地球科学进展 ›› 2023, Vol. 38 ›› Issue (8): 815 -825. doi: 10.11867/j.issn.1001-8166.2023.041

研究论文 上一篇    下一篇

基于长序列观测的地面沉降防控水位识别及其指示意义
田苗壮 1 , 2( ), 赵龙 1 , 2 , 3, 罗勇 1 , 2, 崔文君 1 , 2, 郭高轩 1 , 2, 卢忠阳 1 , 2, 孔祥如 1 , 2, 刘贺 1 , 2, 陶芳芳 1 , 2, 李敏 4   
  1. 1.北京市地质环境监测所,北京 100195
    2.城市地下水安全防控技术创新基地,北京 100195
    3.中国 地质大学(北京)水资源与环境学院,北京 100083
    4.北京市地质矿产勘查院,北京 100195
  • 收稿日期:2023-02-27 修回日期:2023-06-28 出版日期:2023-08-10
  • 基金资助:
    北京市科技计划课题“北京新航城地区地面沉降监控预警关键技术与应用示范”(Z191100001419007)

Critical Prevention and Control of Land Subsidence Identification and Referential Meaning Based on a Long Sequence of Observations

Miaozhuang TIAN 1 , 2( ), Long ZHAO 1 , 2 , 3, Yong LUO 1 , 2, Wenjun CUI 1 , 2, Gaoxuan GUO 1 , 2, Zhongyang LU 1 , 2, Xiangru KONG 1 , 2, He LIU 1 , 2, Fangfang TAO 1 , 2, Min LI 4   

  1. 1.Beijing Institute of Geo-environment Monitoring, Beijing 100195, China
    2.Urban Groundwater Safety Prevention and Control Technology Innovation Base, Beijing 100195, China
    3.School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
    4.Beijing Institute of Geology, Beijing 100195, China
  • Received:2023-02-27 Revised:2023-06-28 Online:2023-08-10 Published:2023-08-28
  • About author:TIAN Miaozhuang (1991-), male, Beijing City, Engineer. Research areas include land subsidence monitoring, investigation and prevention research. E-mail: tianmiaozhuang@126.com
  • Supported by:
    the Beijing Science and Technology Project “Key technology and application demonstration of land subsidence monitoring and early warning in Daxing airport area of Beijing”(Z191100001419007)

2014年南水进京后北京逐步开展地下水回补工作,区域地面沉降逐年缓减,部分地区开始出现回弹。面对北京地区地面沉降开始出现的新变化,科学合理地开展地面沉降防控,精准识别地面沉降防控水位,判别其指示意义显得尤为重要。以天竺地面沉降监测站分层水位与沉降长序列观测资料揭示地面沉降防控临界点与控沉水位,利用交叉小波变换和皮尔逊相关分析等方法,定量研究不同时间段水位变幅与土体周期变化。结果表明: 研究区第二、第三和第四含水层控沉水位分别为-14.30 m、-17.31 m和-10.12 m,水位变幅达1.73 m、3.07 m和5.03 m; 分层水位与土层形变共振关系周期结果和皮尔逊相关系数验证了地面沉降临界水位时间节点为2019年6月和7月以及2020年10月; 区域上结合临界水位变幅时间节点和水位变幅等参数,计算出区域分层储变量为97.11×104 m3、96.57×104 m3和92.95×104 m3。研究结果可为北京乃至全国地面沉降防控和地下水科学回补提供指导和借鉴。

Research on groundwater recharge has been gradually conducted in Beijing since the South water entered the city in 2014. The land subsidence rate in the region has slowed annually, and some areas have begun to rebound. Owing to new changes in land subsidence in Beijing, it is particularly important to scientifically and reasonably conduct land subsidence prevention and control measurements and accurately identify the water level necessary for prevention and control of land subsidence with its referential meaning. In this study, the critical points of ground subsidence and over-consolidated soil were revealed based on the stratified water level and a long series of subsidence observation data at the ground subsidence monitoring station in Tianzhu. Cross-wavelet and Pearson correlation analyses were performed to quantify the amplitude of the water level and periodic changes in the soil during different periods. The results showed that: the over-consolidated soil of the second, third, and fourth aquifers in the study area were -14.30 m, -17.31 m, and -10.12 m, and the water level ranges were 1.73 m, 3.07 m, and 5.03 m, respectively; based on the periodic results of the resonance relationship between stratified water level and soil deformation and the peel correlation coefficient, the critical time nodes of land subsidence water level were June, July 2019, and October 2020; and the regional stratified storage variables were 97.11×104 m3, 96.57×104 m3, and 92.95×104 m3 by combining the critical water level amplitude change time node and the water level amplitude. The results provide guidance and reference for the prevention and control of land subsidence and groundwater scientific remediation in Beijing and across the entire country.

中图分类号: 

图1 潮白河冲洪积扇中上部地区水文地质图
Fig. 1 Hydrological geologic map of the middle and upper part of Chaobai River alluvial proluvial fan
图2 潮白河冲洪积扇中上部地区“A-C”水文地质剖面 13
Fig. 2 “A-C” hydrogeological profile in the middle and upper part of Chaobai River alluvial proluvial fan 13
表1 天竺站地下水、分层标分层情况
Table 1 The groundwater and stratification of Tianzhu station
图3 20102020年区域降水变化及不同含水层水位变化曲线
Fig. 3 Variation curve of regional rainfall and water level of different aquifers from 2010 to 2020
图4 潮白河冲洪积扇中上部地区2020年与2015年同期水位变幅
(a)第一含水层;(b)第二含水层;(c)第三含水层;(d)第四含水层
Fig. 4 Variation amplitude of water level in the middle and upper part of alluvial fan of Chaobai River in 2020 and 2015
(a) The first aquifer; (b) The second aquifer; (c) The third aquifer; (d) The fourth aquifer
表2 20142020年分层地下水储变量单位:m 3
Table 2 Variation of stratified groundwater storage variables from 2014 to 2020
图5 天竺站20102021年分层土体形变与相应水位趋势
(a)第一含水层组;(b)第二含水层组;(c)第三含水层组;(d)第四含水层组
Fig. 5 Stratified soil deformation and corresponding water level trend at Tianzhu station from 2010 to 2021
(a) The first aquifer group;(b) The second aquifer group;(c) The third aquifer group;(d) The fourth aquifer group
图6 交叉小波分析图
(a)第一含水层;(b)第二含水层;(c)第三含水层;(d)第四含水层
Fig. 6 Cross-wavelet analysis diagram
(a) The first aquifer; (b) The second aquifer; (c) The third aquifer; (d) The fourth aquifer
表3 分层地下水位与地面沉降皮尔逊相关系数表
Table 3 Table of relationship between stratified groundwater level and Pearson phase of land subsidence
1 TIAN Fang, LUO Yong, ZHOU Yi, et al. Contrastive analysis of spatial-temporal evolution between land subsidence and groundwater exploitation in Beijing[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(2): 163-169.
田芳, 罗勇, 周毅, 等. 北京地面沉降与地下水开采时空演变对比[J]. 南水北调与水利科技, 2017, 15(2): 163-169.
2 GALLOWAY D L, BURBEY T J. Review: regional land subsidence accompanying groundwater extraction[J]. Hydrogeology Journal, 2011, 19(8): 1 459-1 486.
3 WU J C, SHI X Q, XUE Y Q, et al. The development and control of the land subsidence in the Yangtze Delta, China[J]. Environmental Geology, 2008, 55(8): 1 725-1 735.
4 TIAN Miaozhuang, LUO Yong, CUI Wenjun, et al. Characteristics of development and change of land subsidence in Beijing under the background of the South-to-North Water Diversion Project[J]. Shanghai Land & Resources, 2022, 43(4): 44-49.
田苗壮, 罗勇, 崔文君, 等. 南水北调背景下北京地面沉降发展变化特征[J]. 上海国土资源, 2022, 43(4): 44-49.
5 TIAN Miaozhuang, ZHAO Long, CUI Wenjun, et al. Control and influence of rising groundwater level on land under the background of South-to-North Water Diversion: a case study of Chaobai River groundwater system in Beijing[J]. Geology in China, 2023, 50(3):872-886.
田苗壮, 赵龙, 崔文君, 等. 南水北调背景下地下水位上升对地面沉降控制与影响——以北京潮白河地下水系统为例[J].中国地质, 2023, 50(3): 872-886.
6 LOU Yong, LEI Kunchao, CUI Wenjun, et al. Land subsidence monitoring report of Beijing in 2019[R]. Beijing: Beijing institute of Hydrogeology and Engineering Geology (Beijing Institute of Geo-Environment Monitoring),2019.
罗勇,雷坤超,崔文君,等.北京市地面沉降监测年度报告(2019年)[R]. 北京:北京市水文地质工程地质大队(北京市地质环境监测总站),2019.
7 LI Guohe, JING Zhidong, XU Zailiang. A discussion of the correlation between land subsidence and groundwater level variation along the Jinghu high speed railway[J]. Hydrogeology and Engineering Geology, 2008, 35(6): 90-94, 98.
李国和, 荆志东, 许再良. 京沪高速铁路沿线地面沉降与地下水位变化关系探讨[J]. 水文地质工程地质, 2008, 35(6): 90-94, 98.
8 WANG Yunlong, CHEN Ye, GOU Haipeng, et al. A study of the critical groundwater level related to consolidation characteristics of land subsidence in Cangzhou[J]. Hydrogeology and Engineering Geology,2023,50(4):185-192.
王云龙, 陈晔, 郭海朋, 等. 沧州地区土层固结特征与地面沉降临界水位研究[J].水文地质工程地质: 2023,50(4):185-192.
9 WANG Jiabing, LI Ping. Composition of groundwater resources in deep-seated aquifers under the condition of land subsidence in Tianjin Plain[J]. Hydrogeology & Engineering Geology, 2004(5): 35-37, 20.
王家兵, 李平. 天津平原地面沉降条件下的深层地下水资源组成[J]. 水文地质工程地质, 2004(5): 35-37, 20.
10 NIU Xiujun. Characteristics of strata consolidation and land subsidence controlling by critical water level[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(2): 68-74.
牛修俊. 地层的固结特性与地面沉降临界水位控沉[J]. 中国地质灾害与防治学报, 1998, 9(2): 68-74.
11 ZHAO Hui, QIAN Hui, PENG Jianbing. Deformation mechanism of over-consolidation soil and land subsidence controlled by critical water-level[J]. The Chinese Journal of Geological Hazard and Contral,2008(1):124-127.
赵慧, 钱会, 彭建兵. 超固结土层垂向形变机理及临界水位控沉分析——以西安南郊钻孔土样研究为例[J].中国地质灾害与防治学报, 2008(1):124-127.
12 ZHAO Hui, RAN Xinglong, LI Yuan. To determine critical water level by correlation between land subsidence and groundwater drawdown[J]. Site Investigation Science and Technology, 2005(2): 19-23.
赵慧, 冉兴龙, 李渊. 根据地面沉降与地下水头的关系求地面沉降临界水位[J]. 勘察科学技术, 2005(2): 19-23.
13 GUO Gaoxuan, HOU Quanlin, XU Liang, et al. Stratification and zoning characteristics of groundwater hydrochemistry of alluvial-diluvial fan in Chaobai River, Beijing[J]. Acta Geoscientica Sinica, 2014(2): 204-210.
郭高轩, 侯泉林, 许亮, 等. 北京潮白河冲洪积扇地下水水化学的分层分带特征[J]. 地球学报, 2014(2): 204-210.
14 CHENG Rui, ZHU Lin, ZHOU Jiahui, et al. Spatio-temporal heterogeneity and driving factors of land subsidence in middle-lower part of Chaobai River Alluvial Fan[J]. Journal of Jilin University: Earth Science Edition, 2021, 51(4): 1 182-1 192.
程蕊, 朱琳, 周佳慧,等.北京潮白河冲洪积扇地面沉降时空异质性特征及驱动因素分析[J].吉林大学学报(地球科学版), 2021, 51(4):1 182-1 192.
15 CAI Xiangmin, GUO Gaoxuan, LUAN Yingbo, et al. Quaternary geological features of Beijing piedmont plain using 3-D structural method[J]. Acta Geologica Sinica, 2009, 83(7):1 047-1 057.
蔡向民,郭高轩,栾英波,等.北京山前平原区第四系三维结构调查方法研究[J].地质学报, 2009, 83(7): 1 047-1 057.
16 LIU Yu, YE Chao, JIA Sanman. Division of water-bearing zones and compressible layers in Beijing’s land subsidence areas[J]. Urban Geology, 2007, 2(1): 10-15.
刘予, 叶超, 贾三满. 北京市平原地面沉降区含水岩组和可压缩层划分[J]. 城市地质, 2007, 2(1): 10-15.
17 GRINSTED A, MOORE J C, JEVREJEVA S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6): 561-566.
18 TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society,1998,79(1):61-78.
19 LU Zhongyang, LIU Yin, et al. Report on calculation results of groundwater resources in plain areas of Beijing (2020)[R]. Beijing: Beijing Institute of Hydrogeology and Engineering Geology (Beijing Institute of Geo-Environment Monitoring),2020.
卢忠阳,刘殷,等. 北京市平原区地下水资源计算成果报告(2020年)[R]. 北京:北京市水文地质工程地质大队(北京市地质环境监测总站), 2020.
20 LUO Yue, YE Shujun, WU Jichun, et al. Characterization of land subsidence during recovery of groundwater levels in Shanghai[J]. Geological Journal of China Universities, 2015, 21(2): 243-254.
罗跃, 叶淑君, 吴吉春, 等. 上海市地下水位大幅抬升条件下土层变形特征分析[J]. 高校地质学报, 2015, 21(2): 243-254.
21 YE Shujun, XUE Yuqun, ZHANG Yun, et al. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 140-147.
叶淑君, 薛禹群, 张云, 等. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报, 2005, 27(2): 140-147.
22 KONG Xiangru. Cross wavelet analysis between layered monitoring data of stratum deformation and groundwater level regime[J]. Coal Geology & Exploration, 2022, 50(6): 138-146.
孔祥如. 地层形变与地下水位分层监测数据的交叉小波分析[J]. 煤田地质与勘探, 2022, 50(6): 138-146.
23 SHU Longcang, YIN Xiaoran, YUAN Yajie, et al. Temporal and spatial variation of water quantity exchange between surface water and groundwater in typical district of Sanjiang Plain[J]. Journal of Hydraulic Engineering, 2021, 52(10): 1 151-1 162.
束龙仓, 殷晓然, 袁亚杰, 等. 三江平原典型区河水与地下水水量交换的时空变化规律分析[J]. 水利学报, 2021, 52(10): 1 151-1 162.
[1] 宁荣荣, 王德, 田信鹏, 张永伟, 周自翔, 罗富彬. 黄河三角洲的地面沉降分析以及海水淹没预估[J]. 地球科学进展, 2023, 38(3): 296-308.
[2] 朱叶飞,陈火根,张登明,武健强,吴曙亮,张景发,罗毅. 基于PS-InSAR的1995—2000年苏州地面沉降监测[J]. 地球科学进展, 2010, 25(4): 428-434.
阅读次数
全文


摘要