1 |
Research Group of Development Strategy of Earth Science from 2021 to 2030. The past, present and future of the habitable Earth: development strategy of Earth science from 2021 to 2030[M]. Beijing: Science Press, 2021: i-iii.
|
|
2021—2030地球科学发展战略研究组. 2021—2030地球科学发展战略——宜居地球的过去、现在与未来[M]. 北京: 科学出版社, 2021: i-iii.
|
2 |
HOLLAND H D. When did the Earth’s atmosphere become oxic? a reply[J]. The Geochemical News, 1999, 100: 20-22.
|
3 |
OCH L M, SHIELDS-ZHOU G A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57.
|
4 |
ROSCOE S M. Huronian rocks and uraniferous conglomerates in the Canadian Shield[J]. Geological Survey of Canada, 1969: 68-40. DOI:10.4095/102290 .
|
5 |
ERIKSSON P G, CHENEY E S. Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the lower Proterozoic sequences of southern Africa[J]. Precambrian Research, 1992, 54(2/3/4): 257-269.
|
6 |
ZHAI Mingguo, ZHANG Lianchang, CHEN Bin. Major geological events and metallogenesis in the precambrian of North China Craton[M]. Beijing: Science Press, 2018: 168-170.
|
|
翟明国, 张连昌, 陈斌. 华北克拉通前寒武纪重大地质事件与成矿[M]. 北京: 科学出版社, 2018: 168-170.
|
7 |
CHEN Yanjing. The geologic environment catastrophe at about 2300 Ma[J]. Young Geologists in Nanjing University, 1987, 1: 119-125.
|
|
陈衍景. 论23亿年前地质环境的突变[J]. 南大青年地质学家, 1987, 1: 119-125.
|
8 |
CHEN Yanjing. Evidence for the catastrophe in geologic environment at about 2300 Ma and the discussions on several problems[J]. Journal of Stratigraphy, 1990, 14(3): 178-186.
|
|
陈衍景. 23亿年地质环境突变的证据及若干问题的讨论[J]. 地层学杂志, 1990, 14(3): 178-186.
|
9 |
CHEN Yanjing, JI Haizhang, FU Shigu, et al. The challenge to traditional geological theory by the discover of catastrophe events in 2.3 billion years: a new understanding of some major geological problems[J]. Advances in Earth Science, 1991, 6(2): 63-68.
|
|
陈衍景, 季海章, 富士谷, 等. 23亿年灾变事件的揭示对传统地质理论的挑战——关于某些重大地质问题的新认识[J]. 地球科学进展, 1991, 6(2): 63-68.
|
10 |
CHEN Yanjing, DENG Jian. REE geochemical characteristics and evolution of early Precambrian sediments: evidence from the southern margin of the Northern China Craton[J]. Geochimica, 1993(1): 93-104.
|
|
陈衍景, 邓键. 华北克拉通南缘早前寒武纪沉积物稀土地球化学特征及演化[J]. 地球化学, 1993(1): 93-104.
|
11 |
CHEN Yanjing, OUYANG Ziyuan, YANG Qiujian, et al. A new idea of the Archean-Proterozoic boundary[J]. Geological Review, 1994, 40(6): 483-488.
|
|
陈衍景, 欧阳自远, 杨秋剑, 等. 关于太古宙—元古宙界线的新认识[J]. 地质论评, 1994, 40(6): 483-488.
|
12 |
CHEN Yanjing, YANG Qiujian, DENG Jian, et al. Important turning point: proclaim of the Earth’s 2300 Ma geo-environment catastrophe and significance[J]. Geology-Geochemistry, 1996(3): 106-125.
|
|
陈衍景, 杨秋剑, 邓健, 等. 地球演化的重要转折——2300 Ma时地质环境灾变的揭示及其意义[J]. 地质地球化学, 1996(3): 106-125.
|
13 |
CHEN Yanjing, LIU Congqiang, CHEN Huayong, et al. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: implications for several geoscientific problems[J]. Acta Petrologica Sinica,2000, 16(2): 233-244.
|
|
陈衍景, 刘丛强, 陈华勇, 等. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J]. 岩石学报, 2000, 16(2): 233-244.
|
14 |
TANG H S, CHEN Y J. Global glaciations and atmospheric change at ca. 2.3 Ga[J]. Geoscience Frontiers, 2013, 4(5): 583-596.
|
15 |
LUO Genming, ZHU Xiangkun, WANG Shuijiong, et al. Mechanisms and climatic-ecological effects of the Great Oxidation Event in the early Proterozoic[J]. Science China: Earth Sciences, 2022, 52(9): 1 665-1 693.
|
|
罗根明, 朱祥坤, 王水炯, 等. 元古宙早期大氧化事件的成因机制与气候生态效应[J]. 中国科学: 地球科学, 2022, 52(9): 1 665-1 693.
|
16 |
FARQUHAR J, BAO H M, THIEMENS M. Atmospheric influence of Earth’s earliest sulfur cycle[J]. Science, 2000, 289(5 480): 756-758.
|
17 |
FARQUHAR J, SAVARINO J, AIRIEAU S, et al. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere[J]. Journal of Geophysical Research: Planets, 2001, 106(E12): 32 829-32 839.
|
18 |
PAVLOV A A, KASTING J F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere[J]. Astrobiology, 2002, 2(1): 27-41.
|
19 |
BEKKER A, HOLLAND H D. Oxygen overshoot and recovery during the early Paleoproterozoic[J]. Earth and Planetary Science Letters, 2012, 317/318: 295-304.
|
20 |
KARHU J A, HOLLAND H D. Carbon isotopes and the rise of atmospheric oxygen[J]. Geology, 1996, 24(10): 867-870.
|
21 |
CONDIE K C, des MARAIS D J, ABBOTT D. Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates?[J]. Precambrian Research, 2001, 106(3/4): 239-260.
|
22 |
KUMP L R, JUNIUM C, ARTHUR M A, et al. Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event[J]. Science, 2011, 334(6 063): 1 694-1 696.
|
23 |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7 488): 307-315.
|
24 |
PLANAVSKY N J, REINHARD C T, WANG X L, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6 209): 635-638.
|
25 |
COLE D B, REINHARD C T, WANG X L, et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic[J]. Geology, 2016, 44(7): 555-558.
|
26 |
HARDISTY D S, LU Z L, BEKKER A, et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate[J]. Earth and Planetary Science Letters, 2017, 463: 159-170.
|
27 |
CANFIELD D E, van ZUILEN M A, NABHAN S, et al. Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118. DOI:10.1073/pnas.2101544118 .
|
28 |
TANG Guojun, CHEN Yanjing, HUANG Baoling, et al. Paleoproterozoic δ13Ccarb positive excursion event: research progress on 2.3 Ga catastrophe[J]. Journal of Mineralogy and Petrology, 2004, 24(3): 103-109.
|
|
唐国军, 陈衍景, 黄宝玲, 等. 古元古代δ13Ccarb正向漂移事件: 2.3Ga环境突变研究的进展[J]. 矿物岩石, 2004, 24(3): 103-109.
|
29 |
WARKE M R, Di ROCCO T, ZERKLE A L, et al. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24): 13 314-13 320.
|
30 |
OUYANG G, SHE Z B, PAPINEAU D, et al. Dynamic carbon and sulfur cycling in the aftermath of the Lomagundi-Jatuli Event: evidence from the Paleoproterozoic Hutuo Supergroup, North China Craton[J]. Precambrian Research, 2020, 337. DOI:10.1016/j.precamres.2019.105549 .
|
31 |
MÄND K, PLANAVSKY N J, PORTER S M, et al. Chromium evidence for protracted oxygenation during the Paleoproterozoic[J]. Earth and Planetary Science Letters, 2022, 584. DOI:10.1016/j.epsl.2022.117501 .
|
32 |
OSSA O F, SPANGENBERG J E, BEKKER A, et al. Moderate levels of oxygenation during the late stage of Earth’s Great Oxidation Event[J]. Earth and Planetary Science Letters, 2022, 594. DOI:10.1016/j.epsl.2022.117716 .
|
33 |
BRASIER A T, MARTIN A P, MELEZHIK V A, et al. Earth’s earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia[J]. Precambrian Research, 2013, 235: 278-294.
|
34 |
GUMSLEY A P, CHAMBERLAIN K R, BLEEKER W, et al. Timing and tempo of the great oxidation event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1 811-1 816.
|
35 |
POULTON S W, BEKKER A, CUMMING V M, et al. A 200-million-year delay in permanent atmospheric oxygenation[J]. Nature, 2021, 592(7 853): 232-236.
|
36 |
LUO G M, ONO S, BEUKES N J, et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago[J]. Science Advances, 2016, 2(5). DOI:10.1126/sciadv.1600134 .
|
37 |
IZON G, LUO G M, UVEGES B T, et al. Bulk and grain-scale minor sulfur isotope data reveal complexities in the dynamics of Earth’s oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(13). DOI:10.1073/pnas.2025606119 .
|
38 |
UVEGES B T, IZON G, ONO S, et al. Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event[J]. Nature Communications, 2023, 14. DOI:10.1038/s41467-023-35820-w .
|
39 |
MARTIN A P, CONDON D J, PRAVE A R, et al. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event) [J]. Earth-Science Reviews, 2013, 127: 242-261.
|
40 |
KIPP M A, STÜEKEN E E, BEKKER A, et al. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 875-880.
|
41 |
MÄND K, LALONDE S V, ROBBINS L J, et al. Palaeoproterozoic oxygenated oceans following the Lomagundi-Jatuli Event[J]. Nature Geoscience, 2020, 13(4): 302-306.
|
42 |
LI Y H, SATISH-KUMAR M, KIRAN S, et al. 2.0 Ga orogenic graphite deposits and associated 13C-enriched meta-carbonate rocks from South China Craton: implications for global Lomagundi event[J]. Geoscience Frontiers, 2022, 13(4). DOI:10.1016/j.gsf.2022.101409 .
|
43 |
HODGSKISS M S W, CROCKFORD P W, TURCHYN A V. Deconstructing the Lomagundi-Jatuli carbon isotope excursion[J]. Annual Review of Earth and Planetary Sciences, 2023, 51: 301-330.
|
44 |
HAO J H, KNOLL A H, HUANG F, et al. Cycling phosphorus on the Archean Earth: part II. phosphorus limitation on primary production in Archean ecosystems[J]. Geochimica et Cosmochimica Acta, 2020, 280: 360-377.
|
45 |
OLEJARZ J, IWASA Y, KNOLL A H, et al. The Great Oxygenation Event as a consequence of ecological dynamics modulated by planetary change[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-23286-7 .
|
46 |
SCHIRRMEISTER B E, de VOS J M, ANTONELLI A, et al. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(5): 1 791-1 796.
|
47 |
SCHIRRMEISTER B E, GUGGER M, DONOGHUE P C J. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils[J]. Palaeontology, 2015, 58(5): 769-785.
|
48 |
PLANAVSKY N J, CROWE S A, FAKHRAEE M, et al. Evolution of the structure and impact of Earth’s biosphere[J]. Nature Reviews Earth & Environment, 2021, 2(2): 123-139.
|
49 |
WILMETH D T, LALONDE S V, BERELSON W M, et al. Evidence for benthic oxygen production in Neoarchean lacustrine stromatolites[J]. Geology, 2022, 50(8): 907-911.
|
50 |
BROCKS J J, LOGAN G A, BUICK R, et al. Archean molecular fossils and the early rise of eukaryotes[J]. Science, 1999, 285(5 430): 1 033-1 036.
|
51 |
FRENCH K L, HALLMANN C, HOPE J M, et al. Reappraisal of hydrocarbon biomarkers in Archean rocks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(19): 5 915-5 920.
|
52 |
CARDONA T, SÁNCHEZ-BARACALDO P, RUTHERFORD A W, et al. Early Archean origin of photosystem II[J]. Geobiology, 2019, 17(2): 127-150.
|
53 |
WANG X L, OSSA O F, HOFMANN A, et al. Uranium isotope evidence for Mesoarchean biological oxygen production in shallow marine and continental settings[J]. Earth and Planetary Science Letters, 2020, 551. DOI:10.1016/j.epsl.2020.116583 .
|
54 |
FISCHER W W, HEMP J, JOHNSON J E. Evolution of oxygenic photosynthesis[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 647-683.
|
55 |
MAO H K, MAO W L. Key problems of the four-dimensional Earth system[J]. Matter and Radiation at Extremes, 2020, 5(3). DOI:10.1063/1.5139023 .
|
56 |
KUMP L R, BARLEY M E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago[J]. Nature, 2007, 448(7 157): 1 033-1 036.
|
57 |
LEE C T A, YEUNG L Y, MCKENZIE N R, et al. Two-step rise of atmospheric oxygen linked to the growth of continents[J]. Nature Geoscience, 2016, 9(6): 417-424.
|
58 |
KADOYA S, CATLING D C, NICKLAS R W, et al. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation[J]. Nature Communications, 2020, 11(1). DOI:10.1038/s41467-020-16493-1 .
|
59 |
CATLING D C, ZAHNLE K J, MCKAY C P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth[J]. Science, 2001, 293(5 531): 839-843.
|
60 |
CHEN Y J, CHEN W Y, LI Q G, et al. Discovery of the Huronian Glaciation Event in China: evidence from glacigenic diamictites in the Hutuo Group in Wutai Shan[J]. Precambrian Research, 2019, 320: 1-12.
|
61 |
GALIMOV I M, KUZNETSOVA N G, PROKHOROV V S. The problem of the composition of the Earth’s ancient atmosphere composition in connection with results of isotopic analyses of carbon from the Precambrian carbonates[J]. Geochemistry, 1968, 11: 1 376-1 381.
|
62 |
SCHIDLOWSKI M, EICHMANN R, JUNGE C E. Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget[J]. Precambrian Research, 1975, 2(1): 1-69.
|
63 |
SCHIDLOWSKI M, EICHMANN R, JUNGE C E. Carbon isotope geochemistry of the Precambrian Lomagundi carbonate Province, Rhodesia[J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 449-455.
|
64 |
LINDSAY J F, BRASIER M D. Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian Basins[J]. Precambrian Research, 2002, 114(1/2): 1-34.
|
65 |
BEKKER A, KARHU J A, KAUFMAN A J. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America[J]. Precambrian Research, 2006, 148(1/2): 145-180.
|
66 |
PRÉAT A, BOUTON P, THIÉBLEMONT D, et al. Paleoproterozoic high δ13C Dolomites from the Lastoursville and Franceville Basins (SE Gabon): stratigraphic and synsedimentary subsidence implications[J]. Precambrian Research, 2011, 189(1/2): 212-228.
|
67 |
LIU C H, ZHAO G C, SUN M, et al. U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonic implications[J]. Gondwana Research, 2011, 20(1): 106-121.
|
68 |
PENG P, FENG L J, SUN F B, et al. Dating the Gaofan and Hutuo groups-targets to investigate the Paleoproterozoic great oxidation event in North China[J]. Journal of Asian Earth Sciences, 2017, 138: 535-547.
|
69 |
MAMMONE N, BEKKER A, CHAMBERLAIN K, et al. Testing the early Paleoproterozoic connection of the Superior and Wyoming cratons with geochronology and geochemistry[J]. Precambrian Research, 2022, 381. DOI:10.1016/j.precamres.2022.106818 .
|
70 |
HORIE K, HIDAKA H, GAUTHIER-LAFAYE F. U-Pb geochronology and geochemistry of zircon from the Franceville series at Bidoudouma, Gabon[C]// Goldschmidt Conference Abstracts 2005,Accessory Mineral Geochemistry I, 2005, 69: A11.
|
71 |
HANNAH J L, STEIN H J, ZIMMERMAN A, et al. Re-Os geochronology of shungite: a 2.05 Ga fossil oil field in Karelia[C]// The 33rd international geological congress. Oslo, 2008.
|
72 |
OVCHINNIKOVA G V, KUSNETZOV A B, MELEZHIK V A, et al. Pb-Pb age of Jatulian carbonate rocks: the Tulomozero Formation of southeaste Karelia[J]. Stratigraphy and Geological Correlation, 2007, 15(4): 359-372.
|
73 |
BEKKER A, KARHU J A, ERIKSSON K A, et al. Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change?[J]. Precambrian Research, 2003, 120(3/4): 279-325.
|
74 |
OSSA O F, EICKMANN B, HOFMANN A, et al. Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event[J]. Earth and Planetary Science Letters, 2018, 486: 70-83.
|
75 |
MELEZHIK V A, FALLICK A E, BRASIER A T, et al. Carbonate deposition in the Palaeoproterozoic Onega basin from Fennoscandia: a spotlight on the transition from the Lomagundi-Jatuli to Shunga events[J]. Earth-Science Reviews, 2015, 147: 65-98.
|
76 |
MAHESHWARI A, SIAL A N, GAUCHER C, et al. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay[J]. Precambrian Research, 2010, 182(4): 274-299.
|
77 |
MELEZHIK V A, FALLICK A E, MEDVEDEV P V, et al. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment[J]. Earth-Science Reviews, 1999, 48(1/2): 71-120.
|
78 |
PRAVE A R, KIRSIMÄE K, LEPLAND A, et al. The grandest of them all: the Lomagundi-Jatuli Event and Earth’s oxygenation[J]. Journal of the Geological Society, 2022, 179(1). DOI:10.1144/jgs2021-036 .
|
79 |
PENG P, LIU X, FENG L J, et al. Rhyacian intermittent large igneous provinces sustained Great Oxidation Event: evidence from North China Craton[J]. Earth-Science Reviews, 2023, 238. DOI:10.1016/j.earscirev.2023.104352 .
|
80 |
BLÄTTLER C L, CLAIRE M W, PRAVE A R, et al. Two-billion-year-old evaporites capture Earth’s great oxidation[J]. Science, 2018, 360(6 386): 320-323.
|
81 |
KANZAKI Y, MURAKAMI T. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols[J]. Geochimica et Cosmochimica Acta, 2016, 174: 263-290.
|
82 |
PARTIN C A, BEKKER A, PLANAVSKY N J, et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth and Planetary Science Letters, 2013, 369/370: 284-293.
|
83 |
PLANAVSKY N J, BEKKER A, HOFMANN A, et al. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(45): 18 300-18 305.
|
84 |
EGUCHI J, SEALES J, DASGUPTA R. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon[J]. Nature Geoscience, 2020, 13(1): 71-76.
|
85 |
BACHAN A, KUMP L R. The rise of oxygen and siderite oxidation during the Lomagundi Event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(21): 6 562-6 567.
|
86 |
HODGSKISS M S W, CROCKFORD P W, PENG Y B, et al. A productivity collapse to end Earth’s Great Oxidation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17 207-17 212.
|
87 |
CANFIELD D E, NGOMBI-PEMBA L, HAMMARLUND E U, et al. Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16 736-16 741.
|
88 |
HARDISTY D S, LU Z, PLANAVSKY N J, et al. An iodine record of Paleoproterozoic surface ocean oxygenation[J]. Geology, 2014, 42(7): 619-622.
|
89 |
MELEZHIK V A, PRAVE A R, HANSKI E J, et al. Reading the archive of Earth’s oxygenation: volume 3: global events and the fennoscandian arctic russia-drilling early Earth project[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
|
90 |
KREITSMANN T, LEPLAND A, BAU M, et al. Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event: the carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia[J]. Precambrian Research, 2020, 347. DOI:10.1016/j.precamres.2020.105855 .
|
91 |
PARNELL J, BROLLY C. Increased biomass and carbon burial 2 billion years ago triggered mountain building[J]. Communications Earth & Environment, 2021, 2(1). DOI:10.1038/s43247-021-00313-5 .
|
92 |
PARNELL J, BROLLY C, BOYCE A J. Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy[J]. Geological Magazine, 2021, 158(9): 1 711-1 718.
|
93 |
KERR G B, PRAVE A R, MARTIN A P, et al. The Palaeoproterozoic global carbon cycle: insights from the Loch Maree Group, NW Scotland[J]. Journal of the Geological Society, 2016, 173(1): 170-176.
|
94 |
MEDVEDEV P V, MELEZHIK V A, FILIPPOV M M. Palaeoproterozoic petrified oil field (Shunga Event)[J]. Paleontological Journal, 2009, 43(8): 972-979.
|
95 |
MARTIN A P, PRAVE A R, CONDON D J, et al. Multiple Palaeoproterozoic carbon burial episodes and excursions[J]. Earth and Planetary Science Letters, 2015, 424: 226-236.
|
96 |
ZHAO G C, CAWOOD P A, WILDE S A, et al. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162.
|
97 |
CHEN X, ZHOU Y, SHIELDS G A. Progress towards an improved Precambrian seawater 87Sr/86Sr curve[J]. Earth-Science Reviews, 2022, 224. DOI:10.1016/j.earscirev.2021.103869 .
|
98 |
PAYNE J L, BOYER A G, BROWN J H, et al. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1): 24-27.
|
99 |
HUANG Yongjian, WANG Chengshan, GU Jian. Cretaceous Oceanic Anoxic events: research progress and forthcoming prospects[J]. Acta Geologica Sinica, 2008, 82(1): 21-30.
|
|
黄永建, 王成善, 顾健. 白垩纪大洋缺氧事件:研究进展与未来展望[J]. 地质学报, 2008, 82(1): 21-30.
|
100 |
ZHAO X D, ZHENG D R, WANG H, et al. Carbon cycle perturbation and mercury anomalies in terrestrial Oceanic Anoxic Event 1b from Jiuquan Basin, NW China[J]. Geological Society, London, Special Publications, 2022, 521(1): 185-196.
|
101 |
TURGEON S C, CREASER R A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode[J]. Nature, 2008, 454(7 202): 323-326.
|
102 |
LIU H, ZARTMAN R E, IRELAND T R, et al. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 854-18 859.
|
103 |
SCHRÖDER S, BEKKER A, BEUKES N J, et al. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2-2.1 Gyr shallow-marine Lucknow Formation, South Africa[J]. Terra Nova, 2008, 20(2): 108-117.
|
104 |
BELLEFROID E J, HOOD A V S, HOFFMAN P F, et al. Constraints on Paleoproterozoic atmospheric oxygen levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(32): 8 104-8 109.
|
105 |
PAISTE K, FIKE D A, KIRSIMÄE K, et al. Testing the global significance of the sulfur isotope record of the ca. 2.0 Ga Zaonega Formation: a micro-scale S isotope investigation[J]. Geochimica et Cosmochimica Acta, 2022, 331: 86-104.
|
106 |
CHEN Weiyu, CHEN Yanjing. Records of the Great Oxidation Event in the Hutuo Group, Shanxi, China: a reassessment of the δ13Ccarb data[J]. Acta Petrologica Sinica, 2018, 34(12): 3 709-3 720.
|
|
陈威宇, 陈衍景. 大氧化事件在山西滹沱群中的记录:碳酸盐岩碳同位素资料分析[J]. 岩石学报, 2018, 34(12): 3 709-3 720.
|
107 |
ZHONG Hua, MA Yongsheng. Carbon isotope and early Proterozoic Strata Correlation[J]. Journal of Stratigraphy, 1995, 19(1): 30-35.
|
|
钟华, 马永生. 碳同位素与早元古代地层对比[J]. 地层学杂志, 1995, 19(1): 30-35.
|
108 |
KONG Fanfan, YUAN Xunlai, ZHOU Chuanming. Paleoproterozoic glaciation: evidence from carbon isotope record of the Hutuo Group, Wutai Mountain area of Shanxi Province, China[J]. Chinese Science Bulletin, 2011, 56(32): 2 922-2 930.
|
|
孔凡凡, 袁训来, 周传明. 古元古代冰期事件:山西五台地区滹沱群的碳同位素证据[J]. 科学通报, 2011, 56(32): 2 699-2 707.
|
109 |
SHE Z B, YANG F Y, LIU W, et al. The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China[J]. Journal of Earth Science, 2016, 27(2): 297-316.
|