地球科学进展 ›› 2011, Vol. 26 ›› Issue (4): 365 -374. doi: 10.11867/j.issn.1001-8166.2011.04.0365

综述与评述 上一篇    下一篇

地核物质成分研究进展
张友联 1, 杜建国 2,崔月菊 2   
  1. 1.地震出版社,北京100081; 2.中国地震局地震预测研究所,北京100036
  • 收稿日期:2010-12-06 修回日期:2011-02-19 出版日期:2011-04-10
  • 通讯作者: 张友联 E-mail:z-you-l@tom.com
  • 基金资助:

    国家自然科学基金面上项目“矿物脱水与地震孕育的关系”(编号:40873049)资助.

Advances in Studying the Composition of the Earth′s Core

Zhang Youlian 1, Du Jianguo 2, Cui Yueju 2   

  1. 1.Seismological Press, Beijing100081, China; 2. Institute of Earthquake Science,CEA,Beijing100036, China
  • Received:2010-12-06 Revised:2011-02-19 Online:2011-04-10 Published:2011-04-10

系统介绍了地核的形成时间、地核的物理特性、化学成分和物质存在相态。利用W-Hf同位素系测年方法厘定地核与地幔分异的年龄是在地球形成的最初30 Ma。但是,内核的结晶年龄还是未知的。地核声波速度的各向异性可能是六面体紧密堆积(hcp)相铁的c轴方向沿地球轴线优选定向排列引起的。利用地球物理资料估算的地核密度与响应温压条件下液态铁的密度差值是5%~10%,因此,判断主要是铁镍合金的地核应该含有一定量的比铁轻的元素,如碳、硫、磷、硅、氧、氢以及其他轻元素。这些轻元素对D″的形成、地幔柱的形成、演化以及地震、火山活动的影响应该是值得探索的新领域。

The age, physical properties and chemical compositions of the Earth’s core are reviewed. The formation time of the core and mantle is determined by W-Hf isotope dating to be 30 Ma at the beginning of the earth formation. However, the time of the inner core crystallization from the liquid core remains an open question. The inner core is anisotropic in elastic wave velocity, which is considered as a result of the c axis of hcp-structure iron arranged predominantly along the Earth′s pole axis. The density difference of the core between the PREM model and liquid iron at the core temperature and pressure is about 10%, which indicates that the core contains light elements, such as C, S, P, Si, O, H, Mg, etc. The light elements in the core may play an important role in the formation of D″ layer between the core and mantle, formation and evolution of the plume and activities of volcano and earthquake, which is the new field for us to investigate.

中图分类号: 

[1]Dziewonski A M,Anderson D L.Preliminary reference Earth model[J].Physics of Earth and Planetary Interior,1981,25: 297-356.
[2]Jeanloz R.The nature of the Earth′s core[J].Annual Review of Earth and Planetary Science,1990, 18: 357-386.
[3]Hillgren V,Gessmann C K,Li J. An experimental perspective on the light element in Earth′s core[M]Canup R M, Righter K, eds. Origin of the Earth and Moon.Tuson,AZ: University of Arizona Press,2000:245-263.
[4]Li J, Fei Y. Experimental constraints on core composition[J].Treatise on Geochemistry,2007,2(14):1-31.
[5]McDonough W F.Compositional model for the Earth′s core[J].Treatise on Geochemistry,2007,6:547-568.
[6]Du Jiaqnguo, He Duanwei, Gao Chunxiao,et al. Experimental and Theoretical Studies of Mineral and Rock at High Pressure and Temperature[M].Beijing: Seismological Press,2011(in press).[杜建国,贺端伟,高春晓,等.矿物岩石高温高压实验与理论研究
[M].北京:地震出版社,2011(待刊).]
[7]Ma Y,Somayazulu M,Shen G,et al.In situ X-ray diffraction studies of iron to Earth core conditions[J].Physics of Earth and Planetary Interior,2004,(143/144): 455-467.
[8]Brown J M, McQueen R G.Phase transitions,Grüneisen parameter,and elasticity for hocked iron between 77 GPa and 400 GPa[J].Journal of Geophysical Research,1986,91:7 485-7 494.
[9]Halliday A N,Rehkmper M,Lee D C,et al.Early evolution of the Earth and Moon: New constraints from Hf-W isotope geochemistry[J]. Earth and Planetary Science Letter,1996,142:75-89.
[10]Quitté G, Birck J L, Allégre C J.182Hf-182W systematics in eucrites: The puzzle of iron segregation in the early solar system[J]. Earth and Planetary Science Letter,2000,184:83-94.
[11]Yin Q, Jacobsen S B, Yamashita K,et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites[J].Nature,2002,418:949-952.
[12]Kleine T, Münker C, Mezger K,et al. Rapid accretion and early core formation on asteroid and the terrestrial planets from Hf-W chronometry[J].Nature,2002,418:952-956.[13]Akimoto S. Highpressure research in geophysics: Past,present,and future[M]Manghnani M H, Syono Y,eds. High Pressure Research in Mineral Physics. Tokyo: Terra Scientific Publishing Company,1987:1-13.
[14]Mao H K, Bell P M, Hadidiacos C. Experimental phase relations of iron to 360 Kbar,1 400 ℃, determined in an internally heated diamond-anvil apparatus[M]Manghnani M H, Syono Y, eds. HighPressure Research in Mineral Physics. Washington DC: Terra Scientific Publishing Company, 1987:135-138.
[15]Funamori N, Yagi T, Uchida T. Highpressure and hightemperature in situ X-ray diffraction study of iron to above 30 GPa using MA8type apparatus[J].Geophysical Research Letter,1996, 23: 953-956.
[16]Uchida T, Wang Y, Rivers M L,et al. Stability field and thermal equation of state of epsiloniron determined by synchrotron X-ray diffraction in a multianvil apparatus[J].Journal of Geophysical Research,2001, 106: 21 799-21 810.
[17]Brown J M. The equation of state of iron to 450 GPa: Another high pressure solid phase? [J]. Geophysical Research Letter,2001,28:4 339-4 342.
[18]Andrault D, Fiquet G, Charpin T,et al. Structure analysis and stability field of betairon at high P and T[J].American Mineralogist,2000,85: 364-371.
[19]Saxena S K,Shen G,Lazor P.Experimental evidence for a new iron phase and implications for Earth′s core[J].Science,1993, 260: 1 312-1 314.
[20]Hemley R J, Mao H K. In situ studies of iron under pressure: New windows on the Earth′s core[J].International Geology Review,2001,43: 1-30.
[21]Williams Q, Jeanloz R, Bass J, et al. The melting curve of iron to 250 gigapascals: A constraint on the temperature at Earth′s center[J].Science,1987,236: 181-182.
[22]Saxena S K, Shen G, Lazor P. Temperatures in the Earth′s core based on melting and phase transformation experiments on iron[J].Science,1994, 264: 405-407.
[23]Yoo C S, Holmes N C, Ross M, et al.Shock temperatures and melting of iron at Earth core conditions[J].Physical Review Letter,1993,70: 3 931-3 934.
[24]Boehler R.Temperatures in the Earth′s core from meltingpoint measurements of iron at high static pressures[J].Nature,1993,363:534-536.
[25]Ahrens T J, Holland K G, Chen G Q. Phase diagram of iron, revised core temperatures[J]. Geophysical Research Letter,2002,29(7): 1 150, doi:10.1029/2001GL014350.[26]Boehler R. Highpressure experiments and the phase diagram of lower mantle and core materials[J].Review Geophysics,2000,38:221-245.
[27]Shen G, Mao HK, Hemley R J,et al. Melting and crystal structure of iron at high pressures and temperatures[J].Geophysical Research Letter, 1998,25:373-376.
[28]Mao H K, Wu Y, Chen L C,et al.Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: Implications for compositions of the core[J].Journal of Geophysical Research,1990, 95: 21 737-21 742.
[29]Tateno S, Hirose K, Ohishi Y,et al. The structure of iron in Earth′s inner core[J].Science, 2010, 330(359): 360-362.
[30]Vocadlo L, Alfè D, Gillan M J, et al. Possible thermal and chemical stabilisation of body-centred-cubic iron in the Earth′s core[J].Nature,2003, 424: 536-539.
[31]Vocadlo L, Wood I G, Gillan M J,et al. The stability of bcc Fe at high pressures and temperatures with respect to tetragonal strain[J].Physics of Earth and Planetary Interior,2008,170:52-59.
[32]Belonoshko A B, Ahuja R, Johansson B. Stability of the body centredcubic phase of iron in the Earth′s inner core[J].Nature,2003, 424: 1 032-1 034.
[33]Sanloup C, Guyot F, Gillet P,et al. Structural changes in liquid Fe at high pressures and high temperatures from synchrotron X-ray Diffraction[J].Europhysics Letter,2000, 52(2): 151-157.
[34]Lin J, Heinz D L, Campbell A J, et al. Iron nickel alloy in the Earth′s core[J]. Geophysical Research Letter,2002, 29(10):109-111.
[35]Mitra S. HighPressure Geochemistry and Mineral Physics[M]. Amstterdan, Boston, Lodon, New York, Oxford, Paris: Elservier,2004.
[36]Dubrovinsky L,Dubrovinskaia N, Narygina O,et al. Bodycentred cubic ironickel alloy in Earth′s core[J].Science,2007, 316: 1 880-1 883.
[37]Benz M G, Elliott J F. The austenite solidus and revised iron carbon diagram[J]. Transaction AIME,1961, 221:323-331.
[38]Wood B J. Carbon in the core[J].Earth Earth and Planetary Science Letter,1993,117:593-607.
[39]Dasgupta R,Walker D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth′s core and the mantle[J].Geochimca et Cosmochimca Acta,2008,72: 4 627-4 641.
[40]Nakajima Y,Takahashi E,Suzuki T,et al. "Carbon in the core" revisited[J].Physics of Earth and Planetary Interior,2009, 174: 202-211.
[41]Georg R B,Halliday A N,Schauble E A,et al. Silicon in the Earth′s core[J].Nature,2007,447:1102-1 106.
[42]Fitoussi C,Bourdon B,Kleine T,et al.Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth′s core[J].Earth and Planetary Science Letter, 2009,287:77-85.
[43]Shahar A,Ziegler K,Young E D,et al. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth′s core formation[J].Earth and Planetary Science Letter,2009, 288:228-234.
[44]Gessmann C K, Wood B J, Rubie D C,et al. Solubility of silicon in liquid metal at high pressure: Implications for the composition of the Earth′s core[J].Earth and Planetary Science Letter,2001, 184: 367-376.
[45]Cté A, Vocadlo L, Dobson D P,et al. Ab initio lattice dynamics calculations on the combined effect of temperature and silicon on the stability of different iron phases in the Earth′s inner core[J].Physics of Earth and Planetary Interior,2010,178: 2-7.
[46]Tsuchiya T, Fujibuchi M. Effects of Si on the elastic property of Fe at Earth′s inner core pressures: First principles study
[J].Physics of Earth and Planetary Interior, 2009, 174: 212-219.
[47]O′Neill H S, Canil D, Rubie D C. Oxide metal equilibria to 2 500degrees C and 25 GPa: Implications for core formation and the light component in the Earth′s core[J].Journal of Geophysical Research,1998, 103(B6): 12 239-12 260.
[48]Alf D, Gillan M J, Price G D. Composition and temperature of the Earth′s core constrained by combining ab initio calculations and seismic data[J].Earth and Planetary Science Letter,2002,195: 91-98.
[49]Alfè D, Price G D, Gillan M J. Oxygen in the Earth’s core: A first principles study[J]. Physics of Earth and Planetary Interior,1999,110: 191-210.
[50]Corgne A,Keshav S,Fei Y,et al. How much potassium is in the Earth′s core? New insights from partitioning experiment[J].Earth and Planetary Science Letter,2007,256: 567-576.
[51]McDonough W F, Sun S S. The composition of the Earth[J].Chemical Geology,1995,120:223-253.
[52]Kádas K, Vitos L, Ahuja R. Elastic properties of iron rich hcp Fe Mg alloys up to Earth′s core pressures[J]. Earth and Planetary Science Letter,2008, 271: 221-225.
[53]Okuchi T. The melting temperature of iron hydride at high pressure and its implication of Eath′s core[J].Journal of Geophysical Research,1998, 96:14 313-14 318.
[54]Parker L J, Hasegawa M, Atou T,et al. Highpressure synthesis of alkali metal transition metal compounds[J].Europian Journal of Solid State Inorganic Chemistry,1997,34:693-704.
[55]Lee K K M, Jeanloz R. Highpressure alloying of potassium and iron: Radioactivity in the Earth′s core? [J].Geophysical Research Letter,2003, 30(23), doi:10.1029/2003GL018515.
[56]Murthy R, van Westrenen W, Fei Y. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores[J].Nature,2003,423: 163-165.
[57]Corgne A, Siebert J, Badro J. Oxygen as a light element: A solution to single stage core formation[J].Earth and Planetary Science Letter,2009, 288: 108-114.
[58]Gessmann C K, Wood B J. Potassium in the Earth′s core? [J].Earth and Planetary Science Letter,2002, 200: 63-78.
[59]Herndon J M. Substructure of the inner core of the Earth[J].The Proceedings of the National Academy of Science USA,1996, 93(2):646-648.
[60]Rudnick R L, Barth M, Horn I,et al. Rutilebearing refractory eclogites: Missing link between continents and depleted mantle
[J].Science,2000,287: 278-281.
[61]O′Neill H S C, Palme H. Composition of the silicate Earth: Implications for accretion and core formation
[M]Jackson I, ed. The Earth′s Mantle: Structure, Composition, and Evolution—The Ringwood Volume. Cambridge: Cambridge University Press, 1997. [62]Walker D. Core participation in mantle geochemistry: Geochemical society ingersoll lecture, GSA, Denver, October 1999
[J].Geochimica et Cosmochimica Acta,2000, 64: 2 897-2 911.
[63]Anderson O L, Isaak D G. Another look at the core density deficit of Earth′s outer core[J]. Physics of Earth and Planetary Interior,2002, 131: 19-27.

[1] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[2] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[3] 赵丕, 何志堂, 罗铖, 康胜军, 史志刚. CG6型相对重力仪比例因子两种标定结果比对分析[J]. 地球科学进展, 2021, 36(5): 528-535.
[4] 粟多武, 吴书清, 李春剑, 吉望西, 徐进义, 王启宇, 冯金扬, 胡若, 牟丽爽. 国家重力计量参考网的初步建立研究[J]. 地球科学进展, 2021, 36(5): 536-542.
[5] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[6] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[7] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[8] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[9] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[10] 矣昕宝,魏巍,全海燕. 基于单形进化优化算法的重力固体潮信号解混及谱相关分析[J]. 地球科学进展, 2019, 34(2): 148-155.
[11] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[12] 吴成平,于长春,王卫平,马勋表,范正国,朱宏伟. 鲁西齐河地区岩(矿)石物性特征及应用[J]. 地球科学进展, 2019, 34(10): 1099-1107.
[13] 冯旭亮. 空间域密度界面反演方法及其进展[J]. 地球科学进展, 2019, 34(1): 57-71.
[14] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[15] 邢德钊,全海燕. 基于 ICA的引潮力互相关谱分析[J]. 地球科学进展, 2019, 34(1): 103-112.
阅读次数
全文


摘要