地球科学进展 ›› 2014, Vol. 29 ›› Issue (3): 369 -380. doi: 10.11867/j.issn.1001-8166.2014.03.0369

上一篇    下一篇

风成红黏土序列磁化率各向异性特征对区域应力变化的响应
高新勃 1, 2( ), 强小科 1, *, 赵辉 1, 2, 陈艇 1, 2   
  1. 1.中国科学院地球环境研究所,黄土与第四纪国家重点实验室,陕西 西安 710075
    2.中国科学院大学,北京 100049
  • 收稿日期:2013-09-16 修回日期:2013-01-29 出版日期:2014-03-20
  • 通讯作者: 强小科 E-mail:gxbpaleomag@foxmail.com
  • 基金资助:
    中国科学院战略性先导科技专项“高原隆升对季风演化的影响”(编号:XDB03020504);国家自然科学基金项目“中—上新世红黏土磁性矿物的转化机制及其对东亚夏季风变化的响应”(编号:41072142)资助

Anisotropy of Magnetic Susceptibility Response to the Regional Stress Variation in Aeolian Red Clay Sequence

Xinbo Gao 1, 2, Xiaoke Qiang 1, Hui Zhao 1, 2, Ting Chen 1, 2   

  1. 1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-09-16 Revised:2013-01-29 Online:2014-03-20 Published:2014-03-10

对六盘山以西132 m水洛红黏土剖面磁化率各向异性特征的研究表明,水洛红黏土剖面记录的14.8~8.7 Ma沉积序列受到了同沉积时期不同程度的应力作用,磁化率各向异性变化特征对应于应力作用强度较弱的初期和应力作用强度有所加强的中期。进一步分析发现,14.8~11.0 Ma之间显示出3次应力增强和后续应力减弱交替变化的特点,这一应力作用事件可能与青藏高原东北缘在此阶段强烈构造活动的区域应力传递相关,而11.0~8.7 Ma期间存在一个相对较强的应力作用事件,可能是对局部地区应力增强事件的响应。

The Aeolian sediment sequences from the Chinese Loess Plateau record abundant paleoclimatic and paleoenvironmental information, while little is known about whether there were any stress effect during the sedimentary period. In terms of tracking stress variation, anisotropy of magnetic susceptibility(AMS) has some particular advantages in comparison with other traditional methods. Systematic magnetostratigraphy, rock magnetism and anisotropy of magnetic susceptibility analysis were carried out on Shuiluo Aeolian red clay profile, which is located at the western Liupan Mountain. In the field, there are not any obvious tectonic traces that can be observed, which indicates the primitive deposit, but AMS results have many distinct differences between Shuiluo aeolian red clay profile and other typical aeolian sediment sequences(loess/paleosol, red clay). These differences mainly manifest from the following aspects. Firstly, abundant magnetic ellipsoid is located in the prolate area; Secondly, the stereonet projections of the κmax and κmin principle axes of AMS ellipsoids show that the κmax axes are well grouped in an approximately east-west direction, while the κmin shows a slight girdle in an approximately north-south direction; and in addition, the Pj-T diagram shows that the magnetic ellipsoid is being transition from oblate to prolate magnetic ellipsoid. These characteristics listed above suggested that Shuiluo red clay profile had gone through a weakly stress effect, and comparing with previous research we infer that these AMS characteristics be correspondent to the incipient deformation with a weaker stress intensity and the moderate deformation with a stronger stress intensity. After further classification, comparison and using a variety of analysis methods, we find that from 14.8 Ma to 11.0 Ma, the stress state is accompanied by three stress increase and decrease alternately, and these stress effects may correspond to the stress from the northwest Tibetan plateau. In about 11.0~8.7 Ma, AMS shows a strong stress effect, and almost all AMS ellipsoid is located in the prolate magnetic ellipsoid area. At the same time, the κmin axes shows a strong girdle in an approximately north-south direction and it should be in response to the stress increasing in the local area.

中图分类号: 

图1 黄土高原水洛剖面位置图(修改自文献[18])
Fig.1 Location of Shuiluo profile on the Chinese Loess Plateau(modified after reference[18])
图2 水洛红黏土剖面典型样品的磁化率( χ) 随温度( T)变化曲线 黑线代表加热过程,灰线代表冷却过程
Fig.2 χ-T curves of the representative samples of Shuiluo red clay Black and gray lines refer to heating and cooling curves, respectively
图3 水洛红黏土剖面典型样品的等温剩磁(IRM) 获得曲线与反向场退磁曲线
Fig.3 IRM acquisition and demagnetization curves for the representative samples of Shuiluo red clay
图4 水洛红黏土典型样品热退磁过程特征剩磁方向的正交投影图和剩磁衰减图
Fig.4 Orthogonal projections of progressive thermal demagnetization and normalized intensity decay plots of Shuiluo red clay
图5 水洛剖面与庄浪钻孔磁化率 [ 18 ]对比及水洛剖面磁性地层序列与标准极性柱 [ 36 ]对比
Fig.5 Comparison magnetic susceptibility and magnetostratigraphy of Shuiluo profile with Zhuanglang core [ 18 ] and Geomagnetic Polarity Time Scale [ 36 ]
图6 水洛红黏土AMS参数综合图 (a)水洛红黏土AMS最大轴和最小轴的赤平投影图,最大轴由实心的小圆形表示,最小轴由实心的小三角形表示; (b)水洛红黏土AMS TPj的相关关系图; (c)水洛红黏土AMS F-L的Flinn图
Fig.6 The systhesis AMS parameters diagram of Shuiluo red clay (a)Stereographic projection diagram for the AMS data from Shuiluo red clay, circles and triangles represent κmax and κmin; (b)Pj-T(corrected AMS degree versus AMS shape parameter) diagram for the AMS data from Shuiluo red clay; (c) The Flinn diagram of Lineation against Foliation of Shuiluo red clay
图7 水洛红黏土剖面AMS κ m, Pj, T, Q, κ min- Inc, κ max- Inc随深度变化图
Fig.7 Mean magnetic susceptibility( κ m), corrected AMS degree( Pj), AMS shape parameter( T) and the inclinations of the maximum( κ max) and minimum( κ min) principle axes of the AMS ellipsoids from Shuiluo red clay all shown as a function of height
图8 应力作用随深度变化图 (a)最小轴处于垂直位置的层段; (b)三轴磁化率随深度的变化趋势,不同的层段所对应的赤平投影图,图中红色小正方形指示最大轴、蓝色小圆点指示最小轴、绿色小三角指示中间轴,图中灰色区域指示的为理论上的垂直位置(κmin-Inc>70°);轮廓线图,红线表示最大轴的轮廓、蓝线表示最小轴的轮廓、绿线表示中间轴的轮廓;趋势图,图中红色区域指示的为最大轴和最小轴相对集中的位置,绿色到蓝色的过渡指示的是最大轴和中间轴的展布方向;TPj的相关关系图,图中蓝色小圆点表示的是扁圆状(T>0)的椭球体形状,绿色小圆点表示的为长棒状(T<0)的椭球体形状; (c)最小轴偏离中心位置的层段
Fig.8 The stress variation with depth of Shuiluo red clay profile (a) The sections with the minimum principle axes(κmin) perpendicular to the center position; (b)The three principle axes as a function of height, stereographic projection diagrams of different sections, the red squares, blue circles and green triangles represent κmax,κint, κmin, respectively, the gray circles marks the samples with κmin-Inc>70°;contours diagram of κmax(red line), κint(green line), κmin(blue line);tendency diagram of κmax and κmin, the red area represent the centralized locations of κmax and κmin, the transition from green to blue indicates the distribution direction of κmax and κmin;Pj-T(corrected AMS degree versus AMS shape parameter) diagram; (c)The sections with the minimum principle axes(κmin) deviation from the center position
[34] Ding Z L, Xiong S F, Sun J M, et al. Pedostratigraphy and palaeomagnetism of a~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for palaeomonsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1):49-66.
[35] An Z S.The history and variability of the East Asian palaeomonsoon climate[J]. Quaternary Science Reviews,2000,19(1):171-187.
[36] Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic[J]. Journal of Geophys Research, 1995,100:6 093-6 095.
[37] Liu X M, Xu T C, Liu T S. The Chinese loess in Xifeng, II. A study of anisotropy of magnetic susceptibility of loess from Xifeng[J]. Geophysical Journal, 1988, 92(2):349-353.
[38] Lagroix F, Banerjee S K. The regional and temporal significance of primary aeolian magnetic fabrics preserved in Alaskan Loess[J]. Earth and Planetary Science Letters, 2004, 225(3):379-395.
[39] Borradaile G, Henry B. Tectonic applications of magnetic susceptibility and its anisotropy[J]. Earth Science Reviews, 1997, 42(1):49-93.
[40] Kanamatsu T, Herroro-Bervara E, Taira A. Magnetic fabric development in the Tertiary Accretionary complex in the Boso and Miura Peninsulas of central Japan[J]. Geophysical Research Letters,1996,23(5):471-474.
[41] Larrasoana J C, Pueyo E L, Parés J M. An integrated AMS, structural, palaeo-and rock-magnetic study of Eocene marine marls from the Jaca-Pamplona basin(Pyrenees, N Spain); New insights into the timing of magnetic fabric acquisition in weakly deformed mudrocks[J]. Geological Society London Special Publications,2004,238:127-143.
[42] Ding Z L, Sun J M, Liu T S, et al. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China[J]. Earth and Planetary Science Letters, 1998,161(1):135-143.
[43] Lu H Y, Vandenberghe J, An Z S. Aeolian origin and palaeoclimatic implications of the ‘red clay’(north China) as evidenced by grain-size distribution[J]. Journal of Quaternary Science, 2001, 16(1):89-97.
[44] Yang S L, Ding Z L. Comparison of particle size characteristics of the Tertiary ‘red clay’and Pleistocene loess in the Chinese Loess Plateau: Implications for origin and sources of the ‘red clay’[J]. Sedimentology, 2004, 51(1):77-93.
[45] Li F J, Wu N Q, Pei Y P, et al. Wind-blown origin of Dongwan late Miocene-Pliocene dust sequence documented by land snail record in western Chinese Loess Plateau[J]. Geology, 2006, 34(5):405-408.
[1] Hus J J. The magnetic fabric of some loess/palaeosol deposits[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(16/19):689-699.
[2] Lagroix F, Banerjee S K. Palaeowind directions from the magnetic fabric of loess profiles in central Alaska[J]. Earth and Planetary Science Letters, 2002, 195(1):99-112.
[3] Zhu R X, Liu Q S, Jackson M J, et al. Palaeoenvironmental significance of the magnetic fabrics in Chinese Loess-Palaeosols since the last interglacial(&lt;130 ka)[J]. Earth and Planetary Science Letters, 2004, 221(1):55-69.
[4] Zhang R, Kravchinsky V A, Zhu R X, et al. Palaeomonsoon route reconstruction along a W-E transect in the Chinese Loess Plateau using the anisotropy of magnetic susceptibility: Summer monsoon model[J]. Earth and Planetary Science Letters, 2010, 299(3):436-446.
[5] Zhang Rui, Yue Leping, Gong Hujun, et al. Anisotropy of magnetic susceptibility of eolian sediments in the Chinese Loess Plateau[J]. Quaternary Sciences, 2012, 32(4):719-726.
[张睿,岳乐平,弓虎军,等.黄土高原风成沉积物磁化率各向异性研究[J]. 第四纪研究,2012,32(4):719-726.]
[6] Wang Luo, Liu Dongsheng, Han Jiamao, et al. Environmental magnetism of Chinese Quarternary Loess: A brief review[J]. Advances in Earth Sciences, 2000,15(3):335-341.
[旺罗,刘东升,韩家懋,等.中国第四纪黄土环境磁学研究进展[J].地球科学进展,2000,15(3):335-341.]
[7] Liu B Z, Saito Y, Yamazaki T, et al. Palaeocurrent analysis for the Late Pleistocene—Holocene incised-valley fill of the Yangtze delta, China by using anisotropy of magnetic susceptibility data[J]. Marine Geology, 2001, 176(1):175-189.
[8] Piazolo S, Passchier C W. Controls on lineation development in low to medium grade shear zones: A study from the Cap de Creus peninsula, NE Spain[J]. Journal of Structural Geology, 2002, 24(1):25-44.
[46] Qiao Yansong, Guo Zhengtang, Hao Qingzhen, et al. Grain-size features of a Miocene loess-soil sequence at Qin’an: Implications on its origin[J]. Science in China(Series D),2006,49(7):731-738.
[乔彦松, 郭正堂, 郝青振,等. 中新世黄土—古土壤序列的粒度特征及其对成因的指示意义[J]. 中国科学: D 辑,2006,36(7):646-653.]
[47] Liu Jinfeng, Guo Zhengtang, Qiao Yansong, et al. Eolian origin of the Miocene loess-soil sequence at Qin’an, China: Evidence of quartz morphologh and quartz grain size[J]. Chinese Sicence Bulletin,2006,51(1):117-120.
[刘进峰, 郭正堂, 乔彦松,等. 秦安中新世黄土—古土壤序列石英颗粒形态特征、粒度分布及其对成因的指示意义[J].科学通报, 2005,50(24):2 806-2 809.]
[48] Wang E. Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet[J]. Earth and Planetary Science Letters, 1997,150(1):55-64.
[49] Sun J M, Zhu R X, An Z S. Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters,2005,235(3/4):641-653.
[50] Burchfiel B C, Zhang P Z, Wang Y P, et al. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau[J]. Tectonics,1991,10(6):1 091-1 110.
[51] Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau[J]. Geophysical Journal International, 1998, 135(1):1-47.
[52] Zheng Dewen, Zhang Peizhen, Wan Jinglin, et al. The late-cenozoic tectonic distortion of the north-west margin of Tibetan Plateau—The record of detrital apatite fission track dating in Linxia Basin[J]. Science in China(Series D),2003,33(Suppl.1):190-198.
[郑德文,张培震,万景林,等. 青藏高原东北边缘晚新生代构造变形的时序——临夏盆地碎屑颗粒磷灰石裂变径迹记录[J].中国科学: D辑, 2003, 33(增刊1):190-198.]
[9] Parés J M, Ben A, vander Pluijm. Evaluating magnetic lineations(AMS) in deformed rocks[J]. Tectonophysics, 2002, 350(4):283-298.
[10] Parés J M. How deformed are weakly deformed mudrocks? Insights from magnetic anisotropy[J]. Geological Society, London, Special Publications, 2004, 238(1):191-203.
[11] Lagroix F, Banerjee S K. Cryptic post-depositional reworking in aeolian sediments revealed by the anisotropy of magnetic susceptibility[J]. Earth and Planetary Science Letters, 2004, 224(3):453-459.
[12] Charreau J, Chen Y, Gilder S, et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section(northwest China)[J]. Tectonics, 2009, 28(2):TC2008, doi:10.1029/2007TC002137.
[13] Huang B C, Piper J D A, Peng S D, et al. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan range, western China[J]. Earth and Planetary Science Letters, 2006, 251(3):346-364.
[14] Tang Z H, Huang B C, Dong X X, et al. Anisotropy of magnetic susceptibility of the Jingou River section: Implications for late Cenozoic uplift of the Tian Shan[J]. Geochemistry Geophysics Geosystems, 2012, 13:Q03022, doi:10.1029/2011GC003966.
[15] Burmeister K C, Harrison M J, Marshak S, et al. Comparison of fry strain ellipse and AMS ellipsoid trends to tectonic fabric trends in very low-strain sandstone of the appalachian fold-trust belt[J]. Journal of Structural Geology,2009,31:1028-1 038.
[16] Cifelli F, Mattei M, Hirt A M, et al. The origin of tectonic fabric in“undeformed” clays: The early stages of deformation in extensional sedimentary basins[J]. Geophysical Research Letters, 2004, 31:L09604, doi:10.1029/2004GL019609.
[17] Kligfield R, Lowrie W, Hirt A, et al. Effect of progressive deformation on remanent magnetization of permian redbeds from the alpes maritimes[J]. Tectonophysics, 1983, 98:59-85.
[18] Qiang X K, An Z S, Song Y G, et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago[J]. Science in China(Series D), 2011, 54(1):136-144.
[19] Guo Z T, Rudddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6 877):159-163.
[20] Yan M D, VanderVoo R, Fang X M, et al. Palaeomagnetic evidence for a mid-Miocene clockwise rotation of about 25 of the Guide Basin area in NE Tibet[J]. Earth and Planetary Science Letters, 2006, 241(1):234-247.
[21] Liu Bing, Jin Heling, Sun Zhong, et al. Geochemical characteristics of aerolian deposits in Gonghe Basin, northeastern Qinghai-Tibetan Plateau and the indicating climatic changes[J]. Advances in Earth Science, 2012, 27(7):788-799.
[刘冰,靳鹤龄,孙忠,等.青藏高原东北部共和盆地风成沉积地球化学特征及其揭示的气候变化[J].地球科学进展,2012, 27(7):788-799.]
[22] Jelinek V. Characterization of the magnetic fabric of rocks[J]. Tectonophysics, 1981, 79(3): T63-T67.
[23] Ao H, Dekkers M J, Deng C L, et al. Palaeoclimatic significance of the Xiantai fluvio-lacustrine sequence in the Nihewan Basin(North China), based on rock magnetic properties and clay mineralogy[J]. Geophysical Journal International, 2009,177(3):913-924.
[24] Kirschvink J. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3):699-718.
[25] Guo Z T, Peng S Z, Hao Q Z, et al. Origin of the Miocene-Pliocene red-earth formation at Xifeng in Northern China and implications for palaeoenvironments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 170(1):11-26.
[26] Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 2008, 4(3):153-174.
[27] Hao Q Z, Guo Z T. Magnetostratigraphy of an early-middle Miocene loess-soil sequence in the western Loess Plateau of China[J]. Geophysical Research Letters, 2007, 34(18):L18305,doi:10.1029/2007G2031162.
[28] Liu Jinfeng, Guo Zhengtang, Hao Qingzhen, et al. Magnetostratigraphy of he Miziwan Miocene eolian deposits in Qin’an county(Gansu Province)[J].Quaternary Sciences,2005,25(4):503-509.
[刘进峰,郭正堂,郝青振,等.甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究[J]. 第四纪研究,2005,25(4):503-509. ]
[29] Zachos J. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517):686-693.
[30] Flower B P, Kennett J P. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3):537-555.
[31] Li Chaozhu, Zhang Xiao, Xu Yuanbin, et al. Reviews on the reconstructed C3/C4 variations since the late Miocene in the Chinese Loess Plateau[J]. Advances in Earth Science, 2012, 27(3):284-291.
[李朝柱,张晓,许元斌,等. 黄土高原地区晚中新世以来陆地植被C3/C4 植物相对丰度演化研究进展[J].地球科学进展,2012, 27(3):284-291.]
[32] Kukla G, An Z S. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology, 1988, 16(9):811-814.
[33] An Z S, Wang S M, Wu X H, et al. Eolian evidence from the Chinese Loess Plateau: The onset of the late Cenozoic Great Glaciation in the Northern Hemisphere and Qinghai-Xizang Plateau uplift forcing[J]. Science in China(Series D), 1999, 42(3):258-271.
[53] Lu Huayu, An Zhisheng, Wang Xiaoyong, et al. Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years[J]. Science in China(Series D), 2004, 47(9): 822-833.
[鹿化煜,安芷生,王晓勇,等. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学: D辑,2004, 34(9): 822-833.]
[54] Jolivet M, Roger F, Arnaud N, et al. Exhumation history of the Altun Shan with evidence for the timing of the subduction of the Tarim block beneath the Altyn Tagh system, North Tibet Comptes Rendus de l’Academie des Sciences Series IIA[J]. Earth and Planetary Science Letters, 1999,329(10):749-755.
[55] Zheng H B, Powell C M, An Z S. Pliocene uplift of the northern Tibetan Plateau[J]. Geology, 2000,28(8):715-718.
[56] Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters,2006,248(1):198-208.
[57] Tian Qinjian, Ding Guoyu, Shen Xuhui. Pull-apart basins and total lateral displacement along the Haiyuan fault zone in cenozoic[J]. Earthquake Research in China, 2001,17(2):167-175.
[田勤俭, 丁国瑜,申旭辉. 拉分盆地与海原断裂带新生代水平位移规模[J]. 中国地震, 2001,17(2):167-175.]
[1] 张春灌,李想,袁炳强,宋立军. 地球磁异常( EMAG2)数据中海域资料质量评估[J]. 地球科学进展, 2019, 34(3): 288-294.
[2] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[3] 胡毅, 王立明, 钟贵才, 房旭东, 许江, 何慧优. 威德尔海的重磁场特征及其构造意义[J]. 地球科学进展, 2015, 30(11): 1231-1238.
[4] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[5] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[6] 赵国庆,周卫健,武振坤,鲜锋,孔祥辉,张丽. 黄土中宇宙成因核素 10Be示踪古地磁场变化研究进展[J]. 地球科学进展, 2010, 25(9): 927-933.
[7] 冯彦,安振昌,孙涵,毛飞. 中国地区地磁正常场模型研究[J]. 地球科学进展, 2010, 25(7): 723-729.
[8] 高金耀,吴招才,王健,杨春国,张涛. 南海北部陆缘磁静区及与全球大洋磁静区对比的研究评述[J]. 地球科学进展, 2009, 24(6): 577-588.
[9] 闫海涛;胡守云;朱育新. 磁学方法在环境污染研究中的应用[J]. 地球科学进展, 2004, 19(2): 230-236.
[10] 康国发,吴小平,胡家富. 1600—2000年地球主磁场的全球变化[J]. 地球科学进展, 2002, 17(3): 339-343.
[11] 高晓清, G. P. Gregori. ALB上焦耳热场的形态分布特征及环境意义探讨[J]. 地球科学进展, 2002, 17(4): 487-490.
[12] 陈出新. 地球等离子体片中爆震流的理论研究[J]. 地球科学进展, 2001, 16(4): 584-586.
[13] 田清孝,李世峰,金瞰昆. 地球偶极磁场成因新探讨[J]. 地球科学进展, 1997, 12(1): 62-65.
阅读次数
全文


摘要