地球科学进展 ›› 2023, Vol. 38 ›› Issue (9): 978 -985. doi: 10.11867/j.issn.1001-8166.2023.049

研究简报 上一篇    下一篇

顾及空间各向异性的海岸带水下地形构建方法——以黄河三角洲为例
殷悦 1 , 2( ), 王德 2( ), 罗富彬 2 , 3, 徐丛亮 4, 田信鹏 2, 毕晓丽 2   
  1. 1.天津城建大学 地质与测绘学院,天津 300380
    2.中国科学院烟台海岸带研究所,山东 烟台 264003
    3.西安科技大学 测绘科学与技术学院,陕西 西安 710054
    4.黄河河口海岸科学研究所,山东 东营 257000
  • 收稿日期:2023-04-07 修回日期:2023-07-28 出版日期:2023-09-10
  • 通讯作者: 王德 E-mail:yinyue_0909@163.com;dwang@yic.ac.cn
  • 基金资助:
    国家自然科学基金面上项目(31870468);山东省自然科学基金面上项目(ZR2020MD013)

A Method for Constructing Underwater Topography in Coastal Zones While Accounting for Spatial Anisotropy: The Case of the Yellow River Delta

Yue YIN 1 , 2( ), De WANG 2( ), Fubin LUO 2 , 3, Congliang XU 4, Xinpeng TIAN 2, Xiaoli BI 2   

  1. 1.College of Geology and Mapping, Tianjin Chengjian University, Tianjin 300380, China
    2.Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai Shandong 264003, China
    3.College of Geomatics Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China
    4.Yellow River Estuary Coastal Science Institute, Dongying Shandong 257000, China
  • Received:2023-04-07 Revised:2023-07-28 Online:2023-09-10 Published:2023-09-25
  • Contact: De WANG E-mail:yinyue_0909@163.com;dwang@yic.ac.cn
  • About author:YIN Yue, Master student, research area includes estuarine coastal zone evolution. E-mail: yinyue_0909@163.com
  • Supported by:
    the National Natural Science Foundation of China(31870468);The Natural Science Foundation of Shandong Provincial(ZR2020MD013)

测深点是获取水下高质量数字高程模型的主要数据源,海岸带区域低密度的测深点会导致水下数字高程模型精度较低。针对该问题,结合反距离权重法与粒子群算法,提出一种顾及各向异性的多参数协同优化的点位加密算法,获取在全局意义下的补插点位水深最优解。以黄河三角洲1992年、2007年和2015年3期测深数据为研究对象,采用4种地学常用的插值方法对提出的加密方法进行验证,结果表明该方法处理后的数据插值精度有显著提高,绝对误差与相对误差均降低12%,能够对水下地形进行更为准确的重建。

Bathymetric points are the main data source for obtaining high-quality underwater Digital Elevation Models (DEMs). The low density of bathymetric points in coastal zones can lead to low underwater DEM accuracy. To address this problem, we propose a multiparameter collaborative optimization algorithm for point densification that considers spatial anisotropy. First, the particle swarm optimization was employed to collaboratively optimize the four parameters affecting the computational accuracy to achieve the overall tuning and determine the optimal solutions of the four parameters. Subsequently, the four determined parameters were applied to the inverse distance weighting method to obtain in the global sense the optimal value of the complementary point depth. Finally, the proposed densification method was validated using four common interpolation methods in geosciences and bathymetric data from the coastal zone of the Yellow River Delta from 1992, 2007, and 2015. The experimental results showed that this method significantly improves the interpolation accuracy of the processed data, reducing both the absolute and relative errors by 12%. This method overcomes the problem of large interpolation errors caused by the density of bathymetric points and allows for a more accurate underwater topography reconstruction.

中图分类号: 

图1 黄河三角洲5 km间隔测线分布
Fig. 1 The distribution of 5 km spaced line profiles in the Yellow River Delta
表1 1992年不同点位密度下各插值方法的精度评价指标
Table 1 Accuracy evaluation indexes for interpolation models under different point densities in 1992
表2 2007年不同点位密度下各插值方法的精度评价指标
Table 2 Accuracy evaluation indexes for interpolation models under different point densities in 2007
表3 2015年不同点位密度下各插值方法的精度评价指标
Table 3 Accuracy evaluation indexes for interpolation models under different point densities in 2015
图2 残差结果对比图
Fig. 2 Residual results comparison chart
图3 2015年普通克里金插值(OK)方法空间插值结果
(a) 数据组1;(b) 数据组2;(c)数据组3
Fig. 3 Spatial interpolation results of Ordinary KrigingOKfor 2015
(a) Data group 1; (b) Data group 2; (c) Data group 3
1 MALONEY J M, BENTLEY S J, XU K H, et al. Mass wasting on the Mississippi River subaqueous delta[J]. Earth-Science Reviews, 2020, 200. DOI:10.1016/j.earscirev.2019.103001 .
2 ZHANG Yuanfu, DAI Xin, WANG Min, et al. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 2020, 47(5): 947-957.
张元福, 戴鑫, 王敏, 等. 河流扇的概念、特征及意义[J]. 石油勘探与开发, 2020, 47(5): 947-957.
3 WHALING A, SHAW J. Changes to subaqueous delta bathymetry following a high river flow event, wax lake delta, USA[J]. Estuaries and Coasts, 2020, 43(8): 1 923-1 938.
4 BLUM M D, ROBERTS H H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise[J]. Nature Geoscience, 2009, 2(7): 488-491.
5 WU Xiao, FAN Yongyong, WANG Houjie, et al. Geomorphological responses of the lower river channel and delta to interruption of reservoir regulation in the Yellow River, 2015-2017[J]. Chinese Science Bulletin, 2021, 66(23): 3 059-3 070.
吴晓, 范勇勇, 王厚杰, 等. 黄河下游与河口对2015—2017年调水调沙中断的沉积响应[J]. 科学通报, 2021, 66(23): 3 059-3 070.
6 HAN Zhiyuan, XIE Hualiang, QIANG Haiyang, et al. Evolution research on subaqueous delta of Liaohe Estuary in recent 50 years[J]. Journal of Marine Sciences, 2019, 37(3): 64-72.
韩志远, 谢华亮, 强海洋, 等. 近50 a来辽河口水下三角洲演变特征研究[J]. 海洋学研究, 2019, 37(3): 64-72.
7 CHENG Peng, LIU Jingjing, ZHANG Xin, et al. Changes of sedimentation rates in the Yangtze River subaqueous delta and its adjacent inner continental shelf before and after the construction of the Three Gorges Dam[J]. Periodical of Ocean University of China, 2023, 53(4): 77-87.
程鹏, 刘晶晶, 张鑫, 等. 三峡大坝建坝前后长江水下三角洲及邻近陆架沉积速率变化[J]. 中国海洋大学学报:自然科学版, 2023, 53(4): 77-87.
8 FAN Yongyang, CHEN Zhengbing, ZHANG Zhilin, et al. The evolution law of underwater delta in the estuary area of the Yangtze River and preliminary study on river regime control[J]. The Ocean Engineering, 2020, 38(4): 91-99.
樊咏阳, 陈正兵, 张志林, 等. 长江口水下三角洲演变规律及河势控制初探[J]. 海洋工程, 2020, 38(4): 91-99.
9 SUN Heping, LI Qianqian, BAO Lifeng, et al. Progress and development trend of global refined seafloor topography modeling[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1 555-1 567.
孙和平, 李倩倩, 鲍李峰, 等. 全球海底地形精细建模进展与发展趋势[J]. 武汉大学学报: 信息科学版, 2022, 47(10): 1 555-1 567.
10 XIAO Feng, LI Fei, ZHANG Shengkai, et al. DEM production for larsemann hills combining cryosat-2 and ground-based elevation data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1 417-1 422.
肖峰, 李斐, 张胜凯, 等. 联合CryoSat-2测高数据和地面高程数据建立东南极拉斯曼丘陵地区DEM[J]. 武汉大学学报: 信息科学版, 2017, 42(10): 1 417-1 422.
11 ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1 786-1 794.
赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10): 1 786-1 794.
12 XIONG Liyang, TANG Guoan, YANG Xin, et al. Geomorphology-oriented digital terrain analysis: progress and perspectives[J]. Acta Geographica Sinica, 2021, 76(3): 595-611.
熊礼阳, 汤国安, 杨昕, 等. 面向地貌学本源的数字地形分析研究进展与展望[J]. 地理学报, 2021, 76(3): 595-611.
13 TANG Bo, TONG Ling, KANG Shaozhong. Effects of spatial station density and interpolation methods on accuracy of reference crop evapotranspiration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 60-66.
汤博, 佟玲, 康绍忠. 站点密度及插值方法对ET0空间插值精度的影响[J]. 农业工程学报, 2013, 29(13): 60-66.
14 WU C Y, MOSSA J, MAO L, et al. Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River[J]. Annals of GIS, 2019, 25(2): 133-151.
15 TANG Guoan, NA Jiaming, CHENG Weiming. Progress of digital terrain analysis on regional geomorphology in China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1 570-1 591.
汤国安, 那嘉明, 程维明. 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 2017, 46(10): 1 570-1 591.
16 YI Lin, YUAN Linwang, LUO Wen, et al. V-neighbor structure based spatial interpolation algorithm[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1 285-1 288, 1 302.
易琳, 袁林旺, 罗文, 等. 顾及V-邻域结构的局部保形插值算法[J]. 武汉大学学报: 信息科学版, 2012, 37(11): 1 285-1 288, 1 302.
17 GAO Yuan, ZHU Yanan, CHEN Chuanfa, et al. A weighted radial basis function interpolation method for high accuracy DEM Modeling[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8):1 373-1 379.
高原, 朱娅男, 陈传法,等. 高精度DEM建模的加权径向基函数插值方法[J]. 武汉大学学报: 信息科学版, 2023, 48(8):1 373-1 379.
18 BEI Yixuan, CHEN Chuanfa, WANG Xin, et al. Effects of airborne LiDAR point cloud density and interpolation methods on the accuracy of DEM and surface roughness[J]. Journal of Geo-Information Science, 2023, 25(2): 265-276.
贝祎轩, 陈传法, 王鑫, 等. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276.
19 AGÜERA-VEGA F, AGÜERA-PUNTAS M, MARTÍNEZ-CARRICONDO P, et al. Effects of point cloud density, interpolation method and grid size on derived Digital Terrain Model accuracy at micro topography level[J]. International Journal of Remote Sensing, 2020, 41(21): 8 281-8 299.
20 MESA-MINGORANCE J L, ARIZA-LÓPEZ F J. Accuracy assessment of Digital Elevation Models (DEMs): a critical review of practices of the past three decades[J]. Remote Sensing, 2020, 12(16). DOI:10.3390/rs12162630 .
21 FAN Yaoshen, DOU Shentang, WANG Wanzhan, et al. Dynamic response of the Yellow River estuarine sandspit to new water and sediment regimes?[J]. Advances in Water Science, 2023, 34(1):63-75.
凡姚申, 窦身堂, 王万战, 等. 新入海水沙情势下的黄河口沙嘴动态响应[J]. 水科学进展, 2023, 34(1):63-75.
22 CUI B L, LI X Y. Coastline change of the Yellow River Estuary and its response to the sediment and runoff (1976-2005)[J]. Geomorphology, 2011, 127(1/2): 32-40.
23 HUANG Liang, CHEN Shenliang, CHENG Wufeng, et al. Response of Dongying Port Project change to seabed erosion and siltation since 1985[J]. Marine Geology Frontiers, 2023, 39(1): 59-69.
黄梁, 陈沈良, 程武风, 等. 1985年以来黄河三角洲东营港工程变化与海床冲淤演变响应关系[J]. 海洋地质前沿, 2023, 39(1): 59-69.
24 PENG Jun, CHEN Shenliang, LI Guqi, et al. Evolution of coastline and subaqueous geomorphology off the survived river mouth in the Yellow River Delta[J]. Acta Geographica Sinica, 2012, 67(3): 368-376.
彭俊, 陈沈良, 李谷祺, 等. 黄河三角洲岸线及现行河口区水下地形演变[J]. 地理学报, 2012, 67(3): 368-376.
25 LIU Xiaolei, ZHANG Shuyu, ZHENG Jiewen, et al. Research progress and countermeasures on geological hazards induced by extreme storms in the Yellow River Delta[J]. Marine Geology Frontiers, 2022, 38(11): 28-39.
刘晓磊, 张淑玉, 郑杰文, 等. 黄河三角洲极端风暴诱发地质灾害研究进展及对策[J]. 海洋地质前沿, 2022, 38(11): 28-39.
26 MIAO Hongbing, QIAO Lulu, ZHONG Yi, et al. Evolution of tidal system and material transport off the Huanghe River Delta induced by human activities and natural evolution[J]. Acta Oceanologica Sinica, 2022, 44(9): 73-86.
缪红兵, 乔璐璐, 仲毅, 等. 人类活动和自然演变共同驱动下黄河三角洲海域潮波及物质输运变化[J]. 海洋学报, 2022, 44(9): 73-86.
27 HARRISON S R, BRYAN K R, MULLARNEY J C. Observations of morphological change at an ebb-tidal delta[J]. Marine Geology, 2017, 385: 131-145.
28 JIANG C, PAN S Q, CHEN S L. Recent morphological changes of the Yellow River (Huanghe) submerged delta: causes and environmental implications[J]. Geomorphology, 2017, 293: 93-107.
29 BI N S, WANG H J, WU X, et al. Phase change in evolution of the modern Huanghe (Yellow River) Delta: process, pattern, and mechanisms[J]. Marine Geology, 2021, 437. DOI:10.1016/j.margeo.2021.106516 .
30 LI Zhengquan, WU Yaoxiang. Inverse distance weighted interpolation involving position shading[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1): 91-98.
李正泉, 吴尧祥. 顾及方向遮蔽性的反距离权重插值法[J]. 测绘学报, 2015, 44(1): 91-98.
31 XIANG Feng, LI Zhongzhi, XIONG Xi, et al. Inverse distance weight interpolation algorithm based on particle swarm local optimization[J]. Journal of Computer Applications, 2023, 43(2): 385-390.
向峰, 李中志, 熊熙, 等. 粒子群局部优化的反距离权重插值算法[J]. 计算机应用, 2023, 43(2): 385-390.
32 GHOMLAGHI A, NASSERI M, BAYAT B. How to enhance the inverse distance weighting method to detect the precipitation pattern in a large-scale watershed[J]. Hydrological Sciences Journal, 2022, 67(13): 2 014-2 028.
33 SHENG J, YU P, ZHANG H N, et al. Spatial variability of soil Cd content based on IDW and RBF in Fujiang River, Mianyang, China[J]. Journal of Soils and Sediments, 2021, 21(1): 419-429.
34 WANG Xu, ZHANG Wen, CHAI Hongzhou. BDS-3 satellite clock bias prediction based on particle swarm neural network[J]. Journal of Chinese Inertial Technology, 2023, 31(1): 33-39.
王旭, 张文, 柴洪洲. 基于粒子群优化神经网络模型的BDS-3卫星钟差预报[J]. 中国惯性技术学报, 2023, 31(1): 33-39.
35 JEIHOUNI M, KAKROODI A A, HAMZEH S. Monitoring shallow coastal environment using Landsat/altimetry data under rapid sea-level change[J]. Estuarine, Coastal and Shelf Science, 2019, 224: 260-271.
36 ERMIS S, YIGIT E. Estimation of rain parameters for microwave backscattering model using PSO[J]. Atmospheric Research, 2023, 288. DOI:10.1016/j.atmosres.2023.106720 .
37 WU Chenglong, GUO Qing, LI Jinhui. Research on the nested overlap of spatial variogram of anisotropic soil parameters in Kriging estimation method[J]. Engineering Journal of Wuhan University, 2022, 55(6): 579-588.
吴成龙, 郭庆, 李锦辉. 克里金估值法中各向异性土体参数的空间变异函数套合研究[J]. 武汉大学学报: 工学版, 2022, 55(6): 579-588.
38 SCHÄPPI B, PERONA P, SCHNEIDER P, et al. Integrating river cross section measurements with digital terrain models for improved flow modelling applications[J]. Computers & Geosciences, 2010, 36(6): 707-716.
39 LIU Qinglan, CHEN Junqing, CHEN Shenliang. Spatiotemporal evolution of Yellow River estuarine channel and its influencing factors since the water-sediment regulation scheme[J]. Acta Geographica Sinica, 2021, 76(1): 139-152.
刘清兰, 陈俊卿, 陈沈良. 调水调沙以来黄河尾闾河道冲淤演变及其影响因素[J]. 地理学报, 2021, 76(1): 139-152.
40 MERWADE V M, MAIDMENT D R, GOFF J A. Anisotropic considerations while interpolating river channel bathymetry[J]. Journal of Hydrology, 2006, 331(3/4): 731-741.
[1] 宁荣荣, 王德, 田信鹏, 张永伟, 周自翔, 罗富彬. 黄河三角洲的地面沉降分析以及海水淹没预估[J]. 地球科学进展, 2023, 38(3): 296-308.
[2] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[3] 尹帅, 丁文龙, 杨文娜, 赵威, 张敏, 丛森. 考虑地层各向异性井壁稳定性研究进展[J]. 地球科学进展, 2015, 30(11): 1218-1230.
[4] 高新勃, 强小科, 赵辉, 陈艇. 风成红黏土序列磁化率各向异性特征对区域应力变化的响应[J]. 地球科学进展, 2014, 29(3): 369-380.
[5] 张友联, 杜建国,崔月菊. 地核物质成分研究进展[J]. 地球科学进展, 2011, 26(4): 365-374.
[6] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[7] 王永锋;金振民;. 地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.
[8] 黄海军;李凡. 黄河三角洲海岸带陆海相互作用概念模式[J]. 地球科学进展, 2004, 19(5): 808-816.
[9] 刘国祥,丁晓利,陈永奇,李志林,郑大伟. 极具潜力的空间对地观测新技术——合成孔径雷达干涉[J]. 地球科学进展, 2000, 15(6): 734-740.
[10] 金振民,金淑燕,李隽波. 地球动力学和地震学的桥梁——变形岩石组构与波速各向异性关系[J]. 地球科学进展, 1990, 5(5): 39-42.
阅读次数
全文


摘要