地球科学进展 ›› 2023, Vol. 38 ›› Issue (8): 826 -837. doi: 10.11867/j.issn.1001-8166.2023.046

研究论文 上一篇    下一篇

基于 IHA-RVA法的沱沱河水沙变化及归因分析
许杏 1 , 2( ), 江玉吉 3, 张凡 1 , 2( ), 曾辰 1, 王莉 1, 王冠星 1, 江鹏 4   
  1. 1.中国科学院青藏高原研究所, 青藏高原地球系统与资源环境国家重点实验室, 北京 100101
    2.中国科学院大学, 北京 100049
    3.西藏自治区水文水资源勘测局, 西藏 拉萨 850000
    4.河海大学水文水资源学院, 江苏 南京 210098
  • 收稿日期:2022-12-21 修回日期:2023-05-25 出版日期:2023-08-10
  • 通讯作者: 张凡 E-mail:xuxing@itpcas.ac.cn;zhangfan@itpcas.ac.cn
  • 基金资助:
    国家自然科学基金项目“青藏高原典型高山冻土流域融雪侵蚀机理研究与过程模拟”(41877081)

Variation and Attribution Analysis of Runoff and Sediment Flux in the Tuotuo River using IHA-RVA

Xing XU 1 , 2( ), Yuji JIANG 3, Fan ZHANG 1 , 2( ), Chen ZENG 1, Li WANG 1, Guanxing WANG 1, Peng JIANG 4   

  1. 1.State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Hydrology and Water Resources Survey Bureau of Tibet Autonomous Region, Lhasa 850000, China
    4.College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
  • Received:2022-12-21 Revised:2023-05-25 Online:2023-08-10 Published:2023-08-28
  • Contact: Fan ZHANG E-mail:xuxing@itpcas.ac.cn;zhangfan@itpcas.ac.cn
  • About author:XU Xing (1999-), female, Yueyang City, Hunan Province, Ph. D student. Research areas include simulation of runoff and sediment processes in cold regions. E-mail: xuxing@itpcas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Snowmelt erosion mechanism of typical alpine permafrost watershed in the Tibetan Plateau”(41877081)

近年来青藏高原暖湿化加剧了江河源区产汇流和侵蚀输沙过程的变化,而冰冻圈要素的变化使得该过程更加复杂。采用突变检验与IHA-RVA分析了沱沱河1986—2017年径流量和输沙量的变化程度,并基于PLS-PM结合其他环境因子对水沙通量的变化进行归因分析,结果表明: 沱沱河水沙通量于1998年突变后显著增加,整体改变度分别为71.2%和67.5%,为高度改变,表明气候变化对河源区水沙通量的影响不亚于人类活动对中下游的影响。 在气温与降水的驱动下,5~10月水沙通量显著增加,各月变化程度受到土壤、河道冻结程度以及植被变化的影响;年输沙量的变化由极端输沙事件的增加主导,降水量、冰川融水量和土壤解冻程度是主要影响因素。 寒区水沙过程受降水、冰川、土壤冻融及植被的综合影响,有待对其进一步研究以保障青藏高原生态屏障建设与周边区域的可持续发展。

In recent decades, the warming and humidification of the Tibetan Plateau have aggravated changes in the runoff and sediment transport processes in the headwater area, and the uniqueness of the cryosphere has made them more complex. In this study, abruption tests and IHA-RVA were performed to assess the variation in the runoff and sediment flux of the Tuotuo River before and after the abrupt change from 1986 to 2017. PLS-PM attribution analysis was performed using environmental factors for runoff and sediment flux change attribution. The following three important conclusions were drawn: first, from 1986 to 2017, the runoff and sediment flux of the Tuotuo River changed abruptly around 1998, and the overall degrees of change were 71.2% and 67.5%, respectively; both were highly altered. This indicates that the impact of climate change on runoff and sediment flux in the headwater was not smaller than that of human activity downstream. Second, under the influence of temperature and precipitation, runoff and sediment fluxes from May to October increased significantly, and the degree of abruption was affected by the thawing degree of the soil, river channel, and vegetation coverage. The variation in the sediment flux was dominated by extreme sediment transport events, which were primarily caused by increased rainfall, ice melting, and soil thawing. Third, the runoff and sediment processes in cold regions are complex because of the combined influence of rainfall, glaciers, soil freeze-thaw, and vegetation. Therefore, it is necessary to further study the local region's ecological security and sustainable development downstream.

中图分类号: 

图1 沱沱河流域概况
Fig. 1 Tuotuo River basin
表1 用于径流量的水文改变指标
Table 1 Indicators of Hydrologic AlterationIHAused in discharge
表2 用于输沙量的水文改变指标
Table 2 Indicators of Hydrologic AlterationIHAused in sediment flux
图2 19862017年沱沱河径流量及输沙量累积距平法与Mann-Kendall法突变检验结果
Fig. 2 Mann-Kendall test and cumulative anomaly method results of Tuotuo River runoff and sediment flux during 1986-2017
表3 IHA-RVA法应用案例总结
Table 3 The summary of IHA-RVA application cases
站点名称 站点位置 流域面积/km2 研究 变量 数据时间 突变年份及原因 整体改变度/% 参考 文献
沱沱河站 长江源头 16 749 径流量 1986—2017年 1998年,气候变化为主 71.2 本文
莺落峡站 黑河上游干流 10 009 径流量 1960—2015年 2002年,气候变化为主 73.8 19
蔡家沟站 松花江支流拉林河 19 923 径流量 1957—2015年 1975年,人类活动及气候变化 68.7 27
屏山站 金沙江下游 458 529 径流量 1956—2012年 1997年,水库修建和气候变化 69.3 28
长阳站 长江中游支流清江 17 600 径流量 1951—2010年 2000年,隔河岩水电站和水布垭水库的 运行以及其他人类活动 73.6 29
外洲站 赣江中游干流 80 948 径流量 1959—2016年 1991年,水库修建等人类活动 34.8 30
宜昌站 长江上游干流 1 005 501 径流量 1878—2010年 1960年,长江干流和支流多座水库的修建 35.6 31
沱沱河站 长江源头 16 749 输沙量 1986—2017年 1998年,气候变化为主 67.5 本文
头道拐站 黄河上游干流 367 898 含沙量 1962—2010年 1986年,龙羊峡水库和刘家峡水库的联合 运行及气候变化 68.1 32
林家坪站 黄河支流湫水河 1 873 输沙量 1960—2000年 1979年,黄河中游大规模的水土保持措施 36.1 15
温家川站 黄河支流窟野河 8 645 输沙量 1960—2000年 1979年,黄河中游大规模的水土保持措施 69.3 15
高村站 黄河下游引黄工程起点流域 734 146 含沙量 1958—2016年 2006年,“引黄入冀补淀工程”开始修建 74.9 18
城陵矶站 洞庭湖出口 259 400 含沙量 1987—2009年 2003年,三峡工程开始蓄水 75.6 16
表4 19862017年沱沱河径流量及输沙量 IHA-RVA法计算结果
Table 4 IHA-RVA results of Tuotuo River runoff and sediment flux during 1986-2017
图3 基准期与变化期5~10月径流量中值(a)或输沙量中值(b)对比
Fig. 3 Comparison of median runoffaor median sediment fluxbfrom May to October between baseline period and change period
图4 基准期与变化期的(a)气温和地表温度及(b)降水量与归一化植被指数对比
Fig. 4 Comparison ofaair temperature and ground temperature, (bprecipitation and NDVI between baseline period and change period
图5 2022519日(a)和2022524日(b)沱沱河不同支流河段的河冰状况
Fig. 5 River ice conditions in different tributary reaches of the Tuotuo River onaMay 192022 andbMay 242022
图6 以日输沙量10%发生频率为界的19862017年平均输沙量趋势图
Fig. 6 The trend of average sediment transport from 1986 to 2017 greater or less than the probability of 10% daily sediment flux
表5 极端输沙事件偏最小二乘模型的潜变量与显变量
Table 5 Results of temperature and precipitation at Tuotuo River during baseline period and change period
图7 19862017年(aGoF=0.64)、19861997年(bGoF=0.60)及19982017年(cGoF=0.65)极端输沙事件PLS-PM归因分析结果
*表示 p < 0.05,对应虚线;**表示 p < 0.001,对应实线
Fig. 7 Results of PLS-PM for extreme sediment flux events for 1986-2017aGoF=0.64), 1986-1997bGoF=0.60), and 1998-2017cGoF=0.65
* indicates p < 0.05 with a dotted line; while ** indicates p < 0.001 with a solid line
1 WANG B, BAO Q, HOSKINS B, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 2008, 35(14). DOI:10.1029/2008GL034330 .
2 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015,60(32): 3 025-3 035.
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来 [J]. 科学通报, 2015, 60(32): 3 025-3 035.
3 ZHANG Fan, SHI Xiaonan, ZENG Chen, et al. Variation and influence of riverine sediment transport from Tibetan Plateau, China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1 274-1 284.
张凡, 史晓楠, 曾辰, 等. 青藏高原河流输沙量变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1 274-1 284.
4 LI D F, LU X X, OVEREEM I, et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter high mountain Asia[J]. Science, 2021, 374(6 567): 599-603.
5 ZHANG T, LI D F, EAST A E, et al. Warming-driven erosion and sediment transport in cold regions[J]. Nature Reviews Earth & Environment, 2022, 3(12): 832-851.
6 WEI Mengmei, FU Suhua, LIU Baoyuan. Quantitative research of water erosion on the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2021, 36(7): 740-752.
魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
7 ZHANG F, SHI X N, ZENG C, et al. Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau[J]. Science Bulletin, 2020, 65(5): 410-418.
8 LI D F, LI Z W, ZHOU Y J, et al. Substantial increases in the water and sediment fluxes in the headwater region of the Tibetan Plateau in response to global warming[J]. Geophysical Research Letters, 2020, 47(11). DOI:10.1029/2020GL087745 .
9 YAN Xia, ZHOU Yinjun, YAO Shiming, et al. Study on the influence of different land cover types on runoff and sediment transport in the source region of the Yangtze River [J]. Journal of Sediment Research, 2020, 45(4): 45-51.
闫霞, 周银军, 姚仕明, 等. 长江源区不同地表覆盖类型对河流径流输沙的影响 [J]. 泥沙研究, 2020, 45(4): 45-51.
10 LUO Yu, QIN Ningsheng, PANG Yishu, et al. Effect of climate warming on the runoff of source regions of the Yangtze River:take Tuotuo River Basin as an example [J]. Journal of Glaciology and Geocryology, 2020, 42(3): 952-964.
罗玉, 秦宁生, 庞轶舒, 等. 气候变暖对长江源径流变化的影响分析——以沱沱河为例[J]. 冰川冻土, 2020, 42(3): 952-964.
11 LUO Yu, QIN Ningsheng, ZHOU Bin, et al. Runoff characteristics and hysteresis to precipitation in Tuotuo River Basin in source region of Yangtze River during 1961-2011[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 22-28.
罗玉, 秦宁生, 周斌, 等. 长江源区沱沱河流域1961—2011年径流特征及其对降水的滞后效应[J]. 水土保持通报, 2019, 39(2): 22-28.
12 RICHTER B D, BAUMGARTNER J V, POWELL J, et al. A method for assessing hydrologic alteration within ecosystems[J]. Conservation Biology, 1996, 10(4): 1 163-1 174.
13 RICHTER B, BAUMGARTNER J, WIGINGTON R, et al. How much water does a river need?[J]. Freshwater Biology, 1997, 37(1): 231-249.
14 RICHTER B D, BAUMGARTNER J V, BRAUN D P, et al. A spatial assessment of hydrologic alteration within a river network[J]. Regulated Rivers: Research & Management, 1998, 14(4): 329-340.
15 YANG T, XU C Y, CHEN X, et al. Assessing the impact of human activities on hydrological and sediment changes (1953-2000) in nine major catchments of the Loess Plateau, China[J]. River Research and Applications, 2010, 26(3): 322-340.
16 BAN Xuan, JIANG Liuzhi, ZENG Xiaohui, et al. Quantifying the spatio-temporal variation of flow and sediment in the middle Yangtze River after the impoundment of the Three Gorges[J]. Advances in Water Science, 2014, 25(5): 650-657.
班璇, 姜刘志, 曾小辉, 等. 三峡水库蓄水后长江中游水沙时空变化的定量评估[J]. 水科学进展, 2014, 25(5): 650-657.
17 LI Dan, XU Wen, YE Changqing, et al. Variation characteristics analysis of hydrological regime of Wanquan River Basin under interference of climate change and human activities[J]. Water Resources and Power, 2019, 37(12): 14-17.
李旦, 徐文, 叶长青, 等. 气候变化和人类活动干扰下万泉河流域水文情势变化特征分析 [J]. 水电能源科学, 2019, 37(12): 14-17.
18 SUN Yan, WANG Xiuru, WANG Minghao, et al. Hydrological and sediment regime and synchronous asynchronous encounter of rich-poor runoff and sediment change in the Yellow River Basin in Qucun[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(4): 489-496.
孙妍, 王秀茹, 王铭浩, 等. 渠村引黄口流域水沙情势变化和丰枯遭遇分析 [J]. 北京师范大学学报(自然科学版), 2019, 55(4): 489-496.
19 ZHANG Ruqiang, LIU Junguo, MAO Ganquan, et al. Flow regime alterations of upper Heihe River based on improved RVA[J]. Arid Zone Research, 2021, 38(1): 29-38.
张如强, 刘俊国, 冒甘泉, 等. 基于改进RVA法的黑河上游水文情势变化分析[J]. 干旱区研究, 2021, 38(1): 29-38.
20 TENENHAUS M, VINZI V E, CHATELIN Y M, et al. PLS path modeling[J]. Computational Statistics & Data Analysis, 2005, 48(1): 159-205.
21 ZHANG T, LI D F, KETTNER A J, et al. Constraining dynamic sediment-discharge relationships in cold environments: the Sediment-Availability-Transport (SAT) model[J]. Water Resources Research, 2021, 57(10). DOI:10.1029/2021WR030690 .
22 Xinmiao LÜ, ZHENG Du. Impact of global change on alpine meadow ecosystems in the source region of the Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2006(5): 603-607.
吕新苗,郑度.气候变化对长江源地区高寒草甸生态系统的影响[J].长江流域资源与环境, 2006(5): 603-607.
23 WEI Fengying. Modern climate statistical diagnosis and prediction technology[M]. Beijing: China Meteorological Press, 1999.
魏凤英. 现代气候统计诊断与预测技术[M].北京: 气象出版社, 1999.
24 SHIAU J T, WU F C. Compromise programming methodology for determining instream flow under multiobjective water allocation criteria[J]. Journal of the American Water Resources Association, 2006, 42(5): 1 179-1 191.
25 TENENHAUS M, AMATO S, VINZI V E. A global Goodness-of-Fit index for PLS structural equation modelling[C]// Proceedings of the 42nd SIS scientific meeting, 2004: 739-742
26 FU C H, LARGE S, KNIGHT B, et al. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems[J]. Journal of Marine Systems, 2015, 148: 101-111.
27 WANG Xuege, LIU Hongchao, LI Hongyan. The hydrological regime assessment of Lalin River Basin based on MK-RVA[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2021, 22(3): 64-73.
汪雪格, 刘洪超, 李红艳. 基于MK-RVA的拉林河流域水文情势评估[J]. 长春工程学院学报(自然科学版), 2021, 22(3): 64-73.
28 GUO Wenxian, CHEN Dingxin, LI Yue, et al. IHA-RVA-based assessment of eco-hydrological regime of Lower Jinshajiang River[J]. Water Resources and Hydropower Engineering, 2018, 49(8): 155-162.
郭文献, 陈鼎新, 李越, 等. 基于IHA-RVA法金沙江下游生态水文情势评价[J]. 水利水电技术, 2018, 49(8): 155-162.
29 TU Yulü, LI Yinghai, GUO Jiali, et al. Analysis for hydrological regime of the lower reaches of Geheyan Reservoir based on IHA-RVA method[J]. Pearl River, 2020, 41(11): 1-8.
涂玉律, 李英海, 郭家力, 等. 基于IHA-RVA法的隔河岩水库下游水文情势分析[J]. 人民珠江, 2020, 41(11): 1-8.
30 HUANG Y H, HUANG B B, QIN T L, et al. Assessment of hydrological changes and their influence on the aquatic ecology over the last 58 years in Ganjiang Basin, China[J]. Sustainability, 2019, 11(18). DOI:10.3390/su11184882 .
31 LIN K R, ZHANG F, ZHANG Q, et al. Fuzzy-based comprehensive evaluation of environmental flow alteration[C]// Hydrologic modeling. Singapore: Springer, 2018: 621-638.
32 MA Chao, CUI Ranxin. Analysis on changes in flow and sediment at Toudaoguai on Yellow River using range of variability approach[J]. Journal of Hydroelectric Engineering, 2018, 37(5): 58-68.
马超, 崔冉昕. 基于变化范围法的黄河头道拐站水沙变化分析[J]. 水力发电学报, 2018, 37(5): 58-68.
33 ETTEMA R, KEMPEMA E W. River-ice effects on gravel-bed channels[C]// Gravel-bed rivers: processes, tools, environments, 2012: 523-540.
34 ZHANG F, HU Y D, FAN X M, et al. Controls on seasonal erosion behavior and potential increase in sediment evacuation in the warming Tibetan Plateau[J]. CATENA, 2022, 209. DOI:10.1016/j.catena.2021.105797 .
35 NIU Y L, LI S Y, LIU Y, et al. Regulation of alpine meadow patch coverage on runoff and sediment under natural rainfall on the eastern Qinghai-Tibetan Plateau[J]. Journal of Hydrology, 2021, 603. DOI:10.1016/j.jhydrol.2021.127101 .
36 SHI X N, ZHANG F, LU X X, et al. The response of the suspended sediment load of the headwaters of the Brahmaputra River to climate change: quantitative attribution to the effects of hydrological, cryospheric and vegetation controls[J]. Global and Planetary Change, 2022, 210. DOI:10.1016/j.gloplacha.2022.103753 .
37 LI Z W, XU X L, ZHU J X, et al. Can precipitation extremes explain variability in runoff and sediment yield across heterogeneous Karst watersheds?[J]. Journal of Hydrology, 2021, 596. DOI:10.1016/j.jhydrol.2020.125698 .
38 WANG R, YAO Z J, WU S S, et al. Glacier retreat and its impact on summertime run-off in a high-altitude ungauged catchment[J]. Hydrological Processes, 2017, 31(21): 3 672-3 681.
[1] 冯起,李宗礼,高前兆,司建华. 石羊河流域民勤绿洲生态需水与生态建设[J]. 地球科学进展, 2012, 27(7): 806-814.
[2] 康尔泗,陈仁升,张智慧,吉喜斌,金博文. 内陆河流域水文过程研究的一些科学问题[J]. 地球科学进展, 2007, 22(9): 940-953.
[3] 杨传国,林朝晖,郝振纯,余钟波,刘少峰. 大气水文模式耦合研究综述[J]. 地球科学进展, 2007, 22(8): 810-817.
[4] 高艳红,程国栋,崔文瑞,Chen Fei,DavidGochis,Yu Wei. 陆面水文过程与大气模式的耦合及其在黑河流域的应用[J]. 地球科学进展, 2006, 21(12): 1283-1282.
[5] 李丽,郝振纯. 基于DEM的流域特征提取综述[J]. 地球科学进展, 2003, 18(2): 251-256.
[6] 蓝永超, 康尔泗,张济世,胡兴林,陈仁升. 河西内陆干旱区地表和地下水资源的相互转化研究[J]. 地球科学进展, 2002, 17(4): 535-545.
阅读次数
全文


摘要