地球科学进展 ›› 2002, Vol. 17 ›› Issue (4): 487 -490. doi: 10.11867/j.issn.1001-8166.2002.04.0487

研究论文 上一篇    下一篇

ALB上焦耳热场的形态分布特征及环境意义探讨
高晓清 1, G. P. Gregori 2   
  1. 1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;2.Istitutodi Fisicadell'Atmosfera(CNR),Rome 100039,Italy
  • 收稿日期:2001-09-04 修回日期:2002-03-04 出版日期:2002-12-20
  • 通讯作者: 高晓清(1966-),男,甘肃靖远人,研究员,主要从事气候变化与预测的研究.E-mail:xqgao@ns.lzb.ac.cn E-mail:xqgao@ns.lzb.ac.cn
  • 基金资助:

    中国科学院知识创新工程重大项目“西部生态环境演变规律与水土资源可持续利用研究”(编号:KZCX1-10-02);国家重点研究发展规划项目“青藏高原形成演化及其环境、资源效应”(编号:G1998040800)联合资助.

THE DISTRIBUTION PATTERN OF JOULE HEAT ON ALB AND ITS ENVIRONMENTAL SIGNIFICANCE

GAO Xiao-qing 1,G. P. Gregori 2   

  1. 1.Cold and Arid Regions Environmental and Engineering Research Institute, CAS,730000  Lanzhou;2.Istituto di Fisica dell' Atmosfera(CNR), Rome 100039, Italy
  • Received:2001-09-04 Revised:2002-03-04 Online:2002-12-20 Published:2002-08-01

利用地磁场MAGSAT(1980)模型计算了软流圈-岩石圈边界(ALB)上的焦耳热场,分析了它的形态分布特征,并探讨了其环境意义。发现ALB上焦耳热高值中心的分布与全球地热带和火山的分布有较好的一致性,焦耳热的水平尺度与地热涡的水平尺度、我国大陆上多雨带的间距及降水量和气温的高相关带的间距相当。低纬地带ALB上焦耳热中心的分布与全球平均年最大降水量中心的分布特征有很好的对应。另外,ALB上全球最大焦耳热中心位于我国青藏高原东南部的热点上。最后,讨论了地磁与气候的可能联系。

It is well known that the Earth is a self heating planet by its physical and chemical processes inside. From physics, it is a geodynamo, and the electric current exists in it. By Joule rule, this current can produce Joule heat for the resistance of the material in it. The Joule heat distribution field on Asthenosphere-Lithosphere Boundary(ALB) has been obtained by using MAGSAT model. The distribution pattern was analyzed, and its environmental significance was discussed. It is found that the distribution of high value centers of Joule heat on ALB have good corresponding to the distributions of global geothermal zones and volcanoes, and the horizontal scale of Joule heat is very comparative to the horizontal scale of geothermal vortex, to the space distance between rainy belts in China, and to the space distance between the high correlation coefficient belts of precipitation and temperature The centers of Joule heat match the maximum annual precipitation centers in globe very well. And it is also found that the highest center of Joule heat in globe locates under Tibetan Plateau. These phenomena are of very important to understand the Earth as a whole, and the interactions between spheres. Finally, the possible relation between geomagnetic field and climate change was discussed.

中图分类号: 

[1] Xin Jianshi. A summary on the prediction for flood season's precipitation in 10 years(1975-1984) [J]. Plateau Meteorology, 1985, 4(4): 372-381. [辛坚十. 10年(1975—1984年)汛期降水预报小结[J]. 高原气象, 1985, 4(4): 372-381.]
[2] Tang Maocang, Zhao Zhenguo, Ma Zhuguo. A summary on the prediction for flood season's prediction in 10 years(1985-1994) by the method of geosphere-atmosphere interaction[J]. Atmospheric Information, 1995, 1:1-6.[汤懋苍, 赵振国, 马柱国. “地气耦合法”10年(1985—1994年)汛期降水预报总结[J]. 大气情报, 1995, 1:1-6.]
[3] Hu Zeyong, Xiang Weiguo, Tang Maocang. Geothermal anomaly as an important factor to climate anomaly[A]. Comprehensive Study of Cosmic, Earth and Biosphere[C]. Beijing: Science Press, 1989.  257-260.[胡泽勇, 向卫国, 汤懋苍. 地热异常是气候异常的重要因子[A]. 天地生综合研究[C]. 北京:科学出版社, 1989. 257-260.]
[4] Gregori G P. Anthropic Control of the Natural Long-Term Climatic Variations: Proposal for a Discussion on Greenhouse Effect Controlled by Geothermal Heat Flow[C]. In Sindoni and Wong. 1991. 353-360.
[5] Gregori G P, Martellucci S. Underground record or global climate change[A].In: Proceeding of the IV Workshop Sull' Atmosfera Antatica[C]. Dorano (Terni, ITALY), Oct. 21-23, 1991.
[6] Wang Wanqiu.Nunerical simulation on impact of the soil temperature and humidity anomaly on short-term climate[J]. Atmospheric Science, 1991, 15(5):115-122.[王万秋.土壤温湿异常对短期气候影响的数值模拟试验[J]. 大气科学,1991, 15(5),115-122.]
[7] Wu Daqiu. Theoretical Physics-vol.3: Electro-Magnetism[M]. Beijing: Science Press, 1983. 38-39.[吴大猷.理论物理第三册:电磁学[M].北京:科学出版社,1983.38-39.]
[8] Chapman S, Bartels J. Geomagnetism[M]. Vol.1 and 2(2nd edition). Oxford: Oxford University Press, 1962.
[9] Matsushita S. Solar quiet and limar daily variation fields[A]. In: Matsushita S, Campbell W H, eds.  Physics of Geomagnetic Phenomena (Vol.1(3)) [C]. London, New York: Academic Press, 1967.
[10]Gregori G P, Dong Wenjie, Gao Xiaoqing, et al. The separation of the geomagnetic field originated in the core, in the Asthenosphere, and in the crust[J]. Annali di Geofisica, 1999, 42(2): 191-209.
[11]Wang Jun, Huang Shangyao, Huang Geshan, et al. Basic Characteristics of the Earth's Temperature Distribution in China[M]. Beijing: Seismic Press, 1990. 3-4. [王钧,黄尚瑶,黄歌山,等. 中国地温分布的基本特征[M]. 北京:地震出版社, 1990. 3-4.]
[12]Tom Simkin, Lee Siebert. Volcanoes of the World (Second edition)[M].  INC Tucson   Arizona: Geosciences Press,1994.1-2.
[13]Tang Maocang, Gao Xiaoqing. Some statistic characteristics of “Underground Hot Vortex” in China during 1980-1993(I)—Spatial-temporal distribution of Underground Hot Vortex[J]. Science in China(series D), 1995, 25(11): 1 186-1 192.[汤懋苍,高晓清. 1980—1993年我国“地热涡”的若干统计特征——I. “地热涡”的时空分布[J]. 中国科学,1995, 25(11): 1 186-1 192.]
[14]Lamb H H. Climate: Present, Past and Future, Vol 1[M]. London: Methuen, 1972.
[15]Tang Maocang, Zhong Dalai, Li Wenhua, et al. Evidences for the Daxiawan as a hot spot in the Earth[J]. Science in China(series D), 1998, 28(5): 463-468. [汤懋苍,钟大赉,李文华,等.雅鲁藏布江“大峡湾”是地球“热点”的证据[J]. 中国科学(D辑),1998, 28(5): 463-468.]
[16]Roberts W O, Olson R H. Geomagnetic storms and wintertime 300-mb trough development in the North Pacific-North America area[J]. J Atmos Sci, 1973, 30: 135.
[17]Sazonov B I. Glav Geofiz Obs[R]. Gidroneterizdat, 1964.
[18]King J W. Weather and the Earth's magnetic field[J]. Nature, 1970, 247: 131-134.
[19]Bucha V. Mechanism of the relation between the changes of the geomagnetic field, solar corpuscular radiation, atmospheric circulation and climate[J]. J Geomag Geoelectr, 1980, 32: 217-264.
[20]Bucha V.Solar and geomagnetic variability and changes of weather and climate[J]. J Atmos Terres Phys, 1991, 53(11/12): 1 161-1 172.
[21]Zhu Yongfeng. Geo degassing as the dominant factor to global environmental change[J]. Earth Science Frontiers,1997, 4(1-2): 152. [朱永峰. 地球的放气作用是全球环境变化的主导因素[J]. 地学前缘,1997, 4(1-2): 152.]
[22]Gerlach T M. Etna's greenhouse pump[J]. Nature, 1991, 315: 352-353.
[23]Etiope G, Klusman R W. Dose geogas emission in non-volcanic areas contributes to carbon cycle and global climate change[A]. 25th course: Observational Database and Mechanisms of Climate[C]. Erice-Sicily,  21-27 November, 1998.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要