地球科学进展 ›› 2016, Vol. 31 ›› Issue (5): 515 -528. doi: 10.11867/j.issn.1001-8166.2016.05.0515.

上一篇    下一篇

未来气候变化背景下高温热害对中国水稻产量的可能影响分析
熊伟 1( ), 冯灵芝 2, 居辉 1, 杨笛 1   
  1. 1.中国农业科学院农业环境与可持续发展研究所,北京 100081
    2.陕西省榆林市气象局,陕西 榆林 719000
  • 收稿日期:2016-03-05 修回日期:2016-05-01 出版日期:2016-05-20
  • 基金资助:
    *国家自然科学基金项目“气候变化下我国粮食产量增速放缓的驱动机制及适应潜力研究”(编号:41471074)和“我国麦—玉轮作复种体系对气候变化的适应机制及适应技术集成的模拟研究”(编号:41171093)资助

Possible Impacts of High Temperatures on China’s Rice Yield under Climate Change

Wei Xiong 1( ), Lingzhi Feng 2, Hui Ju 1, Di Yang 1   

  1. 1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2.Meteorological Administration of Yulin City, Shaanxi Province, Yulin 719000,China
  • Received:2016-03-05 Revised:2016-05-01 Online:2016-05-20 Published:2016-05-10
  • About author:

    First author:Xiong Wei(1974-), male, Xiaogan City, Hubei Provinces, Professor. Research areas include climate change impacts and adaptation.E-mail:xiongw@ami.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China Projects “A research on the reasons of the recent slowing of crop yield growth in China and the potential of adaptation”(No.41471074) and “The adaptation mechanism of summer maize and winter wheat cropping system in China and an integrated simulation of adaptation”(No.41171093)

研究分析了RCP2.6和RCP8.5气候情景下2021—2050年我国水稻高温敏感期(孕穗期—乳熟期)高温事件的变化趋势(较基准时段1961—1990年),并利用1981—2009年水稻田间观测资料,明确了水稻高温减产的主导因子,构建了主导因子与水稻减产率之间的经验回归关系式,在此基础上预估了未来RCP2.6和RCP8.5气候情景下我国水稻发生高温热害的风险变化。结果表明:①RCP2.6和RCP8.5气候情景下2021—2050年,全国各水稻种植区,水稻高温事件均有增加趋势,高温日数(HSD)、高温积温(HDD)都呈现增加趋势,高温持续日数(CHD)有延长趋势,其中华南双季稻区、长江流域单季稻区和东北单季稻区的HSD和HDD的变化幅度较为明显。②中国水稻高温中心在1961—2000年主要集中于湖南北部,与湖北省交界处附近,2种情景下2021—2050年均出现了向东北方向移动的趋势。③除东北区外,我国其余水稻种植区,孕穗—乳熟阶段的日最高气温连续3 d超过35 ℃以上的有效积温HDD2是导致水稻减产的第一大要素,两者之间具有显著线性负相关关系;而东北区水稻产量更易受到孕穗—乳熟阶段的单日日最高气温超过32 ℃的有效积温SDD2的影响,且两者呈现出显著一元二次曲线关系。④与1961—1990年相比,2种气候情景下2021—2050年我国水稻发生高温热害的概率增加较大的地区,主要集中在长江流域单季稻区的湖北和安徽的大部分地区,华南双季稻区的广东、广西、海南省的大部分地区以及东北单季稻区的南部。

This study investigated the changes of high temperature events during important growing period of rice (graining filling to maturity) of 2021-2050 due to climate change. Future climate scenarios were HadGEM2-ES simulation with RCP2.6 and RCP8.5 emission pathways. Relationship between high temperature and yield change was established from historical weather and field observations during 1981-2009 period. The impacts of high temperatures on China’s rice production up to 2050 were assessed by applying deduced regression models to climate scenarios. Key messages drawn from this exercise include: ①High temperature event exhibited gradual increase from 2021 to 2050 under both RCP2.6 and RCP8.5 scenarios, characterized by increased number of high temperature days (HSD), rising accumulated temperature with Tmax greater than 35 ℃ (HDD), and increased lasting days of high temperature (CHD). The HSD and HDD increased substantially in double rice cropping system of South China, single rice cropping system of Yangtze River Basin and rice area of Northeast China. ②High temperature hotspot was located near the border between Hunan and Hubei during 1961-2000, and might move towards northeast in the period of 2021-2050. ③Except the Northeast, China’s rice production suffered most from increased HDD during grain filling to maturity, indicated by significant negative and linear relationship between yield and HDD, whereas rice in Northeast China was subject to the increase of SDD during grain filling to maturity, with a significant and quadratic relationship between the yield and SDD. ④Compared to the high temperature risks during 1961-1990, climate change would increase the risks in majority of the rice area, especially in Hubei and Anhui-the central portion of Yangtze River Basin rice area, Guangdong, Guangxi and Hainan-south China double rice area, and south part of Northeast China single rice area.

中图分类号: 

图1 中国水稻种植区和农业气象站点、气象站点的空间分布
Fig.1 Rice planting zone, and locations of agro-meteorological and meteorological stations
表1 1981—2009年各水稻种植区水稻孕穗、乳熟的平均日期
Table 1 Average date of booting, anthesis and milking in each agrometeorological station in China from 1981 to 2009
表2 RCP2.6,RCP8.5情景下2021—2050年中国水稻高温敏感期HSD和HDD较基准时段(1961—1990年)的平均变化
Table 2 Changes of HSD and HDD during high temperature sensitive period of rice in 2021-2050 under RCP2.6 and RCP8.5 (relative to baseline 1961-1990)
图2 基准时段(1961—1990年)我国及各水稻种植区水稻高温敏感期高温持续日数的频次
Fig.2 Occurrence frequency and lasting days of the high temperature events during rice high temperature sensitive period under baseline
表3 RCP2.6,RCP8.5情景下2021—2050年中国水稻高温敏感期高温持续日数(CHD)较基准时段的平均频次变化
Table 3 Changes of CHD during high temperature sensitive period of rice in 2021-2050 under RCP2.6 and RCP 8.5 (relative to baseline)
图3 1961—2000年和RCP2.6和RCP8.5情景下2021—2050年中国水稻高温中心的年代际移动情况
Fig.3 Movement of the weighted central point of high temperature risk in 1961-2000 and 2021-2050 under RCP2.6 and RCP8.5 scenarios
表4 影响水稻产量距平百分率(D)的主导因子
Table 4 Main factors affecting the inter-variability of rice yield and their statistics (D)
表5 各区域水稻产量距平百分率D与减产的最主导因子之间回归方程、减产速率和减产的高温阈值
Table 5 Regression models and the statistics of yield loss and high temperature indices
图4 RCP2.6(a)和RCP8.5(b)情景下2021—2050年中国水稻发生高温热害的概率变化情况(较基准时段1961—1990年)
Fig.4 Change in probability of high temperature events during rice growth period in 2021-2050 under scenario RCP 2.6 (a) and RCP 8.5 (b) (compared to baseline 1961-1990)
[1] Zhu Defeng,Zhang Yuping,Chen Huizhe,et al.Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015,48(17):3 404-3 414.
[朱德峰,张玉屏,陈惠哲,等.中国水稻高产栽培技术创新与实践[J].中国农业科学,2015,48(17):3 404-3 414.]
[2] Huo Zhiguo, Wang Shili.Agriculture and Bio-meterological Disasters[M]. Beijing: China Meteorological Press, 2009:72-79.
[霍治国, 王石立.农业和生物气象灾害[M]. 北京: 气象出版社, 2009:72-79.]
[3] Yao Fengmei, Zhang Jiahua.Changeof relative extreme hightemperature events and climate risk in rice growingperiod in China from 1981 to 2000[J]. Journal of Natural Disasters,2009, 18(4): 37-42.
[姚凤梅, 张佳华.1981—2000年水稻生长季相对极端高温事件及其气候风险的变化[J].自然灾害学报,2009, 18(4):37-42.]
[4] Gao Suhua, Wang Peijuan.Impacts of High Temperatare Stress on Rice Production in the Mid-lower Yangtze River Valley of China[M]. Beijing: China Meteorological Press,2009.
[高素华,王培娟.长江中下游高温热害及对水稻的影响[M].北京:气象出版社,2009.]
[5] National Bureau of Statistics of China. 2000 China Statistical Year Book[M].Beijing: China Statistics Press,2000.
[中国统计局,2000中国统计年鉴[M]2000中国统计年鉴[M].北京:中国统计出版社,2000.]
[6] Tao Fulu, Zhang Zhao, Zhang Shuai, et al.Response of crop yields to climate trends since 1980 in China[J]. Climate Research, 2012, 54(3): 233-247.
[7] IPCC.Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2013.
[8] Gourdji S M, Sibley A M, Lobell D B.Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections[J].Environmental Research Letters,2013, 8(2): 24-41.
[9] The Phytotron in Shanghai Institute of Plant Physiology. The influence of high temperature on the flowering and fruiting of early rice and its control II: The influence of high temperature on the flowering-fruiting of early rice during the floweringstage[J]. Acta Botanica Sinica, 1976, 18(3): 323-328.
[上海植物生理所. 高温对早稻开花结实的影响及其防治Ⅱ:早稻开花期高温对开花结实的影响[J]. 植物学报, 1976,18(3): 323-328.]
[10] Zhang Zujian, Wang Qingqing, Lang Youzhong, et al.Effects of high temperature stress at heading stage on pollination and fertilization of different types of rice variety[J]. Acta Agronomica Sinica,2014, 40(2): 273-282.
[张祖建,王晴晴,郎有忠,等.水稻抽穗期高温胁迫对不同品种授粉和受精作用的影响[J]. 作物学报, 2014, 40(2):273-282.]
[11] Xie Xiaojin, Li Bingbai, Li Yingxue,et al.Effects of high temperature stress on yield components and grain quality during heading stage[J]. Chinese Journal Agrometeorology,2010, 31(3):411-415.
[谢晓金,李秉柏,李映雪,等.抽穗期高温胁迫对水稻产量构成要素和品质的影响[J].中国农业气象,2010, 31(3):411-415.]
[12] Sheng Jing, Tao Hongjuan, Chen Liugen.Response of seed-setting and grain quality of rice to temperature at different time during grain filling period[J].Chinese Journal of Rice Science,2007,21(4):396-402.
[盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响[J].中国水稻科学,2007,21(4): 396-402.]
[13] Xie Zhiqing, Du Yin, Gao Ping, et al.Impact of high-temperature onsingle cropping rice over Yangtze-Huaihe River valley andresponse measures[J].Meteorological Monthly, 2013, 39(6):774-781.
[谢志清,杜银,高苹,等.江淮流域水稻高温热害灾损变化及应对策略[J].气象,2013,39(6):774-781.]
[14] Collins W, Bellouin N, Doutriaux-Boucher M,et al.Evaluation of the HadGEM2 Model[R]. Met Office Hadley Centre Technical Note no,2008, HCTN 74.
[15] Hempel S, Frieler K, Warszawski L,et al.A trend-preserving bias correction the ISI-MIP approach[J].Earth System Dynamics Discussions, 2013,4(1):49-92.
[16] Lobell D B, Burke M B.On the use of statistical models to predict crop yield responses to climate change[J]. Agricultural Forest Meteorology,2010, 150(11): 1 443-1 452.
[17] Butler E E, Huybers P.Adaptation of US maize to temperature variations[J]. Nature Climate Change,2013, 3(1): 68-72.
[18] Cao yang,Yang Jie,Xiong Wei,et al.Simulation of summer maize yield influenced by potential drought in China during 1961-2010[J].Acta Ecologica Sinica,2014,34(2):421-429.
[曹阳,杨婕,熊伟,等.1961—2010年潜在干旱对我国夏玉米产量影响的模拟分析[J].生态学报, 2014, 34(2):421-429.]
[19] Cao yang,Yang Jie,Xiong Wei,et al. Simulation of winter wheat yield influenced by potential drought in China during 1962-2010[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(7):128-139.
[曹阳,杨婕,熊伟,等.1962—2010 年潜在干旱对中国冬小麦产量影响的模拟分析[J].农业工程学报,2014,30(7):128-139.]
[20] Liu Zhenhuan,Li Zhengguo,Tang Pengqin,et al.Spatial-temporal changes of rice area and production in China during 1980-2010[J].Acta Geographica Sinica, 2013, 68(5): 680-693.
[刘珍环,李正国,唐鹏钦,等.近30 年中国水稻种植区域与产量时空变化分析[J].地理学报,2013,68(5): 680-693.]
[21] Robert H, Edward C P. Postwar U.S. business cycles: An empirical investigation[J]. Journal of Money, Credit, and Banking,1997,29(1): 1-16.
[22] Wang Guizhi, Lu Jinshuai, Chen Keyao, et al.Exploration of method in separating climatic output based on HP filter[J].Chinese Journal Agrometeorology,2014,35(2):195-199.
[王桂芝,陆金帅,陈克垚,等.基于HP滤波的气候产量分离方法探讨[J].中国农业气象, 2014, 35(2): 195-199.]
[23] Zhang Qian, Zhao Yanxia,Wang Chunyi, et al.Study on the impact of high temperature damage to rice in the lower and middle reaches of the Yangtze River[J].Journal of Catastrophology, 2011,26(4):57-62.
[张倩,赵艳霞,王春乙,等.长江中下游地区高温热害对水稻的影响[J].灾害学,2011,26(4):57-62.]
[24] Zhao Haiyan,Yao Fengmei, Zhang Yong, et al.Correlation analysis of rice seed setting rate and weight of 1000-grain and Agro-meteorology over the middle and lower reaches of the Yangtze River[J].Scientia Agricultura Sinica,2006, 39(9):1 765-1 771.
[赵海燕,姚凤梅,张勇,等.长江中下游水稻开花灌浆期气象要素与结实率和粒重的相关性分析[J].中国农业科学,2006, 39(9):1 765-1 771.]
[25] Wang Qiuju, Zhang Yulong, Liu Feng, et al.Changes of rice yield and quality in different accumulated temperature zones in Heilongjiang Province of Northeast China[J].Chinese Journal of Applied Ecology,2013,24(5):1 381-1 386.
[王秋菊, 张玉龙, 刘峰,等.黑龙江省水稻品种跨积温区种植的产量和品质变化[J]. 应用生态学报,2013,24(5):1 381-1 386.]
[26] Yang Taiming, Chen Jinhua, Jin Zhifeng,et al.Study on law of rice high temperature induced heat damage and its relationship with rice yield structure Anhui and Zhejiang Province[J]. Chinese Agricultural Science Bulletin,2013,29(27):97-104.
[杨太明,陈金华,金志凤, 等.皖浙地区早稻高温热害发生规律及其对产量结构的影响研究[J].中国农学通报,2013,29(27): 97-104.]
[27] Sun Qing, Yang Zaiqiang,Yin Jianmin, et al.Estimation of premiumrates of high temperature disaster for early rice in Jiangxi[J].Chinese Journal Agro Meteorology,2014,35(5):561-566.
[孙擎,杨再强, 殷剑敏,等.江西早稻高温逼熟气象灾害指数保险费率的厘定[J].中国农业气象,2014,35(5):561-566.]
[28] Sun Wen.Effects of Climate Change on Rice Production in China[D].Nanjing: Nanjing Agricultural University,2011.
[孙雯. 气候变暖对中国水稻生产的影响[D].南京:南京农业大学,2011.]
[29] Wen Kegang, Ma Li.Meteorological Disaster China Ceremony (Chongqing Volume)[M]. Beijing: China Meteorological Press, 2008.
[温克刚,马力.中国气象灾害大典(重庆卷)[M]. 北京: 气象出版社.2008.]
[30] Wen Kegang, Zhan Zhaoyu.Meteorological Disaster China Ceremony (Sichuan Volume)[M]. Beijing: China Meteorological Press, 2006.
[温克刚,詹兆渝. 中国气象灾害大典(四川卷)[M]. 北京: 气象出版社,2006.]
[31] Wang Yu.Effects of meteorological disasters on rice growth[J]. Modern Agricultural Science and Technology,2010,(24):302-305.
[王钰. 气象灾害对水稻生长的影响[J].现代农业科技,2010,(24):302-305.]
[32] Liang Jiaying, Cai Yixia.Review on the effects of high temperature and drought on yield, grain quality and the physiological characteristic of flag leaver in rice (Oryza sativa L.)[J]. Chinese Agricultural Science Bulletin, 2013, 29(27):1-6.
[梁嘉荧,蔡一霞.高温干旱对水稻产量,品质及剑叶生理特性影响研究综述[J].中国农学通报, 2013,29(27):1-6.]
[33] Zhong Xiaohua, Lin Meiying. Occurrence and control of rice diseases and insect pests[J].Modern Agricultural Science and Technology,2013,(16):118,122.
[钟小华,林美英.水稻病虫害的发生与防治[J].现代农业科技,2013,(16):118,122.]
[34] Li Shuhua.The possible impact of climate warming on the occurrence and prevalence of crop pests and diseases in China[J].Chinese Journal Agrometeorology,1992,13(2):46-49.
[李淑华. 气候变暖对我国农作物病虫害发生、流行的可能影响及发生趋势展望[J].中国农业气象,1992,13(2):46-49.]
[1] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[2] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[3] 王连喜, 刘静, 李琪, 钱蕊. 气候变化对宁夏水稻的影响及适应性研究[J]. 地球科学进展, 2013, 28(11): 1248-1256.
[4] 苏延桂,李新荣,赵昕,李爱霞,陈应武. 不同类型生物土壤结皮固氮活性及对环境因子的响应研究[J]. 地球科学进展, 2011, 26(3): 332-338.
[5] 姚桃峰,王润元,王鹤龄,赵鸿. 半干旱雨养农业区灌浆期模拟酸雨对春小麦叶片光合特性及产量的影响[J]. 地球科学进展, 2010, 25(6): 638-646.
[6] 吴炳方,蒙继华,李强子,张飞飞,杜鑫,闫娜娜. “全球农情遥感速报系统(CropWatch)”新进展[J]. 地球科学进展, 2010, 25(10): 1013-1022.
[7] 熊伟,杨婕,林而达,许吟隆. 未来不同气候变化情景下我国玉米产量的初步预测[J]. 地球科学进展, 2008, 23(10): 1092-1101.
[8] 李岩,彭少麟,廖其芳,廖圣东. RADARSATSNBSAR数据在大面积水稻估产中的应用研究[J]. 地球科学进展, 2003, 18(1): 109-115.
[9] 上官行健;王明星;陈德章;沈壬兴. 稻田CH 4的传输[J]. 地球科学进展, 1993, 8(5): 13-22.
阅读次数
全文


摘要