panel[R]. New Brunswick,New Jersey: The New Jersey Climate Adaptation Alliance, 2016.
[27] Pfeffer W T, Harper J T, O’Neel S. Kinematic constraints on glacier contributions to 21st-century sea-level rise[J].Science, 2008, 321(5 894): 1 340-1 343.
doi: 10.1126/science.1159099     URL    
[28] Parris A, Bromirski P, Burkett V, et al. Global sea level rise scenarios for the US National Climate Assessment[R].US Department of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research, Climate Program Office, 2012.
[29] Shepherd A, Ivins E R, Geruo A, et al. A reconciled estimate of ice-sheet mass balance[J]. Science, 2012, 338(6 111): 1 183-1 189.
doi: 10.1126/science.1228102     URL    
[30] Khan S A, Kjær K H, Bevis M, et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming[J].Nature Climate Change, 2014, 4(4): 292-299.
doi: 10.1038/nclimate2161     URL    
[31] Scambos T, Shuman C.Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by HJ Zwally and others[J].Journal of Glaciology, 2016, 62(233): 599-603.
doi: 10.1017/jog.2016.59     URL    
[32] Seo K W, Wilson C R, Scambos T, et al. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013[J].Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3 617-3 627.
doi: 10.1002/2014JB011755     URL    
[33] Martín-Español A.Spatial and temporal Antarctic Ice Sheet mass trends, glacio-isostatic adjustment, and surface processes from a joint inversion of satellite altime-ter, gravity, and GPS data[J]. Journal of Geophysical Research: Earth Surface, 2016, 121: 182-200.
doi: 10.1002/2015JF003550     URL     pmid: 27134805
[34] Joughin I, Smith B E, Medley B.Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica[J].Science, 2014, 344(6 185): 735-738.
doi: 10.1126/science.1249055     URL     pmid: 24821948
[35] Rignot E, Mouginot J, Morlighem M, et al. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011[J]. Geophysical Research Letters, 2014, 41(10): 3 502-3 509.
doi: 10.1002/2014GL060140     URL    
[36] Tedesco M, Doherty S, Fettweis X, et al. The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981-2100)[J]. Cryosphere, 2016, 10: 477-496.
doi: 10.5194/tcd-9-5595-2015     URL    
[37] Miller K G, Kopp R E, Horton B P, et al. A geological perspective on sea-level rise and its impacts along the US mid-Atlantic coast[J]. Earths Future, 2013, 1(1): 3-18.
doi: 10.1002/2013EF000135     URL    
[38] Kopp R E, Horton R M, Little C M, et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites[J]. Earths Future, 2014, 2(8): 383-406.
doi: 10.1002/2014EF000239     URL    
[39] Sriver R L, Urban N M, Olson R, et al. Toward a physically plausible upper bound of sea-level rise projections[J]. Climatic Change, 2012, 115(3/4): 893-902.
doi: 10.1007/s10584-012-0610-6     URL    
[40] Bamber J L, Aspinall W P.An expert judgement assessment of future sea level rise from the ice sheets[J]. Nature Climate Change, 2013, 3(4): 424-427.
doi: 10.1038/nclimate1778     URL    
[41] Grinsted A, Jevrejeva S, Riva R E M, et al. Sea level rise projections for northern Europe under RCP8. 5[J]. Climate Research, 2015, 64(1): 15-23.
doi: 10.3354/cr01309     URL    
[42] Rohling E J, Haigh I D, Foster G L, et al. A geological perspective on potential future sea-level rise[J]. Scientific Reports, 2013, (3):3 461.
doi: 10.1038/srep03461     URL     pmid: 24336564
[43] Jevrejeva S, Grinsted A, Moore J C.Upper limit for sea level projections by 2100[J]. Environmental Research Letters, 2014, 9(10): 104 008.
doi: 10.1088/1748-9326/9/10/104008     URL    
[44] Jackson L P, Jevrejeva S.A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios[J]. Global and Planetary Change, 2016, 146: 179-189.
doi: 10.1016/j.gloplacha.2016.10.006     URL    
[45] Boening C, Willis J K, Landerer F W, et al. The 2011 La Niña: So strong, the oceans fell[J]. Geophysical Research Letters, 2012, 39(19):L19602.
doi: 10.1029/2012GL053055     URL    
[46] Fasullo J T, Boening C, Landerer F W, et al. Australia’s unique influence on global sea level in 2010-2011[J]. Geophysical Research Letters, 2013, 40(16): 4 368-4 373.
doi: 10.1002/grl.50834     URL    
[47] Cazenave A, Dieng H B, Meyssignac B, et al. The rate of sea-level rise[J]. Nature Climate Change, 2014, 4(5): 358-361.
doi: 10.1038/nclimate2159     URL    
[48] Slangen A B A, Carson M, Katsman C A, et al. Projecting twenty-first century regional sea-level changes[J]. Climatic Change, 2014, 124(1/2): 317-332.
doi: 10.1007/s10584-014-1080-9     URL    
[49] Mengel M, Levermann A, Frieler K, et al. Future sea level rise constrained by observations and long-term commitment[J]. Proceedings of the National Academy of Sciences, 2016, 113(10): 2 597-2 602.
doi: 10.1073/pnas.1500515113     URL     pmid: 26903648
[50] Wong T E, Bakker A M R, Keller K. Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense[J]. Climatic Change, 2016, 144(2):347-364.
doi: 10.1007/s10584-017-2039-4     URL    
[51] Bars D L, Drijfhout S, De Vries H.A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss[J]. Environmental Research Letters, 2017, 12(4):044013.
doi: 10.1088/1748-9326/aa6512     URL    
[52] Levermann A, Clark P U, Marzeion B, et al. The multimillennial sea-level commitment of global warming[J]. Proceedings of the National Academy of Sciences, 2013, 110(34): 13 745-13 750.
doi: 10.1073/pnas.1219414110     URL    
[53] Deschamps P, Durand N, Bard E, et al. Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years ago[J]. Nature, 2012,483(7 391): 559-564.
doi: 10.1038/nature10902     URL    
[54] Church J A, White N J, Coleman R, et al. Estimates of the regional distribution of sea level rise over the 1950-2000 period[J]. Journal of Climate, 2004, 17(13): 2 609-2 625.
doi: 10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2     URL    
[55] Merrifield M A, Leuliette E, Thompson P, et al. Sea level variability and change [in “State of the Climate in 2015”][J]. Bulletin of the American Meteorological Society, 2016, 97(Suppl.): S80-S82.
[56] Khan N S, Ashe E, Shaw T A, et al. Holocene relative sea-level changes from near-, intermediate-, and far-field locations[J]. Current Climate Change Reports, 2015, 1(4): 247-262.
doi: 10.1007/s40641-015-0029-z     URL    
[57] Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities[J]. Nature Geoscience, 2009, 2(10): 681-686.
doi: 10.1038/ngeo629     URL    
[58] Galloway D L, Jones D R, Ingebritsen S E.Land Subsidence in the United States[R]. Leicester, Virginia: US Geological Survey.y, 1999.
[59] Sella G F, Stein S, Dixon T H, et al. Observation of glacial isostatic adjustment in “stable” North America with GPS[J]. Geophysical Research Letters, 2007, 34(2):L02306.
[60] Boon J D, Brubaker J M, Forrest D R.Chesapeake Bay land subsidence and sea level change[R]∥An Evaluation of Past and Present Trends and Future Outlook Special Report No. 425 in Applied Marine Science and Ocean Engineering. Virginia Institute of Marine Science, 2010.
[61] Eggleston J, Pope J.Land Subsidence and Relative Sea-level Rise in the Southern Chesapeake Bay Region[R]. Leicester, Virginia: US Geological Survey, 2013.
[62] Sato T, Larsen C F, Miura S, et al. Reevaluation of the viscoelastic and elastic responses to the past and present-day ice changes in Southeast Alaska[J]. Tectonophysics, 2011, 511(3): 79-88.
doi: 10.1016/j.tecto.2010.05.009     URL    
[63] Hall J A, Gill S, Obeysekera J, et al. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide[R]. U.S. Department of Defense, Strategic Environmental Research and Development Program, 2016.
[64] Perrette M, Landerer F, Riva R, et al. A scaling approach to project regional sea level rise and its uncertainties[J]. Earth System Dynamics, 2013, 4(1): 11-29.
doi: 10.5194/esd-4-11-2013     URL    
[65] Ranger N, Reeder T, Lowe J.Addressing ‘deep’ uncertainty over long-term climate in major infrastructure projects: Four innovations of the Thames Estuary 2100 Project[J]. EURO Journal on Decision Processes, 2013, 1(3/4): 233-262.
doi: 10.1007/s40070-013-0014-5     URL    
[66] Reeder T, Ranger N. How do You Adapt in an Uncertain World? Lessons from the Thames Estuary 2100 Project[R/OL]. World Resources Report Uncertainty Series, World Resources Institute, Washington DC, USA. 2011. .
URL    
[67] Le Cozannet G, Manceau J C, Rohmer J.Bounding probabilistic sea-level projections within the framework of the possibility theory[J]. Environmental Research Letters, 2017, 12(1): 014012.
doi: 10.1088/1748-9326/aa5528     URL    
[68] Church J A, Clark P U, Cazenave A, et al. Sea-level rise by 2100[J]. Science, 2013, 342(6 165): 1 445.
doi: 10.1126/science.342.6165.1445-a     URL     pmid: 24357297
[69] Cubasch U, Wuebbles D, Chen D.Introduction∥Stocker T F, Qin D, Plattner G K, et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 119-158.
[70] Titus J G, Anderson K E.Coastal Sensitivity to Sea-level Rise: A Focus on the Mid-Atlantic Region[R]. Washington, US: Government Printing Office, 2009.
[71] Renn O, Walker K D.Global Risk Governance: Concept and Practice using the IRGC Framework[M]. Dordrecht: Springer, 2008.
[72] Tebaldi C, Strauss B H, Zervas C E.Modelling sea level rise impacts on storm surges along US coasts[J]. Environmental Research Letters, 2012, 7(1): 014032.
doi: 10.1088/1748-9326/7/1/014032     URL    
[73] National Research Council (NRC). Sea-level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future[M].Washington DC: The National Academies Press,2012.
[74] Sweet W V, Park J.From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise[J]. Earths Future, 2014, 2(12): 579-600.
doi: 10.1002/2014EF000272     URL    
[75] Spanger-Siegfried E, Fitzpatrick M F, Dahl K.Encroaching tides: How Sea Level Rise and Tidal Flooding Threaten U.S. East and Gulf Coast Communities over the Next 30 Years[R]. Cambridge,MA: Union of Concerned Scientists, 2014.
[76] USACE. Incorporating Sea Level Change in Civil Works Programs[R]. Washington DC: USACE, 2013.
[77] Haasnoot M, Kwakkel J H, Walker W E, et al. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world[J]. Global Environmental Change, 2013, 23(2):485-498.
doi: 10.1016/j.gloenvcha.2012.12.006     URL    
[78] Bakker A M R, Louchard D, Keller K. Sources and implications of deep uncertainties surrounding sea-level projections[J]. Climatic Change, 2017, 140: 339-347.
doi: 10.1007/s10584-016-1864-1     URL    
[79] Amr B, Wong T E, Ruckert K L, et al. Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet[J]. Scientific Reports, 2017, 7(1):3 880.
doi: 10.1038/s41598-017-04134-5     URL     pmid: 28634375
[80] Dittrich R, Wreford A, Moran D.A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward?[J]. Ecological Economics, 2016, 122(68):79-89.
doi: 10.1016/j.ecolecon.2015.12.006     URL    
[81] Hu Xiaoxuan, Chen Yi.Decision analysis under deep uncertainty—Present situation and prospect[J]. Control and Decision, 2015,30(3): 385-394.
[胡笑旋, 陈意. 深度不确定环境下的决策分析方法——研究现状与展望[J]. 控制与决策, 2015, 30(3): 385-394.]
doi: 10.13195/j.kzyjc.2014.0947     URL    
[82] RAND. Making Good Decisions Without Predictions Robust Decision Making for Planning Under Deep Uncertainty[EB/OL]. RAND Corporation Research Highlights.2013. [2017-10-20].
URL    
[83] Hall J W, Lempert R J, Keller K, et al. Robust climate policies under uncertainty: A comparison of robust decision making and info-gap methods[J]. Risk Analysis An Official Publication of the Society for Risk Analysis, 2012, 32(10):1 657-1 672.
doi: 10.1111/j.1539-6924.2012.01802.x     URL     pmid: 22519664
[84] Lempert R, Corporation R, Kalra N.Managing Climate Risks in Developing Countries with Robust Decision Making World Resources Report Uncertainty Series[R]. World Resources Report, 2011.
[85] Johnson D R, Fischbach J R, Ortiz D S.Estimating Surge-Based Flood Risk with the Coastal Louisiana Risk Assessment Model[J]. Journal of Coastal Research, 2013, 67:109-126.
doi: 10.2112/SI_67_8     URL    
[86] Porthouse J, Hosking A, Johnson N, et al. Louisiana’s comprehensive master plan for a sustainable coast: A response to Hurricanes Katrina and Rita in 2005[C]//Coasts, Marine Structures and Breakwaters: Adapting to Change. Proceedings of the 9th International Conference. Baton Rouge: Thomas Telford Ltd., 2010: 1: 392-403.
[87] Hallegatte S, Shah A, Brown C, et al. Investment Decision Making Under Deep Uncertainty-application to Climate Change[R]. Washington, DC: World Bank, 2012.
[88] Weaver C P, Lempert R J, Brown C, et al. Improving the contribution of climate model information to decision making: The value and demands of robust decision frameworks[J]. Wiley Interdisciplinary Reviews Climate Change, 2013, 4(1): 39-60.
doi: 10.1002/wcc.202     URL    
[89] Stammer D, Nichols R, van de Wal R, ,et al. WCRP grand challenge: Regional sea level change. WCRP grand challenge: Regional sea level change and coastal impacts science and implementation plan[EB/OL]. The GC Sea Level Steering Team.2017 [2017-10-20].
URL    
[1] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[2] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[3] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[4] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[5] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[6] 熊伟, 冯灵芝, 居辉, 杨笛. 未来气候变化背景下高温热害对中国水稻产量的可能影响分析[J]. 地球科学进展, 2016, 31(5): 515-528.
[7] 张华, 韩广轩, 王德, 薛钦昭, 骆永明. 基于生态工程的海岸带全球变化适应性防护策略[J]. 地球科学进展, 2015, 30(9): 996-1005.
[8] 张强, 马芳, 王莺, 宋连春, 马鹏里. 浅论气候容量及其对气候安全风险管理的作用[J]. 地球科学进展, 2015, 30(6): 709-714.
[9] 潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.
[10] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[11] 周永章,沈文杰, 李 勇,窦 磊,李文胜,赖启宏,杜海燕,钟莉莉,梁 婷. 基于通量模型的珠江三角洲经济区土壤重金属地球化学累积预测预警研究[J]. 地球科学进展, 2012, 27(10): 1115-1125.
[12] 李宁,张鹏,胡爱军,刘雪琴,崔维佳,孟志强,史培军. 从风险认知到风险数量化分类[J]. 地球科学进展, 2009, 24(1): 42-48.
[13] 张永民,赵士洞,郭荣朝. 全球湿地的状况、未来情景与可持续管理对策[J]. 地球科学进展, 2008, 23(4): 415-420.
[14] 张永民,赵士洞. 全球荒漠化的现状、未来情景及防治对策[J]. 地球科学进展, 2008, 23(3): 306-311.
[15] 张雪芹,彭莉莉,林朝晖. 未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2008, 23(2): 174-185.
阅读次数
全文


摘要