地球科学进展 ›› 2017, Vol. 32 ›› Issue (10): 1020 -1029. doi: 10.11867/j.issn.1001-8166.2017.10.1020

上一篇    下一篇

高原山地土壤冻融对径流形成的影响研究进展
程根伟( ), 范继辉, 彭立   
  1. 中国科学院成都山地灾害与环境研究所,四川 成都 610041
  • 收稿日期:2017-03-22 修回日期:2017-08-12 出版日期:2017-12-20
  • 基金资助:
    国家自然科学基金项目“西南高山(高原)土壤冻融作用对径流形成的影响及其动态模拟研究”(编号:41671016)资助.

Progresses in Soil Freezing-Thawing Effects on the Runoff Generation in Plateau-Mountain Regions

Genwei Cheng( ), Jihui Fan, Li Peng   

  1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041,China
  • Received:2017-03-22 Revised:2017-08-12 Online:2017-12-20 Published:2017-12-20
  • About author:

    First author:Cheng Genwei (1956-), male,Chengdu City, Sichuan Province, Professor. Research areas include hydrology and eco-environment.E-mail:gwcheng@imde.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “The soil freezing-thawing impacts to runoff generation in southwestern alpine-plateau and their dynamic simulations”(No.41671016).

亚洲主要江河的水源补给受到山地高原寒冻环境的影响,高寒山区积雪和冻土影响了江河源头的径流形成条件,是高寒环境下的具有固液两相变化的径流形成机制,在全球气候变化的大背景下对亚洲主要河流的径流变化和水资源供给具有重要作用。其中冻土的分布、发展和消融是决定该区域径流形成的一个关键环节,研究和揭示土壤冻融对径流形成的影响机制,成为研究全球气候变化和水资源安全领域的热点。要认识亚洲主要江河源头径流变化规律,预测气候变化条件下西部主要河流水资源动态,需要攻克高山(高原)地表环境要素对冻土格局的影响机制,高寒山区土壤冻融和地下水分的转化条件与阈值,冻土产汇流模型及相关参数确定方法,相关冰雪冻融—径流形成关系等关键环节。通过高寒地区冻土水文观测、土壤冻融模拟实验和基于热力学的土壤水多相转化模式的研究,将在冻土水文学的微观机制、尺度效应以及预测能力等方面获得新的认识,建立适合高寒山区的多尺度分布式流域水文模型,使寒区水文过程预测预报达到更高的水平。

The water feeding of main rivers in Asia is under influence by cold environment in alpine regions. The snow coverage and soil freeze affect surface condition of runoff generation of river heads. The mechanism of water-ice phase transition plays an important role to the river water supplying in cold regions. It greatly affects the water resource for large rivers in Asia, especially in the impact of global climate change. The soil freezing and thawing effects are the controlling factors of runoff change of mountainous rivers. The prediction of stream flow is of large uncertainty under the influence of climate change, which is the hotspot in the study on the global change impacting water resource. To explore the runoff change rule of river heads in Asia and predicate the water resource dynamics, one needs to know the alpine environment affecting freeze pattern of soil water, determine transformation condition and threshold of soil ice-water in mountain regions, design runoff generation models and parameters in alpine region, propose relative theories on the soil freezing-thawing and runoff generation. For these purposes, jointed stadies are necessary for the mountain field hydrological observation, simulation experiments of soil freezing and thawing in laboratory, and mode study of phase transition of soil water based on the thermodynamics. These studies will solve the key problems in micro-mechanism of cold hydrology, scale effect and predication techniques. It will help to develop multi-scale distributed hydrological models, and enhance the forecasting level for the river hydrographs in mountain regions.

中图分类号: 

[1] Liu Changming, Chen Zhikai.Assessment of Water Resources Status and Development Trend of Supply and Demand in China[M]. Beijing: China Water Power Press, 2001.
[刘昌明, 陈志凯. 中国水资源现状评价和供需发展趋势分析[M]. 北京:中国水利水电出版社,2001.]
[2] Wang Chenghai, Wang Zhilan, Cui Yang.Snow cover of China during the last 40 years:Spatial distribution and interannual variation[J]. Journal of Glaciology and Geocryology,2009, 31(2):301-310.
[王澄海, 王芝兰, 崔洋. 40余年来中国地区季节性积雪的空间分布及年际变化特征[J], 冰川冻土, 2009,31(2): 301-310.]
[3] Yao Tandong, Liu Shiyin, Pu Jianchen,et al. Recent recession of high Asian glaciers and their impacts on water resources in Northwest China[J].Science in China(Series D), 2004, 34(6):535-543.
[姚檀栋,刘时银,蒲健辰,等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学:D辑, 2004, 34(6): 535-543.]
[4] Liu S, Ding Y, Shangguan D, et al. Glacier retreat as a result of climate warming and increased precipitation in the Tarim River Basin, Northwest China[J]. Annals of Glaciology,2006, 43(1): 91-96.
[5] Wang Genxu, Li Yuanshou,Wang Yibo,et al. Impacts of alpine ecosystem and climate changes on surface runoff in the headwaters of the Yangtze River[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 159-168.
[王根绪,李元寿,王一博,等.长江源区高寒生态与气候变化对河流径流过程的影响分析[J].冰川冻土,2007,29(2):159-168.]
[6] Wu Mousong, Huang Jiesheng, Wu Jingwei, et al. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China[J].Journal of Hydrology, 2016, 535: 46-53.
[7] Ala Musa, Liu Ya, Wang Anzhi, et al. Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere[J].Geoderma, 2016, 264: 132-139.
[8] Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010,328:1 382-1 385.
[9] Viviroli D, Dürr H H, Messerli B, et al. Mountains of the world, water towers for humanity: Typology, mapping, and global significance[J].Water Resources Research,2007,43(7),doi: 10.1029/2006WR005653.
[10] Li Shuxun, Cheng Guodong, Guo Dongxin.Numerical simulation of the future changes of thermal regime in the high temperature permafrost of Qinghai-Xizang Plateau under climate warming[J], Science in China(Series D), 1996, 26(4):343-347.
[李述训,程国栋,郭东信.气候持续变暖条件下青藏高原多年冻土变化趋势数值模拟[J].中国科学:D辑,1996,26(4):343-347.]
[11] Zhou Youwu, Guo Dongxin.Principal characteristics of permafrost in China[J].Journal of Glaciology and Geocryology,1982,4(1):1-21.
[周幼吾,郭东信.我国多年冻土的主要特征[J].冰川冻土,1982,4(1):1-21.]
[12] Xu Xuezu, He Ping, Zhang Jianming.Progresses in the studies of soil freezing and frost heaving[J]. Journal of Glaciology and Geocryology, 1997,19(3):280-283.
[徐学祖, 何平,张健明.土体冻结和冻胀研究的新进展[J].冰川冻土,1997,19(3):280-283.]
[13] Shi Chunlin,Yu Jingming,Jin Zhiqing.Numerical simulation of water and heat transfer during soil freezing and thawing in the situation of saturated soil[J]. Chinese Agrometeorology, 1998, 19(4):21-26.
[石春林,虞静明,金之庆.饱和土壤冻融过程中水热迁移数值模拟[J].中国农业气象,1998,19(4):21-26.]
[14] Ding Yongjian, Ye Baisheng, Liu Shiyin, et al. Hydrological monitoring of large-scale frozen soil on the Qinghai Xizang Plateau[J]. Chinese Science Bulletin, 2000,45(2): 208-214.
[丁永建,叶柏生,刘时银,等.青藏高原大尺度冻土水文监测研究[J].科学通报,2000,45(2):208-214.]
[15] Xu Xuezhu, Wang Jiacheng, Zhang Lixin.Geochryology Physics[M]. Beijing: Science Press, 2001.
[徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.]
[16] Yang Meixue, Yao Tandong, He Yuanqing.The role of soil moisture-energy distribution and melting-freezing processes on seasonal shift in Tibetan Plateau[J].Journal of mountain sciences, 2002,20(5):553-558.
[杨梅学,姚檀栋,何元庆.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报,2002,20(5):553-558.]
[17] Iwata Y, Nemoto M, Hasegawa S, et al. Influence of rain, air temperature, and snow cover on subsequent spring-snowmelt infiltration into thin frozen soil layer in northern Japan[J].Journal of Hydrology, 2011, 401(3): 165-176.
[18] Iwata Y, Hirota T, Suzuki T, et al. Comparison of soil frost and thaw depths measured using frost tubes and other methods[J].Cold Regions Science and Technology, 2012, 71:111-117.
[19] Zhou Xiaohai, Zhou Jian.Wolfgang kinzelbach and fritz stauffer,simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR[J].Water Resource Research,2014, 50(12): 9 630-9 655.
[20] Butnor J R, Campbell J L, Shanley J B, et al. Measuring soil frost depth in forest ecosystems with ground penetrating radar[J].Agricultural and Forest Meteorology,2014,192:121-131.
[21] He H, Dyck M F, Si B C, et al. Soil freezing-thawing characteristics and snowmelt infiltration in Cryalfsof Alberta, Canada[J].Geoderma Regional, 2015, 5:198-208.
[22] Cheng Guodong, Zhao Lin.The problems associated with permafrost in the development of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2000, 20(6):521-531.
[程国栋,赵林.青藏高原开发中的冻土问题[J].第四纪研究,2000,20(6):521-531.]
[23] Walker D A, Jia G J, Epstein H E, et al, Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: Synthesis of information from the ATLAS studies[J]. Permafrost and Periglacial Processes, 2003, 14(2):103-123.
[24] Wu Qingbai, Shen Yongping, Shi Bin.Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003,25(3):250-255.
[吴青柏,沈永平,施斌.青藏高原冻土及水热过程与寒区生态环境的关系[J].冰川冻土,2003,25(3):250-255.]
[25] Wang Genxu, Zhang Yinsheng.Ecohydrologyin Cold Regions: Theory and Practice[M]. Beijing: Science Press, 2016.
[王根绪,张寅生,等.寒区生态水文学理论与实践[M],北京:科学出版社,2016.]
[26] Wifried H.Climate change and its impacts on glaciers and permafrost in the Alps[J]. AMBIO, 1998, 27(4): 258-265.
[27] Shiyin L, Yong Z, Yingsong Z, et al. Estimation of glacier runoff and future trends in the Yangtze River source region, China[J]. Journal of Glaciology, 2009, 55(190): 353-362.
[28] Muskett R R, Romanovsky V E.Groundwater storage changes in Arctic permafrost watersheds from GRACE and in situ measurements[J]. Environmental Research Letters, 2009, 4, doi:10.1088/1748-9326/4/4/045009.
[29] Luthcke S B, Arendt A A, Rowlands D D, et al. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions[J]. Journal of Glacial, 2008, 54(188): 767-777.
[30] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Geocryology in China[M]. Beijing: Science Press, 2000.
[周幼吾, 郭东信, 邱国庆,等. 中国冻土[M]. 北京: 科学出版社, 2000.]
[31] Wang Jian, Shen Yongping, Lu Anxin, et al. Impact of climate change on snowmelt runoff in the mountainous regions of Northwest China[J]. Journal of Glaciology and Geocryology, 2001, 23(1):28-32.
[王建,沈永平,鲁安新,等.气候变化对中国西北地区山区融雪径流的影响[J].冰川冻土,2001,23(1):28-32.]
[32] Wang Genxu, Li Na, Hu Hongchang.Hydrologic effect of ecosystem responses to climatic change in the source regions of Yangtze River and Yellow River[J]. Advances in Climate Change Research, 2009, 5(4): 202-208.
[王根绪,李娜,胡宏昌.气候变化对长江黄河源区生态系统的影响及其水文效应[J].气候变化研究进展,2009,5(4):202-208.]
[33] Li Zongxing, Feng Qi, Wang Q J, et al. Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in northwestern China[J].Global and Planetary Change, 2016, 136:41-51.
[34] Cuo L, Zhang Y, Bohn T J, et al. Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(16): 8 276-8 298.
[35] Cheng Q, Sun Y, Jones S B, et al. In situ measured and simulated seasonal freeze-thaw cycle: A 2-year comparative study between layered and homogeneous field soil profiles[J]. Journal of Hydrology, 2014, 519: 1 466-1 473.
[36] Chen H, Nan Z, Zhao L, et al. Noah modelling of the permafrost distribution and characteristics in the west Kunlun area, Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Processes, 2015, 26(2): 160-174.
[37] Li Zongxing, Feng Qi, Wang Q J, et al. Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in northwestern China[J].Global and Planetary Change, 2016, 136: 41-51.
[38] Zhao Lin, Ding Yongjian, Liu Guangyue, et al. Estimates of the reserves of ground ice in permafrost regions on the Tibetan Plateau[J].Journal of Glaciology and Geocryology, 2010,32(1):1-9.
[赵林,丁永建,刘广岳,等.青藏高原多年冻土层中地下冰储量估算及评价[J].冰川冻土,2010,32(1):1-9.]
[39] Metcalfe R A, Buttle J M.Soil partitioning and surface store controls on spring runoff from a boreal forest peat land basin in north-central Manitoba, Canada[J]. Hydrological Processes, 2001, 15: 2 305-2 324.
[40] Yamazaki Y, Kubota J, Ohata T, et al. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of eastern Siberia[J]. Hydrological Processes, 2006, 20: 453-467.
[41] Wang Genxu, Hu H, Li T.The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed[J]. Journal of Hydrology, 2009, 375:438-449.
[42] Lin Ling, Liu Baojun.Memorandum on West Route of South to North Water Transfer Project[M]. Beijing: Economic Science Press, 2006.
[林凌,刘宝珺.南水北调西线工程备忘录[M].北京:经济科学出版社,2006.]
[43] Huber U M.Global Change and Mountain Regions[M]. Netherlands:Springer, 2005.
[44] ONERC. Climate Change and Resulting Impacts in the Alps[R]. Paris: ONERC, 2008.
[45] EEA. Regional Climate Change and Adaptation: The Alps Facing the Challenge of Changing Water Resources[R]. Denmark:European Environment Agency, 2009.
[46] Ye Baisheng,Ding Yongjian,Liu Fengjing, et al. Responses of various sized alpine glaciers and runoff to climate change[J]. Journal of Glaciology, 2003, 49(164): 1-7.
[47] Li Y, Li D, Yang S, et al. Characteristics of the precipitation over the eastern edge of the Tibetan Plateau[J]. Meteorology and Atmospheric Physics,2010, 106(1/2): 49-56.
[48] Blyth S, Groombridge B, Lysenko I, et al. Mountain Watch, Environmental Change and Sustainable Development in Mountains[R]. Cambridge:UNEP-WCMC, 2002.
[49] UNDP. Human Development Report 2006[R]. UNDP, New York, 2006: 165-166.
[50] Ye B, Yang D, Zhang Z, et al. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D7), doi:10. 1029/2008JD010537.
[51] Woo M K, Kane D L, Carey S K, et al. Progress in permafrost hydrology in the new millennium[J]. Permafrost and Periglacial Processes, 2008, 19(2): 237-254.
[52] Li Zongxing, Feng Qi, Wang Q J.et al.Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in northwestern China[J]. Global and Planetary Change, 2016, 136: 41-51.
[53] Muskett R R, Romanovsky V E.Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements[J]. Environmental Research Letters,2009, 4, doi: 10.1088/1748-9326/4/4/045009.
[54] Weber M, Braun L, Mauser W, et al. Contribution of rain, snow-and icemelt in the upper Danube discharge today and in the future[J]. Geografia Fisica E Dinamica Quaternaria, 2010,33: 221-230.
[55] Qin Dahe, Zhou Botao, Xiao Cunde.Progress in studies of cryospheric changes and their impacts on climate of China[J]. Acta Meteorogica Sinica,2014, 72(5):869-879.
[秦大河,周波涛,效存德.冰冻圈变化及其对中国气候的影响[J].气象学报, 2014, 72(5): 869-879.]
[56] Ma Zhenfeng, Peng Jun, Gao Wenliang, et al. Climate variation of southwest China in recent 40 years[J]. Plateau Meteorology,2006,25(4):633-642.
[马振锋, 彭骏, 高文良,等. 近40年西南地区的气候变化事实[J]. 高原气象, 2006, 25(4): 633-642.]
[57] Guo Donglin, Yang Meixue, Wang Huijun.Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J].Hydrological Processes,2011, 25(16): 2 531-2 541, doi:10.1002/hyp.8025.
[58] Zhao Y, Yu B, Yu G J, et al. Study on the water-heat coupled phenomena in thawing frozen soil around a buried oil pipeline[J]. Applied Thermal Engineering, 2014, 73(2): 1 477-1 488.
[59] Liu Shiyin, Ding Yongjian, Li Jing, et al. Glaciers in response to recent climate warming in western China[J]. Quaternary Sciences, 2006, 26(5):762-771.
[刘时银, 丁永建, 李晶, 等.中国西部冰川对近期气候变暖的响应[J].第四纪研究, 2006, 26(5): 762-771.]
[60] Oerlemans J.Extracting a climate signal from 169 glacier records[J].Science,2005,308: 675-677, doi: 10.1126/science.1107046.
[61] Qin Dahe, Ding Yongjian.Cryospheric changes and their impacts:Present, trends and key issues[J].Advances in Climate Change Research,2009, 5(4): 187-195.
[秦大河, 丁永建. 冰冻圈变化及其影响研究——现状、趋势及关键问题[J]. 气候变化研究进展, 2009, 5(4): 187-195.]
[62] Qi Long.Review and prospect of research on disasters from snow,glaciers and debris flow[J]. Journal of Glaciology and Geocryology, 1998, 20(3):249-257.
[祁龙. 冰川、积雪及泥石流灾害研究的回顾与设想[J].冰川冻土, 1998, 20(3): 249-257.]
[63] Chen Xiaoqing,Cui Peng,Chen Binru,et al.050811 large-scale debris flow in Hailuo Valley and prevement counter measures[J]. Bulletin of Soil and Water Conservation,2006,26(3):122-126.
[陈晓清, 崔鹏, 陈斌如, 等.海螺沟050811 特大泥石流灾害及减灾对策[J], 水土保持通报, 2006, 26(3): 122-126.]
[64] Cheng Zunlan,Zhu Pingyi,Dang Chao,et al. Hazards of debris flow due to glacier-lake outburst in Southeastern Tibet[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 954-959.
[程尊兰, 朱平一, 党超, 等. 藏东南冰湖溃决泥石流灾害及其发展趋势[J], 冰川冻土, 2008, 30(6): 954-959.]
[65] Liu Jiankang,Cheng Zunlan,Guo Fenfen.Analysis on risk of glacier-lake outburst in Southeastern Tibet[J]. Journal of Catastrophology, 2011, 26(2): 45-49.
[刘建康, 程尊兰, 郭芬芬, 等.藏东南典型冰湖溃决危险性分析[J].灾害学, 2011, 26(2): 45-49.]
[66] Cheng Genwei, Wang Xiaodan,et al.The Hydrological Features and their Dynamic Simulation in Tibet Plateau[M]. Beijing: Science Press, 2016.
[程根伟,王小丹,等.西藏高原水文特征及其数学模拟[M].北京:科学出版社,2016.]
[67] Wu S H, Jansson P E, Zhang X Y.Modelling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China[J]. European Journal of Soil Science, 2011, 62(6): 780-796.
[68] Bronfenbrener L, Bronfenbrener R.A temperature behavior of frozen soils: Field experiments and numerical solution[J]. Cold Regions Science and Technology, 2012, 79: 84-91.
[69] Koren V, Smith M, Cui Z.Physically-based modifications to the sacramento soil moisture accounting model. Part A: Modeling the effects of frozen ground on the runoff generation process[J]. Journal of Hydrology, 2014, 519: 3 475-3 491.
[70] Kozlowski T.A simple method of obtaining the soil freezing point depression, the unfrozen water content and the pore size distribution curves from the DSC peak maximum temperature[J]. Cold Regions Science and Technology, 2016, 122: 18-25.
[71] Kang Ersi, Cheng Guodong, Lan Yongchao, et al. Runoff change trend model in response to climate change in northwest arid inland basin[J].Science in China(Series D), 1999,29(1): 47-54.
[康尔泗,程国栋,蓝永超,等.西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J],中国科学:D辑,1999, 29(1):47-54.]
[72] Ding Yongjian, Ye Baisheng, Liu Shiyin, et al. Monitoring of frozen soil hydrology in macro-scale in the Qinghai-Xizang Plateau[J]. Chinese Science Bulletin,2000,45(12):1 143-1 149.
[73] Yang Zhenniang, Zeng Qunzhu.Glacier Hydrology[M]. Chongqing: Chongqing Press, 2001.
[杨针娘,曾群柱.冰川水文学[M].重庆:重庆出版社,2001.]
[74] Zhang Yanwu,Lü Shihua,Li Dongliang,et al. Numerical simulation of freezing soil process on Qinghai-Xizang Plateau in early winter[J]. Plateau Meteorology, 2003, 22(5): 471-477.
[张艳武, 吕世华, 李栋梁,等.初冬青藏高原冻土过程的数值模拟[J].高原气象,2003,22(5):471-477.]
[75] Chen Rensheng, Lü Shihua, Kang Ersi.A Distributed Water-Heat Coupled (DWHC)model for mountainous watershed of an inland river basin(Ⅰ):Model structure and equations[J]. Advances in Earth Science,2006, 21(8): 806-818.
[陈仁升,吕世华,康尔泗,等.内陆河高寒山区流域分布式水热耦合模型(Ⅰ): 模型原理[J].地球科学进展,2006, 21(8):806-818.]
[76] Yang Yong, Chen Rensheng, Ye Baisheng, et al. Heat and water transfer processes on the typical underliing surfaces of forozen soil in cold regions(II): Water and heat transfer[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1 545-1 554.
[阳勇,陈仁升,叶柏生,等.寒区典型下垫面冻土水热过程对比研究(I):模型对比[J].冰川冻土,2013,35(6):1 545-1 554.]
[77] Hu Hongchang, Wang Genxu, Wang Yibo, et al. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 2009, 54(7), 1 225-1 233.
[胡宏昌, 王根绪, 王一博, 等. 江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应[J].科学通报,2009,54(2): 242-250.]
[78] Wu Xiaoling,Xiang Xiaohua,Wang Chuanhai, et al. Numerical modeling for voupled dnowmelt and grozen soil in seasonally frozen foil region[J]. Hydrology, 2012, 32(5):12-16.
[吴晓玲,向小华,王船海,等.季节冻土区融雪冻土水热耦合模型研究[J].水文,2012,32(5):12-16.]
[79] Feng Ming, Li Dongqing.A model of migration potential for moisture migration during soil freezing[J].Cold Regions Science and Technology, 2016, 124: 87-94.
[80] Wang Zilong, Fu Qiang, Jiang Qiuxiang, et al.Numerical simulation of water-heat coupled movements in seasonal frozen soil[J].Mathematical and Computer Modelling, 2011, 54(3): 970-975.
[81] Lan Yongchao,Ding Yongjian,Kang Ersi,et al. Change trends of the annual tunoff in the upper Yellow River and time series Markov-Chain forecast model[J].Journal of Glaciology and Geocryology, 2003, 25(3):321-326.
[蓝永超,丁永建,康尔泗,等. 黄河上游径流长期变化及趋势预测模型[J].冰川冻土,2003,25(3):321-326.]
[82] Zhang Fei, Liu Jingshi, Gong Tongliang.Winter runoff in a typical alpine permafrost region Tibet Himalayas[J]. Advances in Earth Science, 2006,21(16): 1 333-1 338.
[张菲,刘景时,巩同梁. 喜马拉雅山北坡典型高山冻土区冬季径流过程[J].地球科学进展,2006,21(16):1 333-1 338.]
[83] Wang Genxu, Liu Guangsheng, Liu Lin’an.Spatial scale effect on seasonal stream flows in permafrost catchments on the Qinghai-Tibet Plateau[J]. Hydrological Processes, 2012, 26(7): 973-984.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要