地球科学进展 ›› 2014, Vol. 29 ›› Issue (3): 380 -387. doi: 10.11867/j.issn.1001-8166.2014.03.0380

所属专题: 青藏高原研究——青藏科考

上一篇    下一篇

青藏铁路旱桥桥面遮阳对桥下及周边冻土太阳辐射影响
夏利江 1, 2( ), 周国庆 1, 3, 刘宇翼 3, 王涛 3, 阴琪翔 3   
  1. 1.中国矿业大学力学与建筑工程学院,江苏 徐州 221008
    2.鲁东大学食品工程学院,山东 烟台 264025
    3.中国矿业大学深部岩土力学与地下工程国家重点实验室,江苏 徐州 221008
  • 收稿日期:2013-12-07 修回日期:2014-02-21 出版日期:2014-03-20
  • 基金资助:
    国家重点基础研究发展计划项目“冻土工程地基形变机制与基础稳定性评价”(编号:2012CB026103);国家自然科学基金项目“基于水热耦合分离冰冻胀理论的冻土冻胀力响应研究”(编号:41271096)资助

Effects of Sunshine-shield of Qinghai-Tibet Railway Land Bridge on the Solar Radiation of Underbridge and Surrounding Permafrost

Lijiang Xia 1, 2( ), Guoqing Zhou 1, 3, Yuyi Liu 3, Tao Wang 3, Qixiang Yin 3   

  1. 1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221008, China
    2. School of Food Engineering, Ludong University, Yantai 264025, China
    3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China
  • Received:2013-12-07 Revised:2014-02-21 Online:2014-03-20 Published:2014-03-10

通过分析太阳辐射强度和旱桥桥面影子轨迹随时间的变化规律,建立时间、太阳辐射强度、太阳位置和影子轨迹关系的数学模型,并利用该模型对旱桥桥面遮阳效应进行研究。提出直射率概念表示周边冻土获得的太阳直接辐射能量的比例。研究发现旱桥的高度、走向、桥面宽度等因素对桥下及周边范围冻土的太阳直射率影响很大。随着旱桥高度的增加,桥面遮阳影响范围增大,遮阳中心直射率增大;随着旱桥宽度的增加,桥下及周边冻土的直射率降低;东西走向的旱桥桥下及周边冻土表面直射率非对称性最为明显。旱桥桥面的遮阳可以有效减少桥下及周边冻土的太阳辐射热量,同时也会引起桩基周边冻土表面非均匀太阳辐射受热,这种太阳辐射的非均匀性不可忽视,在旱桥长期稳定性分析中应予以考虑。

Based on the change law of solar radiation intensity and shadow of land bridge variation with time, the mathematical model expressing of the relationship among time, solar radiation intensity,solar position and shadow track was established. The effects of the sunshine-shield of land bridge floor were studied using the model. Direct rate concept was proposed to define the proportion of solar direct radiation energy of the surrounding permafrost. The results show that height, direction and width of land bridge are the major influence factors on the solar radiation of underbridge and surrounding permafrost. With the increase of the height, shading scope and direct rate of sunshade center also increase; with the increase of the width, direct rate of the surrounding permafrost decrease; there was obvious asymmetry distribution of permafrost surface direct rate, especially for the east-west bridge. Sunshine-shield of land bridge can effectively reduce the sun radiation heat of the surrounding permafrost and also cause non-uniform distribution of solar radiation on permafrost surface around piles, which should be concerned in the stability estimation of land bridge.

中图分类号: 

图1 投影坐标为原点的影子运动轨迹
Fig.1 Original point shadow trajectory
图2 原点的遮阳点轨迹线
Fig.2 Original point sunshade line
图3 桥面与其影子距离关系
Fig.3 Relation between projection and shadow
图4 不同高度旱桥周边冻土日平均直射率 (a)春(秋)分;(b)夏至日;(c)冬至日
Fig.4 Day average radiation ratio of surrounding permafrost in different bridge heights (a) Eqvinox; (b) Summer solstice; (c) Winter solstice
图5 不同宽度旱桥周边冻土日平均直射率 (a)春(秋)分;(b)夏至日;(c)冬至日
Fig.5 Day average radiation ratio of surrounding permafrost in different bridge widths (a) Eqvinox; (b) Summer solstice; (c) Winter solstice
图6 不同走向旱桥周边冻土日平均直射率 (a)春(秋)分;(b)夏至日;(c)冬至日
Fig.6 Day average radiation ratio of surrounding permafrost in different bridge directions (a) Eqvinox; (b) Summer solstice; (c) Winter solstice
图7 不同高度旱桥周边冻土年平均直射率
Fig.7 Year average radiation ratio in different heights surrounding bridge
图8 不同宽度旱桥周边冻土年平均直射率
Fig.8 Year average radiation ratio of pile surrounding permafrost in different widths
图9 不同走向旱桥周边冻土年平均直射率
Fig.9 Year average radiation ratio of pile surrounding permafrost in different directions
[1] Ma Wei, Niu Fujun,Mu Yanhu. Basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2012, 27(11): 1 185-1 191.
[马巍,牛富俊,穆彦虎.青藏高原重大冻土工程的基础研究[J].地球科学进展, 2012, 27(11):1 185-1 191.]
[2] Hu Zeyong, Cheng Guodong, Gu Lianglei, et al. Calculating method of global radiation and temperature on the roadbed surface of Qinghai-Xizang railway[J]. Advances in Earth Science,2006,21(12): 1 304-1 313.
[胡泽勇,程国栋,谷良雷,等. 青藏铁路路基表面太阳总辐射和温度反演方法[J]. 地球科学进展,2006,21(12): 1 304-1 313.]
[3] Cheng Guodong. The impact of local factors on permafrost distribution and its inspiring for design Qinghai-Xizang railway[J]. Science in China (Series D), 2003, 33(6): 602-607.
[程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J]. 中国科学:D辑, 2003, 33(6): 602-607.]
[4] Cheng Guodong. A roadbed cooling approach for the construction of Qinghai-Tibet railway[J]. Cold Regions Science and Technology, 2005, 42(2): 169-176.
[5] Lai Y M, Zhang S J, Zhang L X, et al. Adjusting temperature distribution under the south and north slopes of embankment in permafrost regions by the ripped-rock revetment[J]. Cold Regions Science and Technology, 2004, 39(1): 67-79.
[6] Chou Y L, Sheng Y, Zhu Y P. Study on the relationship between the shallow ground temperature of embankment and solar radiation in permafrost regions on Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2012, 78: 122-130.
[7] Chou Y L, Yu S, Wei Z M, et al. Calculation of temperature differences between the sunny slopes and the shady slopes along railways in permafrost regions on Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2008, 53(3): 346-354.
[8] Feng Wenjie,Sun Zhizhong,Li Guoyu, et al. Radiation effect of shading boardon embankment side slope on Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2011,33(4):778-783.
[冯文杰,孙志忠,李国玉,等. 青藏高原路堤边坡遮阳措施辐射影响分析[J]. 冰川冻土, 2011, 33(4): 778-783.]
[9] Feng Wenjie, Ma Wei.An experimental study of the effect of awning along the Qinghai-Tibet railway[J]. Journal of Glaciology and Geocryology,2006, (1): 108-115.
[冯文杰,马巍. 青藏铁路遮阳板措施应用效果观测研究[J]. 冰川冻土,2006, (1): 108-115.]
[10] Feng W, Sun Z, Wen Z, et al. Application study of the awning measure to obstruct solar radiation in permafrost regions on the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2012, 4(2): 121-126.
[11] Feng Wenjie, Ma Wei, Zhang Luxin, et al. Application study of awning to roadway engineering in permafrost regions[J].Chinese Journal of Geotechnical Engineering, 2003, 25(5):567-570.
[冯文杰,马巍,张鲁新,等. 遮阳棚在寒区道路工程中的应用研究[J]. 岩土工程学报,2003, 25(5): 567-570.]
[12] Niu Fujun, Xu Zhiying, Ge Jianjun, et al.Engineering effects of the sunshine-shield roadbed of the Qinghai-Tibet railway in permafrost regions[J]. Journal of Glaciology and Geocryology,2010,32(2): 325-334.
[牛富俊,徐志英,葛建军,等. 青藏铁路遮阳棚路基试验工程效果实测研究[J]. 冰川冻土,2010, 32(2): 325-334.]
[13] Xiao Jianzhang, Lai Yuanming, Zhang Xuefu, et al. Three-dimensional temperature character analysis of the land bridge on the Qinghai-Tibet railway[J].Journal of Glaciology and Geocryology, 2004, 26(4): 426-434.
[肖建章,赖远明,张学富,等. 青藏铁路旱桥的三维温度特性分析[J]. 冰川冻土,2004, 26(4): 426-434.]
[14] Ma W, Cheng G D, Wu Q B. Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad[J]. Cold Regions Science and Technology, 2009, 59(1): 3-11.
[15] Bie Xiaoyong. Study on the Pile-soil Interface and Pile Stability of Land Bridges in High-Temperature Permafrost Regions of Qinghai-Tibet Railway[D]. Xuzhou: China University of Mining & Technology,2005.
[别小勇. 高温多年冻土桩土界面及青藏铁路旱桥桩基稳定性研究[D]. 徐州: 中国矿业大学, 2005.]
[16] Fu Jin,Ma Junyi,Yuan Kun. Study on replacing road with bridge in warm and ice-rich permafrost regions along Qinghai-Tibet highway[J]. Subgrade Engineering,2013,(4): 62-65.
[符进,马君毅,袁堃. 青藏公路高温高含冰量多年冻土地区以桥代路工程研究[J]. 路基工程, 2013,(4): 62-65.]
[17] Zheng Pengfei, Lin Dajun, Liu Xiaoyang, et al. Reversing effect of building lighting technology based on shadow track line[J].Journal of East China University of Science and Technology (Natural Science Edition), 2010, (3): 458-463.
[郑鹏飞,林大钧,刘小羊,等. 基于影子轨迹线反求采光效果的技术研究[J]. 华东理工大学学报:自然科学版, 2010, (3): 458-463.]
[18] Xiao Dengpan, Tao Fulu, Moiwo Juana P. Research progress on surface albedo under global change[J]. Advances in Earth Science, 2011, 26(11): 1 217-1 224.
[肖登攀, 陶福禄, Moiwo Juana P.全球变化下地表反照率研究进展[J].地球科学进展,2011,26(11): 1 217-1 224.]
[19] Ding Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of Earth surface processes: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.
[丁永建,周成虎,邵明安,等.地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419. ]
[20] Niu Fujun, Dong Cheng, Lin Zhanju, et al. Distribution of thermokarst lakes and its thermal influence on permafrost along Qinghai-Tibet highway[J]. Advances in Earth Science, 2013, 28(6): 695-702.
[牛富俊,董晟,林战举, 等.青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.]
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[4] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[5] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[6] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[7] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[8] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[9] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[10] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[11] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[12] 马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
[13] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[14] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[15] 牛富俊,董晟,林战举,鲁嘉濠,罗京. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.
阅读次数
全文


摘要