地球科学进展 ›› 2018, Vol. 33 ›› Issue (4): 361 -372. doi: 10.11867/j.issn.1001-8166.2018.04.0361

综述与评述 上一篇    下一篇

盐胁迫对植物的影响及AMF提高植物耐盐性的机制
潘晶 1, 2( ), 黄翠华 1, 罗君 1, 2, 彭飞 1, 薛娴 1   
  1. 1.中国科学院西北生态环境资源研究院 沙漠与沙漠化重点实验室/民勤盐渍化研究站, 甘肃 兰州 730000
    2.中国科学院大学,北京 100049
  • 收稿日期:2017-10-30 修回日期:2018-02-05 出版日期:2018-04-20
  • 基金资助:
    *中国科学院院地合作项目“利用黑果枸杞/利用盐碱地的试验研究及示范推广”(编号:43800312-6);国家重点研发计划项目“中国北方半干旱荒漠区沙漠化防治关键技术与示范”(编号:2016YFC0500909)资助.

Effects of Salt Stress on Plant and the Mechanism of Arbuscular Mycorrhizal Fungi Enhancing Salt Tolerance of Plants

Jing Pan 1, 2( ), Cuihua Huang 1, Jun Luo 1, 2, Fei Peng 1, Xian Xue 1   

  1. 1.Minqin Salinization Research Station,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-10-30 Revised:2018-02-05 Online:2018-04-20 Published:2018-05-24
  • About author:

    First author:Pan Jing (1988-), female, Minqin County, Gansu Province, Ph. D student. Research areas include degraded land improvement.E-mail:panjing@lzb.ac.cn

  • Supported by:
    Project supported by the Program of Domestic Cooperation for Chinese Academy of Sciences “Experimental study and demonstration on the use of Lycium ruthenicum/Saline-alkali soil”(No.43800312-6);The National Key Research and Development Program of China “Key techniques and demonstration of desertification on control in semiarid area in North China”(No.2016YFC0500909).

土壤盐渍化是在特定的自然和人类活动共同作用下产生的全球性土壤退化问题。丛枝菌根真菌(AMF)作为一种有益土壤微生物,在盐渍土壤中数量繁多、种类丰富,且能够与植物根系形成互惠共生体——丛枝菌根,从而提高植物耐盐性,进而改良盐渍土。在分析盐胁迫对植物影响机制的基础上,总结了AMF提高植物耐盐性的相关机制:①通过重建植物体内离子平衡,缓解盐离子毒害和改善植物体内营养平衡;②通过扩大植物根系吸收范围和提高渗透调节能力,缓解植物体内水分亏缺;③通过激活植物抗氧保护体系,抵抗氧化胁迫对植物造成的损伤,从而保护植物细胞膜系统和光合系统的完整性,提高植物耐盐性。最后,提出了AMF改善土壤盐渍化研究的不足与亟需解决的科学问题,以期为我国西北干旱区盐渍土的改良和土地生产力的提高提供理论指导,服务于国家建设“西部生态屏障”和“丝绸之路经济带”战略目标的实施。

Soil salinization is one of the global land degradation problems due to the impacts of climatic variations and human activities. As a beneficial soil microorganism, Arbuscular Mycorrhizal Fungi (AMF) are abundant in saline-alkaline land and form a mutual symbiosis with plants, which can improve salt tolerance of plant and reduce salt stress from the soil. Based on the mechanism of salt stress on the plant, the effects of AMF on plant physiological characteristics were introduced. Three main aspects of the AMF effects were summarized as follows: reconstructing the ion balance in plants to alleviate the toxic effects of specific ions; expanding the absorption range of plant roots and improving the osmotic regulation ability to alleviate the water deficit in plant; maintaining the integrity of cell membrane system and photosynthetic system to resist the damage caused by oxidative stress. Also, the future research direction in this field was evaluated, then a reference for the reconstruction of the saline-alkaline environment was provided.

中图分类号: 

图1 盐胁迫对植物的不良影响
Fig.1 The adverse effects of salt stress on plants
图1 盐胁迫对植物的不良影响
Fig.1 The adverse effects of salt stress on plants
表1 AMF对植物Na +/H + 逆向转运蛋白基因影响的部分实验结果
Table 1 Some experimental results of AMF effects on plant Na +/H + antiporter genes
表1 AMF对植物Na +/H + 逆向转运蛋白基因影响的部分实验结果
Table 1 Some experimental results of AMF effects on plant Na +/H + antiporter genes
图2 AMF对植物根系形态各指标的权重响应比
空心圆圈代表响应比,误差线代表95%的置信区间;误差线没有跨越零线表示处理与对照存在显著差异;若响应比为正,则说明盐胁迫下AMF可促进植物根系生长;反之亦然
Fig.2 Weighted response ratio of salinity and mycorrhizal associations on root morphology of plant
Open circles denote the overall mean response ratio; Error bars denote 95% CI. The 95% CI that do not go across the zero line mean significant difference between treatment and control. Positive values indicate an increase in root morphology parameter; Negative values indicate that the treatment is deleterious to root growth
图2 AMF对植物根系形态各指标的权重响应比
空心圆圈代表响应比,误差线代表95%的置信区间;误差线没有跨越零线表示处理与对照存在显著差异;若响应比为正,则说明盐胁迫下AMF可促进植物根系生长;反之亦然
Fig.2 Weighted response ratio of salinity and mycorrhizal associations on root morphology of plant
Open circles denote the overall mean response ratio; Error bars denote 95% CI. The 95% CI that do not go across the zero line mean significant difference between treatment and control. Positive values indicate an increase in root morphology parameter; Negative values indicate that the treatment is deleterious to root growth
表2 AMF对植物AQPS影响的部分实验结果
Table 2 Some experimental results of AMF effects on plant AQPS
表2 AMF对植物AQPS影响的部分实验结果
Table 2 Some experimental results of AMF effects on plant AQPS
图3 AMF提高植物耐盐性的机制
Fig.3 The mechanism of Arbuscular Mycorrhizal Fungi enhancing salt tolerance of plants
图3 AMF提高植物耐盐性的机制
Fig.3 The mechanism of Arbuscular Mycorrhizal Fungi enhancing salt tolerance of plants
[1] Maheshwari D K.Bacteria in Agrobiology: Stress Management[M]. Berlin Heidelberg: Springer, 2012.
[2] Shi Peijun, Wang Aihui, Sun Fubao, et al. A study of global change population and economic system risk forming mechanism and assessment[J]. Advances in Earth Science, 2016, 31(8):775-781.
[史培军, 王爱慧, 孙福宝, 等. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.]
doi: 10.11867/j.issn.1001-8166.2016.08.0775     URL    
[3] Ruizlozano J M, Porcel R, Azcón C, et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies[J]. Journal of Experimental Botany, 2012, 63(11): 4 033-4 044.
doi: 10.1093/jxb/ers126     URL     pmid: 22553287
[4] Li Jianguo, Pu Lijie, Zhu Ming, et al. The present situation and hot issues in the salt-affected soil research[J]. Acta Geographica Sinica,2012,67(9):1 233-1 245.
[李建国, 濮励杰, 朱明, 等.土壤盐渍化研究现状及未来研究热点[J]. 地理学报, 2012, 67(9): 1 233-1 245.]
doi: 10.11821/xb201209008     URL    
[5] Yang Zhen, Wang Baoshan.Progress in techniques of improvement and utilization of saline-alkali land in China and its future trend[J]. Open Journal of Soils and Water Conservation,2014, 2(1): 1-11.
[杨真, 王宝山.中国盐碱地改良利用技术研究进展及未来趋势[J]. 水土保持, 2014, 2(1):1-11.]
doi: 10.12677/OJSWC.2014.21001     URL    
[6] Li Jianguo, Wang Wenchao, Pu Lijie, et al.Coastal reclamation and saltmarsh carbon budget: Advances and prospects[J]. Advances in Earth Science, 2017, 32(6): 599-614.
[李建国, 王文超, 濮励杰, 等.滩涂围垦对盐沼湿地碳收支的影响研究进展[J].地球科学进展, 2017, 32(6): 599-614.]
[7] Liu Runjin, Li Xiaolin.Arbuscular Mycorrhiza and Its Application[M]. Beijing: Science Press, 2000.
[刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京:科学出版社, 2000.]
[8] Tang Ming.Improvement on Salt Tolerance of Plants by Mycorrhizal Fungi[M]. Beijing: Science Press, 2010.
[唐明. 菌根真菌提高植物耐盐性[M]. 北京:科学出版社, 2010.]
[9] Gareia I V, Mendoza R E.Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil[J].Mycorrhiza, 2007, 17: 167-174.
doi: 10.1007/s00572-006-0088-z     URL     pmid: 17151877
[10] Zuo Zhaojiang, Zhang Rumin, Gao Yan.Advances in plant cell ion flux with salt stress:A review[J]. Journal of Zhejiang A & F University, 2014, 31(5): 805-811.
[左照江, 张汝民, 高岩. 盐胁迫下植物细胞离子流变化的研究进展[J]. 浙江农林大学学报,2014, 31(5): 805-811.]
doi: 10.11833/j.issn.2095-0756.2014.05.023    
[11] Dodd I C, Pérezalfocea F.Microbial amelioration of crop salinity stress[J]. Journal of Experimental Botany, 2012, 63(9): 3 415-3 428.
doi: 10.1093/jxb/ers033     URL     pmid: 22403432
[12] Evelin H, Kapoor P, Giri B.Arbuscular mycorrhizal fungi in alleviation of salt stress: A review[J]. Annals of Botany, 2009, 104(7): 1 263-1 280.
doi: 10.1093/aob/mcp251     URL     pmid: 19815570
[13] Guo Min, Wang Nan, Fu Chang.Progress of studies on salt tolerance mechanisms in plant root system under salt stress[J].Biotechnology Bulletin, 2012,(6): 7-12.
[郭敏, 王楠, 付畅. 植物根系耐盐机制的研究进展[J]. 生物技术通报, 2012,(6): 7-12.]
URL    
[14] Duan L, Dietrich D, Ng C H, et al. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings[J].Plant Cell, 2013, 25(1): 324-341.
doi: 10.1105/tpc.112.107227     URL     pmid: 23341337
[15] Zhu J K.Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71.
[16] Li Yan, Zhang Yingpeng, Sun Ming, et al. Research advance in the effects of salt stress on plant and the mechanism of plant resistance[J].Chinese Agricultural Science Bulletin, 2008, 24(1): 258-265.
[李彦, 张英鹏, 孙明, 等. 盐分胁迫对植物的影响及植物耐盐机理研究进展[J]. 中国农学通报, 2008, 24(1): 258-265.]
URL    
[17] Murkute A A, Sharma S, Singh S K.Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi[J]. Horticultural Science-UZPI (Czech Republic), 2006,33(2): 70-76.
doi: 10.17221/3742-HORTSCI     URL    
[18] Zhang Meiyue, Tao Xiujuan, Fan Jianmin, et al. Effect of phosphorus stress and AMF on photosynthesis in strawberry under salt stress[J].Journal of Agricultural University of Hebei, 2009, 32(4): 71-75.
[张美月, 陶秀娟, 樊建民, 等. 磷和丛枝菌根真菌对盐胁迫草莓光合作用的影响[J]. 河北农业大学学报, 2009, 32(4): 71-75.]
doi: 10.3969/j.issn.1000-1573.2009.04.015     URL    
[19] Munns R, Tester M.Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911     URL    
[20] Li Xiaoli.Screening of Saline/Alkaline-tolerant Ectomycorrhizal Fungi Strains and the Study of Ectomycorrhizal Synthesis, Saline/Alkaline-tolerance of Pinus thunbergii Parl. Seedlings[D]. Nanjing: Nanjing Agriculture University, 2013.
[李小利. 外生菌根真菌菌株耐盐碱性筛选以及黑松(Pinus thunbergii Parl.)菌根苗合成、耐盐碱性研究[D]. 南京:南京农业大学, 2013.]
[21] Lin Shuangshuang, Sun Xiangwei, Wang Xiaojuan, et al. Mycorrhizal studies and their application prospects in China[J].Acta Prataculturae Sinica, 2013, 22(5): 310-325.
[林双双, 孙向伟, 王晓娟, 等. 我国菌根学研究进展及其应用展望[J]. 草业学报,2013, 22(5): 310-325.]
doi: 10.11686/cyxb20130537    
[22] Giri B, Mukerji K.Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake[J]. Mycorrhiza, 2004, 14(5): 307-312.
doi: 10.1007/s00572-003-0274-1     URL     pmid: 14574620
[23] Hammer E C, Nasr H, Pallon J, et al. Elemental composition of arbuscular mycorrhizal fungi at high salinity[J]. Mycorrhiza, 2011, 21(2): 117-129.
doi: 10.1007/s00572-010-0316-4     URL     pmid: 20499112
[24] Yang Haixia, Li Shimei, Guo Shaoxia.Effects of arbuscular mycorrhizal fungi on salinity tolerance of Lagerstroemia indica[J].Plant Physiology Journal, 2014,50(9): 1 379-1 386.
[杨海霞, 李士美, 郭绍霞. 丛枝菌根真菌对紫薇耐盐性的影响[J]. 植物生理学报, 2014,50(9): 1 379-1 386.]
[25] Liu Runjin, Chen Yinglong.Mycorrhizology[M]. Beijing: Science Press, 2007.
[刘润进,陈应龙.菌根学[M]. 北京:科学出版社,2007.]
[26] Feng Gu, Bai Dengsha, Yang Maoqiu, et al. Influence of inoculating Arbuscular Mycorrhizal Fungi on growth and salinity tolerance parameters of maize plants[J]. Acta Agronomica Sinica, 2000, 26(6): 743-750.
[冯固,白灯莎, 杨茂秋, 等. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响[J]. 作物学报, 2000, 26(6): 743-750.]
[27] Han Bing, Guo Shirong, He Chaoxing, et al. Effects of Arbuscular Mycorrhiza Fungi (AMF) on the plant growth, fruit yield, and fruit quality of cucumber under salt stress[J].Chinese Journal of Applied Ecology, 2012, 23(1): 154-158.
[韩冰,郭世荣,贺超兴,等. 丛枝菌根真菌对盐胁迫下黄瓜植株生长、果实产量和品质的影响[J]. 应用生态学报, 2012, 23(1): 154-158.]
[28] He Zhongqun, He Chaoxing.Effect of Arbuscular Mycorrhizal Fungi on nutrition absorbing and ion damage in tomato under salt stress[J].Acta Agriculture Boreali-Sinica, 2013, 28(1): 181-186.
[贺忠群,贺超兴. 盐渍条件下丛枝菌根真菌对番茄营养吸收及离子毒害的影响[J]. 华北农学报, 2013,28(1): 181-186.]
doi: 10.3969/j.issn.1000-7091.2013.01.033     URL    
[29] Cao Yanpo, Dai Peng, Dai Suying, et al. Effects of Arbuscular Mycorrhizal Fungi(AMF)on seedling growth and Na+、K+、Ca2+、Mg2+ contents and distribution in asparagus under salt stress[J]. Chinese Journal of Ecology, 2015, 34(6):1 699-1 704.
[曹岩坡, 代鹏, 戴素英, 等. 丛枝菌根真菌(AMF)对盐胁迫下芦笋幼苗生长及体内Na+、K+、Ca2+、Mg2+含量和分布的影响[J]. 生态学杂志, 2015, 34(6): 1 699-1 704.]
URL    
[30] Evelin H, Giri B, Kapoor R.Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionicimbalance in NaCl-stressed Trigonella foenum-graecum[J]. Mycorrhiza, 2012, 22(3): 203-217.
doi: 10.1007/s00572-011-0392-0     URL     pmid: 21695577
[31] Ashraf M.Some important physiological selection criteria for salt tolerance in plants[J].Flora, 2004, 199(5): 361-376.
doi: 10.1078/0367-2530-00165     URL    
[32] Yang Haixia, Liu Runjin, Guo Shaoxia.Effects of arbuscular mycorrhizal fungus Glomus mosseae on the growth characteristics of Festuca arundinacea under salt stress conditions[J]. Acta Prataculturae Sinica, 2014, 23(4): 195-203.
[杨海霞, 刘润进, 郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响[J]. 草业学报, 2014, 23(4): 195-203.]
doi: 10.11686/cyxb20140424     URL    
[33] Abdel-Fattah G M, Asrar A W A. Arbuscular Mycorrhizal Fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil[J].Acta Physiologiae Plantarum, 2012, 34(1): 267-277.
doi: 10.1007/s11738-011-0825-6     URL    
[34] Porcel R, Aroca R, Ruiz-Lozano J M. Salinity stress alleviation using arbuscular mycorrhizal fungi: A review[J].Agronomy for Sustainable Development, 2012, 32(1): 181-200.
doi: 10.1007/s13593-011-0029-x     URL    
[35] Sun Yufang, Song Fuqiang, Chang Wei, et al. Effect of Arbuscular Mycorrhizal Fungi on growth and physiology of elaeaguus augustifolia seedlings subjected to salinity stress[J]. Scientia Silvae Sinicae, 2016, 52(6): 18-27.
[孙玉芳, 宋福强, 常伟, 等. 盐碱胁迫下AM真菌对沙枣苗木生长和生理的影响[J]. 林业科学, 2016, 52(6): 18-27.]
doi: 10.11707/j.1001-7488.20160603     URL    
[36] Turkmen O, Sensoy S, Demir S, et al. Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stress[J].African Journal of Biotechnology, 2008, 7(4): 392-396.
doi: 10.5897/AJB07.603     URL    
[37] Li Tao.Effects of AM Fungi on Salt Resistance of Different Types of Halophytes[D]. Ji’nan: Shandong Normal University, 2009.
[李涛. AM真菌对不同盐生植物抗盐性的影响[D].济南: 山东师范大学, 2009.]
[38] Cantrell I C, Linderman R G.Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity[J].Plant and Soil, 2001, 233(2): 269-281.
doi: 10.1023/A:1010564013601     URL    
[39] He Z, Huang Z.Expression analysis of LeNHX1 gene in mycorrhizal tomato under salt stress[J].Journal of Microbiology, 2013, 51(1): 100-104.
doi: 10.1007/s12275-013-2423-3     URL     pmid: 23456717
[40] Ouziad F, Wilde P, Schmelzer E, et al. Analysis of expression of aquaporins and Na+/H+, transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress[J]. Environmental and Experimental Botany, 2006, 57(1/2): 177-186.
doi: 10.1016/j.envexpbot.2005.05.011     URL    
[41] Asghari H R. Vesicular-Arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedlings[J]. International Journal of Plant Production, 2012, 2(3): 243-256.
doi: 10.1016/j.indcrop.2008.01.002     URL    
[42] Guo Jiangyuan, Guo Wei, Bi Na, et al. Effects of Arbuscular Mycorrhizal Fungi on the growth of reeds in wetland soils with different salt content[J].Environmental Science, 2015, 36(4):1 481-1 488.
[郭江源, 郭伟, 毕娜, 等. 丛枝菌根真菌对不同含盐量湿地土壤中芦苇生长的影响[J]. 环境科学, 2015, 36(4): 1 481-1 488.]
doi: 10.13227/j.hjkx.2015.04.048     URL    
[43] Cui Zhenhai, Wang Yanfang, Fan Jinjuan, et al. Research advance of plant osmoregulation[J].Journal of Maize Sciences, 2007, 15(6):140-143.
[崔震海, 王艳芳, 樊金娟, 等. 植物渗透调节的研究进展[J]. 玉米科学, 2007,15(6): 140-143.]
doi: 10.3969/j.issn.1005-0906.2007.06.036     URL    
[44] Grant C, Bittman S, Montreal M, et al. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development[J].Canadian Journal of Plant Science, 2005, 85(1):3-14.
doi: 10.4141/P03-182     URL    
[45] Zhu Ying, Xiong Junlan, Lü Guangchao, et al. Effects of Arbuscular Mycorrhizal Fungi and plant symbiosis on plant water relation and its mechanism[J].Acta Ecologica Sinica, 2015, 35(8):2 419-2 427.
[祝英, 熊俊兰, 吕广超, 等. 丛枝菌根真菌与植物共生对植物水分关系的影响及机理[J]. 生态学报, 2015, 35(8): 2 419-2 427.]
[46] Ruth B, Klialvati M,Sclimidlialter L.Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors[J]. Plant and Soil, 2011, 342(1/2): 459-468.
doi: 10.1007/s11104-010-0709-3     URL    
[47] Ruiz-Lozano J M, Azcón R, Gómez M. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants[J].Physiologia Plantarum, 1996, 98(4): 767-772.
doi: 10.1111/j.1399-3054.1996.tb06683.x     URL    
[48] Feng Gu, Li Xiaolin, Zhang Fusuo, et al. Effect of AM fungi on water and nutrition status of corn plants under salt stress[J].Chinese Journal of Applied Ecology, 2000, 11(4): 595-598.
[冯固, 李晓林, 张福锁, 等. 盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J]. 应用生态学报, 2000, 11(4): 595-598.]
[49] Galvanampudia C S, Testerink C.Salt stress signals shape the plant root[J].Current Opinion in Plant Biology, 2011, 14(3): 296-302.
doi: 10.1016/j.pbi.2011.03.019     URL     pmid: 21511515
[50] Shi Chenjuan, Liu Yong, Jing Tao.Review on stress-resistance of phytohormone[J].World Forestry Research,2006, 19(5): 21-26.
[师晨娟, 刘勇, 荆涛. 植物激素抗逆性研究进展[J].世界林业研究, 2006, 19(5): 21-26.]
doi: 10.3969/j.issn.1001-4241.2006.05.004     URL    
[51] He Zhongqun, Li Huanxiu, Tang Haoru, et al. Effect of Arbuscular Mycorrhizal Fungi on tomato endogenous under NaCl stress[J].Journal of Nuclear Agricultural Sciences, 2010, 24(5):1 099-1 104.
[贺忠群, 李焕秀, 汤浩茹, 等. 丛枝菌根真菌对NaCl胁迫下番茄内源激素的影响[J]. 核农学报, 2010, 24(5): 1 099-1 104.]
URL    
[52] Berta G, Fusconi A, Trotta A, et al. Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L[J].New Phytologist, 1990, 114(2): 207-215.
doi: 10.1111/j.1469-8137.1990.tb00392.x     URL    
[53] Wu Q S, Zou Y N, He X H, et al. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata, L. Raf.) seedlings[J].Plant Growth Regulation, 2011, 65(2): 273-278.
doi: 10.1007/s10725-011-9598-6     URL    
[54] Yang Shaohui, Ji Jing, Wang Gang.Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Sci-Tech R & D, 2006, 28(4): 70-76.
[杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理[J]. 世界科技研究与发展, 2006, 28(4):70-76.]
doi: 10.3969/j.issn.1006-6055.2006.04.012     URL    
[55] Zhao Yurong, Wang Weizhong.The researches on osmotic-adjustments of plants under salt stress[J]. Journal of Jiangsu Normal University (Natural Sciences), 1995,(4):59-62.
[赵玉蓉, 王维中. 植物在盐害下的渗透调节[J]. 江苏师范大学学报:自然科学版, 1995,(4): 59-62.]
URL    
[56] Wu Xiang, Ni Jianwei, Zhang Huaxin, et al. Effects of salt stress on osmotic adjustment substances in different halophytes[J]. Journal of Northeast Forestry University, 2012, 40(8):29-33.
[武香, 倪建伟, 张华新, 等. 盐胁迫下不同盐生植物渗透调节的生理响应[J]. 东北林业大学学报, 2012,40(8):29-33.]
doi: 10.3969/j.issn.1000-5382.2012.08.008     URL    
[57] Al-Garni S M S. Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis[J].American-Eurasian Journal of Agricultural and Environmental Science, 2006,(2): 119-126.
URL    
[58] Garg N, Manchanda G.Role of Arbuscular Mycorrhizae in the Alleviation of Ionic, Osmotic and Oxidative Stresses Induced by Salinity in Cajanus cajan(L.) Millsp. (pigeonpea)[J].Journal of Agronomy and Crop Science, 2009, 195(2): 110-123.
doi: 10.1111/j.1439-037X.2008.00349.x     URL    
[59] Kumar A, Sharma S, Mishra S.Influence of Arbuscular Mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L.[J].Journal of Plant Growth Regulation, 2010, 29(3): 297-306.
doi: 10.1007/s00344-009-9136-1     URL    
[60] Wu Q S, Zou Y N, Liu W, et al. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: Changes in leaf antioxidant defense systems[J].Plant Soil and Environment, 2010, 56(10): 470-475.
doi: 10.1007/s11104-009-9988-y     URL    
[61] Han Bing, He Chaoxing, Guo Shirong, et al. Effects of arbuscular mycorrhizal fungi on osmoregulation substance contents and antioxidant enzyme activities of cucumber seedlings under salt stress[J].Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(12):2 492-2 497.
[韩冰, 贺超兴, 郭世荣, 等. 丛枝菌根真菌对盐胁迫下黄瓜幼苗渗透调节物质含量和抗氧化酶活性的影响[J]. 西北植物学报, 2011, 31(12): 2 492-2 497.]
[62] Sannazzaro A I, Echeverría M, Albertó E O, et al. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza[J].Plant Physiology and Biochemistry, 2007, 45(1): 39-46.
doi: 10.1016/j.plaphy.2006.12.008     URL     pmid: 17303429
[63] Alqarawi A A, Allah E F A, Hashem A. Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk[J].Journal of Plant Interactions, 2014, 9(9): 802-810.
doi: 10.1080/17429145.2014.949886     URL    
[64] Santa-Cruz A, Acosta M, Rus A, et al. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species[J].Plant Physiology and Biochemistry, 1999, 37(1): 65-71.
doi: 10.1016/S0981-9428(99)80068-0     URL    
[65] Xue Xiudong, Dong Xiaoying, Duan Yanxin, et al. A comparison of salt resistance of three kinds of Zoysia at different salt concentrations[J]. Acta Prataculturae Sinica, 2013, 22(6): 315-320.
[薛秀栋, 董晓颖, 段艳欣, 等.不同盐浓度下3种结缕草的耐盐性比较研究[J]. 草业学报, 2013, 22(6): 315-320.]
doi: 10.11686/cyxb20130637     URL    
[66] Sheng M, Tang M, Zhang F, et al. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress[J].Mycorrhiza, 2011, 21(5): 423-430.
doi: 10.1007/s00572-010-0353-z     URL     pmid: 21191619
[67] Ruiz-Lozano J M, Aroca R. Modulation of Aquaporin Genes by the Arbuscular Mycorrhizal Symbiosis in Relation to Osmotic Stress Tolerance[M]. Netherlands: Springer, 2010.
[68] Lei Qin, Xia Dunling, Ren Xiaolin.Aquaporin and water transport in plant[J]. Research of Soil and Water Conservation, 2005, 12(3): 81-85.
[雷琴, 夏敦岭, 任小林. 水孔蛋白与植物的水分运输[J]. 水土保持研究, 2005, 12(3): 81-85.]
doi: 10.3969/j.issn.1005-3409.2005.03.026     URL    
[69] Aroca R, Porcel R, Ruiz-Lozano J M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris, under drought, cold or salinity stresses?[J]. New Phytologist, 2007, 173(4): 808-816.
doi: 10.1111/j.1469-8137.2006.01961.x     URL     pmid: 17286829
[70] Jahromi F, Aroca R, Porcel R, et al. Influence of salinity on the in vitro development of glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants[J]. Microbial Ecology, 2008, 55(1): 45-53.
doi: 10.1007/s00248-007-9249-7     URL    
[71] He Zhongqun, He Chaoxing,Yan Yan, et al. Regulative effect of Arbuscular Mycorrhizal Fungi on water absorption and expression of aquaporin genes in tomato under salt stress[J]. Acta Horticulturae Sinica, 2011, 38(2): 273-280.
[贺忠群, 贺超兴, 闫妍, 等. 盐胁迫下丛枝菌根真菌对番茄吸水及水孔蛋白基因表达的调控[J]. 园艺学报, 2011, 38(2): 273-280.]
URL    
[72] Latef A A H A, He C. Effect of Arbuscular Mycorrhizal Fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress[J].Scientia Horticulturae, 2011, 127(3): 228-233.
doi: 10.1016/j.scienta.2010.09.020     URL    
[73] Sheng Min, Tang Ming, Zhang Fengfeng, et al. Effect of AM Fungi on salt resistance of maize[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(2): 332-337.
[盛敏, 唐明, 张峰峰, 等. 盐胁迫下接种AM真菌对玉米耐盐性的影响[J]. 西北植物学报, 2011,31(2): 332-337.]
URL    
[74] Xu Yao, Fan Yan, Yu Yunhe, et al. Effects of arbuscular mycorrhizal fungus on the growth and physiological salt tolerance parameters of Carthamus tinctorius seedlings under salt stress[J]. Chinese Journal of Ecology, 2014, 33(12):3 395-3 402.
[徐瑶, 樊艳, 俞云鹤, 等. 丛枝菌根真菌对盐胁迫下红花幼苗生长及耐盐生理指标的影响[J]. 生态学杂志, 2014, 33(12): 3 395-3 402.]
URL    
[75] Xu Zhifang, Luo Guanghua, Wang Aiguo, et al. Effects of strong light and active oxygen on photosynthesis in soybean[J]. Acta Botanica Sinica, 1999, 41(8):862-866.
[徐志防, 罗广华, 王爱国, 等. 强光及活性氧对大豆光合作用的影响[J]. 植物学报, 1999, 41(8): 862-866.]
[76] Al-Khaliel A S. Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae[J].Plant Soil and Environment, 2010, 56(7): 318-324.
doi: 10.1107/S0021889808024667     URL    
[77] Ke Yuzhou, Zhou Jinxing, Lu Nan, et al. Effects of salinity on photosynthetic physiology and chlorophyll fluorescence characteristics of Mulberry(Morus alba) seedlings[J]. Forest Research, 2009, 22(2): 200-206.
[柯裕州, 周金星, 卢楠, 等. 盐胁迫对桑树幼苗光合生理及叶绿素荧光特性的影响[J]. 林业科学研究, 2009, 22(2): 200-206.]
doi: 10.3321/j.issn:1001-1498.2009.02.009     URL    
[78] Sheng M, Tang M, Chen H, et al. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress[J]. Mycorrhiza, 2008, 18(6): 287-296.
doi: 10.1007/s00572-008-0180-7     URL    
[79] Liu Leizhen, Wu Jianjun, Zhou Hongkui, et al. Chlorophyll fluorescence and its progress in detecting water stress[J]. Spectroscopy and Spectral Analysis, 2017, 37(9): 2 780-2 787.
[刘雷震, 武建军, 周洪奎, 等.叶绿素荧光及其在水分胁迫监测中的研究进展[J].光谱学与光谱分析, 2017, 37(9): 2 780-2 787.]
[80] Feng Jiancan, Hu Xiuli, Mao Xunjia.Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance[J]. Economic Forest Research, 2002,(4):14-18.
[冯建灿, 胡秀丽, 毛训甲. 叶绿素荧光动力学在研究植物逆境生理中的应用[J]. 经济林研究, 2002,(4): 14-18.]
doi: 10.3969/j.issn.1003-8981.2002.04.004     URL    
[81] Zuccarini P.Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation[J].Plant Soil and Environment, 2007, 53: 281-287.
doi: 10.2307/20695355     URL    
[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 肖生春,彭小梅,丁爱军,田全彦,韩超. 中国寒旱区灌木年轮学研究进展[J]. 地球科学进展, 2020, 35(6): 561-567.
[3] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
[4] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[5] 宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.
[6] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[7] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[8] 张良侠, 胡中民, 樊江文, 邵全琴, 唐风沛. 区域尺度生态系统水分利用效率的时空变异特征研究进展[J]. 地球科学进展, 2014, 29(6): 691-699.
[9] 袁文平, 蔡文文, 刘丹, 董文杰. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5): 541-550.
[10] 蔡福, 明惠青, 纪瑞鹏, 冯锐, 米娜, 赵先丽, 张玉书. 玉米冠层辐射传输参数优化对陆气通量模拟的影响[J]. 地球科学进展, 2014, 29(5): 598-607.
[11] 许清海,张生瑞. 花粉源范围研究进展[J]. 地球科学进展, 2013, 28(9): 968-975.
[12] 何勇;董文杰;季劲均;丹利. 基于AVIM的中国陆地生态系统净初级生产力模拟[J]. 地球科学进展, 2005, 20(3): 345-349.
阅读次数
全文


摘要