1 |
WANG B, BAO Q, HOSKINS B, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 2008, 35(14). DOI:10.1029/2008GL034330 .
|
2 |
CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015,60(32): 3 025-3 035.
|
|
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来 [J]. 科学通报, 2015, 60(32): 3 025-3 035.
|
3 |
ZHANG Fan, SHI Xiaonan, ZENG Chen, et al. Variation and influence of riverine sediment transport from Tibetan Plateau, China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1 274-1 284.
|
|
张凡, 史晓楠, 曾辰, 等. 青藏高原河流输沙量变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1 274-1 284.
|
4 |
LI D F, LU X X, OVEREEM I, et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter high mountain Asia[J]. Science, 2021, 374(6 567): 599-603.
|
5 |
ZHANG T, LI D F, EAST A E, et al. Warming-driven erosion and sediment transport in cold regions[J]. Nature Reviews Earth & Environment, 2022, 3(12): 832-851.
|
6 |
WEI Mengmei, FU Suhua, LIU Baoyuan. Quantitative research of water erosion on the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2021, 36(7): 740-752.
|
|
魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
|
7 |
ZHANG F, SHI X N, ZENG C, et al. Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau[J]. Science Bulletin, 2020, 65(5): 410-418.
|
8 |
LI D F, LI Z W, ZHOU Y J, et al. Substantial increases in the water and sediment fluxes in the headwater region of the Tibetan Plateau in response to global warming[J]. Geophysical Research Letters, 2020, 47(11). DOI:10.1029/2020GL087745 .
|
9 |
YAN Xia, ZHOU Yinjun, YAO Shiming, et al. Study on the influence of different land cover types on runoff and sediment transport in the source region of the Yangtze River [J]. Journal of Sediment Research, 2020, 45(4): 45-51.
|
|
闫霞, 周银军, 姚仕明, 等. 长江源区不同地表覆盖类型对河流径流输沙的影响 [J]. 泥沙研究, 2020, 45(4): 45-51.
|
10 |
LUO Yu, QIN Ningsheng, PANG Yishu, et al. Effect of climate warming on the runoff of source regions of the Yangtze River:take Tuotuo River Basin as an example [J]. Journal of Glaciology and Geocryology, 2020, 42(3): 952-964.
|
|
罗玉, 秦宁生, 庞轶舒, 等. 气候变暖对长江源径流变化的影响分析——以沱沱河为例[J]. 冰川冻土, 2020, 42(3): 952-964.
|
11 |
LUO Yu, QIN Ningsheng, ZHOU Bin, et al. Runoff characteristics and hysteresis to precipitation in Tuotuo River Basin in source region of Yangtze River during 1961-2011[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 22-28.
|
|
罗玉, 秦宁生, 周斌, 等. 长江源区沱沱河流域1961—2011年径流特征及其对降水的滞后效应[J]. 水土保持通报, 2019, 39(2): 22-28.
|
12 |
RICHTER B D, BAUMGARTNER J V, POWELL J, et al. A method for assessing hydrologic alteration within ecosystems[J]. Conservation Biology, 1996, 10(4): 1 163-1 174.
|
13 |
RICHTER B, BAUMGARTNER J, WIGINGTON R, et al. How much water does a river need?[J]. Freshwater Biology, 1997, 37(1): 231-249.
|
14 |
RICHTER B D, BAUMGARTNER J V, BRAUN D P, et al. A spatial assessment of hydrologic alteration within a river network[J]. Regulated Rivers: Research & Management, 1998, 14(4): 329-340.
|
15 |
YANG T, XU C Y, CHEN X, et al. Assessing the impact of human activities on hydrological and sediment changes (1953-2000) in nine major catchments of the Loess Plateau, China[J]. River Research and Applications, 2010, 26(3): 322-340.
|
16 |
BAN Xuan, JIANG Liuzhi, ZENG Xiaohui, et al. Quantifying the spatio-temporal variation of flow and sediment in the middle Yangtze River after the impoundment of the Three Gorges[J]. Advances in Water Science, 2014, 25(5): 650-657.
|
|
班璇, 姜刘志, 曾小辉, 等. 三峡水库蓄水后长江中游水沙时空变化的定量评估[J]. 水科学进展, 2014, 25(5): 650-657.
|
17 |
LI Dan, XU Wen, YE Changqing, et al. Variation characteristics analysis of hydrological regime of Wanquan River Basin under interference of climate change and human activities[J]. Water Resources and Power, 2019, 37(12): 14-17.
|
|
李旦, 徐文, 叶长青, 等. 气候变化和人类活动干扰下万泉河流域水文情势变化特征分析 [J]. 水电能源科学, 2019, 37(12): 14-17.
|
18 |
SUN Yan, WANG Xiuru, WANG Minghao, et al. Hydrological and sediment regime and synchronous asynchronous encounter of rich-poor runoff and sediment change in the Yellow River Basin in Qucun[J]. Journal of Beijing Normal University (Natural Science), 2019, 55(4): 489-496.
|
|
孙妍, 王秀茹, 王铭浩, 等. 渠村引黄口流域水沙情势变化和丰枯遭遇分析 [J]. 北京师范大学学报(自然科学版), 2019, 55(4): 489-496.
|
19 |
ZHANG Ruqiang, LIU Junguo, MAO Ganquan, et al. Flow regime alterations of upper Heihe River based on improved RVA[J]. Arid Zone Research, 2021, 38(1): 29-38.
|
|
张如强, 刘俊国, 冒甘泉, 等. 基于改进RVA法的黑河上游水文情势变化分析[J]. 干旱区研究, 2021, 38(1): 29-38.
|
20 |
TENENHAUS M, VINZI V E, CHATELIN Y M, et al. PLS path modeling[J]. Computational Statistics & Data Analysis, 2005, 48(1): 159-205.
|
21 |
ZHANG T, LI D F, KETTNER A J, et al. Constraining dynamic sediment-discharge relationships in cold environments: the Sediment-Availability-Transport (SAT) model[J]. Water Resources Research, 2021, 57(10). DOI:10.1029/2021WR030690 .
|
22 |
Xinmiao LÜ, ZHENG Du. Impact of global change on alpine meadow ecosystems in the source region of the Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2006(5): 603-607.
|
|
吕新苗,郑度.气候变化对长江源地区高寒草甸生态系统的影响[J].长江流域资源与环境, 2006(5): 603-607.
|
23 |
WEI Fengying. Modern climate statistical diagnosis and prediction technology[M]. Beijing: China Meteorological Press, 1999.
|
|
魏凤英. 现代气候统计诊断与预测技术[M].北京: 气象出版社, 1999.
|
24 |
SHIAU J T, WU F C. Compromise programming methodology for determining instream flow under multiobjective water allocation criteria[J]. Journal of the American Water Resources Association, 2006, 42(5): 1 179-1 191.
|
25 |
TENENHAUS M, AMATO S, VINZI V E. A global Goodness-of-Fit index for PLS structural equation modelling[C]// Proceedings of the 42nd SIS scientific meeting, 2004: 739-742
|
26 |
FU C H, LARGE S, KNIGHT B, et al. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems[J]. Journal of Marine Systems, 2015, 148: 101-111.
|
27 |
WANG Xuege, LIU Hongchao, LI Hongyan. The hydrological regime assessment of Lalin River Basin based on MK-RVA[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 2021, 22(3): 64-73.
|
|
汪雪格, 刘洪超, 李红艳. 基于MK-RVA的拉林河流域水文情势评估[J]. 长春工程学院学报(自然科学版), 2021, 22(3): 64-73.
|
28 |
GUO Wenxian, CHEN Dingxin, LI Yue, et al. IHA-RVA-based assessment of eco-hydrological regime of Lower Jinshajiang River[J]. Water Resources and Hydropower Engineering, 2018, 49(8): 155-162.
|
|
郭文献, 陈鼎新, 李越, 等. 基于IHA-RVA法金沙江下游生态水文情势评价[J]. 水利水电技术, 2018, 49(8): 155-162.
|
29 |
TU Yulü, LI Yinghai, GUO Jiali, et al. Analysis for hydrological regime of the lower reaches of Geheyan Reservoir based on IHA-RVA method[J]. Pearl River, 2020, 41(11): 1-8.
|
|
涂玉律, 李英海, 郭家力, 等. 基于IHA-RVA法的隔河岩水库下游水文情势分析[J]. 人民珠江, 2020, 41(11): 1-8.
|
30 |
HUANG Y H, HUANG B B, QIN T L, et al. Assessment of hydrological changes and their influence on the aquatic ecology over the last 58 years in Ganjiang Basin, China[J]. Sustainability, 2019, 11(18). DOI:10.3390/su11184882 .
|
31 |
LIN K R, ZHANG F, ZHANG Q, et al. Fuzzy-based comprehensive evaluation of environmental flow alteration[C]// Hydrologic modeling. Singapore: Springer, 2018: 621-638.
|
32 |
MA Chao, CUI Ranxin. Analysis on changes in flow and sediment at Toudaoguai on Yellow River using range of variability approach[J]. Journal of Hydroelectric Engineering, 2018, 37(5): 58-68.
|
|
马超, 崔冉昕. 基于变化范围法的黄河头道拐站水沙变化分析[J]. 水力发电学报, 2018, 37(5): 58-68.
|
33 |
ETTEMA R, KEMPEMA E W. River-ice effects on gravel-bed channels[C]// Gravel-bed rivers: processes, tools, environments, 2012: 523-540.
|
34 |
ZHANG F, HU Y D, FAN X M, et al. Controls on seasonal erosion behavior and potential increase in sediment evacuation in the warming Tibetan Plateau[J]. CATENA, 2022, 209. DOI:10.1016/j.catena.2021.105797 .
|
35 |
NIU Y L, LI S Y, LIU Y, et al. Regulation of alpine meadow patch coverage on runoff and sediment under natural rainfall on the eastern Qinghai-Tibetan Plateau[J]. Journal of Hydrology, 2021, 603. DOI:10.1016/j.jhydrol.2021.127101 .
|
36 |
SHI X N, ZHANG F, LU X X, et al. The response of the suspended sediment load of the headwaters of the Brahmaputra River to climate change: quantitative attribution to the effects of hydrological, cryospheric and vegetation controls[J]. Global and Planetary Change, 2022, 210. DOI:10.1016/j.gloplacha.2022.103753 .
|
37 |
LI Z W, XU X L, ZHU J X, et al. Can precipitation extremes explain variability in runoff and sediment yield across heterogeneous Karst watersheds?[J]. Journal of Hydrology, 2021, 596. DOI:10.1016/j.jhydrol.2020.125698 .
|
38 |
WANG R, YAO Z J, WU S S, et al. Glacier retreat and its impact on summertime run-off in a high-altitude ungauged catchment[J]. Hydrological Processes, 2017, 31(21): 3 672-3 681.
|