地球科学进展 ›› 2023, Vol. 38 ›› Issue (8): 838 -851. doi: 10.11867/j.issn.1001-8166.2023.040

青促会之地球科学领域 上一篇    下一篇

古元古代早中期大氧化事件及碳循环扰动
赵显烨 1 , 2( ), 王伟 1( ), 关成国 1, 宋晨冉 1 , 2, 庞科 1 , 3, 陈哲 1, 周传明 1 , 3, 袁训来 1 , 2 , 4   
  1. 1.中国科学院南京地质古生物研究所, 现代古生物学和地层学国家重点实验室, 江苏 南京 210008
    2.中国科学院大学, 北京 100049
    3.中国科学院大学南京学院, 江苏 南京 211135
    4.南京大学生物演化与环境科教融合中心, 江苏 南京 210023
  • 收稿日期:2023-02-27 修回日期:2023-05-02 出版日期:2023-08-10
  • 通讯作者: 王伟 E-mail:xyzhao@nigpas.ac.cn;wwang@nigpas.ac.cn
  • 基金资助:
    国家重点研发计划专项项目“新元古代和古生代之交地球—生命系统演变”(2022YFF0800100);国家自然科学基金项目“新视角下的埃迪卡拉纪海洋环境——基于岩芯样品黄铁矿的矿物学和原位微区SIMS同位素分析”(42072036);中国石油勘探开发研究院科学研究与技术开发项目“烃源岩形成演化与生物勃发事件响应机理研究”(2021YJCQ03)

Early and Middle Paleoproterozoic Great Oxidation Event and Related Carbon Cycle Perturbation Events

Xianye ZHAO 1 , 2( ), Wei WANG 1( ), Chengguo GUAN 1, Chenran SONG 1 , 2, Ke PANG 1 , 3, Zhe CHEN 1, Chuanming ZHOU 1 , 3, Xunlai YUAN 1 , 2 , 4   

  1. 1.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.University of Chinese Academy of Sciences, Nanjing College, Nanjing 211135, China
    4.Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China
  • Received:2023-02-27 Revised:2023-05-02 Online:2023-08-10 Published:2023-08-28
  • Contact: Wei WANG E-mail:xyzhao@nigpas.ac.cn;wwang@nigpas.ac.cn
  • About author:ZHAO Xianye (1998-), male, Yantai City, Shandong Province, Master student. Research areas include sedimentary and geochemistry. E-mail: xyzhao@nigpas.ac.cn
  • Supported by:
    the National Key Research and Development Program of China “Evolution of the Earth’s Life System at the transition of Neoproterozoic and Paleozoic”(2022YFF0800100);The National Natural Science Foundation of China “Revisiting the Ediacaran oceanic environment: mineralogical and in-situ SIMS isotopic analysis on drill-core pyrites”(42072036);The Science and Technology Research Project for the Research Institute of Petroleum Exploration and Development, CNPC “Study on the connection between the black source-rock formation and the rise of early complex life”(2021YJCQ03)

古元古代大氧化事件(2.43~2.06 Ga)代表了地球大气氧含量首次显著升高,是地球宜居环境形成的关键时期。大氧化事件及相关碳循环扰动事件的研究,对理解地球宜居环境的形成与早期生命的演化十分重要,一直是地学领域的“热点问题”。通过系统梳理大氧化事件的研究进展,重点讨论了大氧化事件的时间框架以及启动过程与机制、大氧化事件期间碳同位素正漂移事件(Lomagundi-Jatuli事件)和大氧化事件结束后碳循环扰动事件3个方面的内容: 大氧化事件的启动具有间歇断续式特点,启动机制的研究呈现多元化观点; Lomagundi-Jatuli事件期间大气—海洋系统先后经历了氧化与脱氧过程,事件的启动机制可能是海洋初级生产力的提高,但不排除其他机制(如地球深部碳循环)的影响; Lomagundi-Jatuli事件后期全球范围内有机碳埋藏量显著上升且一直持续到1.7 Ga左右(Shunga事件),期间伴有碳同位素负漂移事件(Shunga-Francevillian事件),这2次事件的机制尚待深入研究。

The Paleoproterozoic Great Oxidation Event (GOE, approximately 2.43~2.06 Ga) is the first significant atmospheric oxygen increase and fundamentally changed the environment and habitability of the Earth. This study summarizes the research progress on the GOE and related carbon cycle perturbation events in the early and middle Paleoproterozoic, focusing on the time frame, initiation process, and mechanism of the GOE, extremely δ13Ccarb-positive excursion event (Lomagundi-Jatuli event), and carbon cycle perturbation events after the GOE. The initiation of the GOE was intermittent, and research on the initiation mechanism presents diverse viewpoints. The atmosphere-ocean system experienced oxidation and deoxygenation processes during the Lomagundi-Jatuli event, in which the initiation mechanism may have been caused by the increase in ocean primary productivity during this period, but the influence of other mechanisms (such as the deep carbon cycle of the Earth) cannot be ruled out. After the Lomagundi-Jatuli event, global organic carbon burial increased significantly and lasted until approximately 1.7 Ga (Shunga event), during which there was a δ13Ccarb-negative excursion event (Shunga-Francevillian event). The mechanism of the Shunga and Shunga-Francevillian events remains to be studied.

中图分类号: 

图1 地质历史时期大气氧含量与碳酸盐碳同位素重建(据参考文献[ 15 20 - 23 ]修改)
MIF-S:硫同位素非质量分馏;MDF-S:硫同位素质量分馏;GOE:大氧化事件
Fig. 1 Evolution of Earth’s atmospheric oxygen content and carbonate carbon isotope through timemodified after references1520-23])
MIF-S:Mass-Independent Fractionation of Sulfur isotopes;MDF-S:Mass-Dependent Fractionation of Sulfur isotopes;GOE:Great Oxidation Event
图2 Lomagundi-Jatuli碳同位素正漂移事件经典地层序列及碳酸盐碳同位素特征(据参考文献[ 6 67 - 75 ]修改)
灰色与黑色数据点分别代表Lomagundi-Jatuli事件期间和事件之后的碳同位素数据记录
Fig. 2 The δ13Ccarb records of the classical successions of the Lomagundi-Jatuli eventmodified after references667-75])
Grey and black data dots represent δ 13C carb records during and after the Lomagundi-Jatuli events, respectively
表1 “大氧化事件”期间及之后碳循环扰动事件的地球化学特征
Table 1 Geochemical characters of the carbon cycle perturbation events during and after the GOE
图3 前寒武纪黑色页岩累计厚度分布图(据参考文献[ 21 ]修改)
黑色为Shunga事件时期的黑色页岩分布
Fig. 3 Frequency distribution of cumulative thickness of black shale during Precambrianmodified after reference 21 ])
Black columns indicate black shale thickness during the Shunga event
图4 滹沱群与Onega盆地的Shunga-Francevillian事件地层序列及碳酸盐碳同位素特征(据参考文献[ 6 30 67 - 68 71 - 72 75 ]修改)
Fig. 4 Shunga-Francevillian negative δ13Ccarb excursion event recorded in the Hutuo Group and the Onega basin successionsmodified after references63067-6871-7275])
图5 Lomagundi-Jatuli事件、Shunga事件与Shunga-Francevillian事件已确认及可能的地层记录分布示意图
Lomagundi-Jatuli事件地层记录数据源自参考文献[ 43 ];Shunga事件地层记录数据源自参考文献[ 89 ]; Shunga-Francevillian事件地层记录数据源自参考文献[ 78
Fig. 5 Distribution of the studied regions of the Lomagundi-Jatuli eventShunga event and Shunga-Francevillian event
Lomagundi-Jatuli event data from reference [ 43 ]; Shunga event data from reference [ 89 ]; Shunga-Francevillian event data from reference [ 78
1 Research Group of Development Strategy of Earth Science from 2021 to 2030. The past, present and future of the habitable Earth: development strategy of Earth science from 2021 to 2030[M]. Beijing: Science Press, 2021: i-iii.
2021—2030地球科学发展战略研究组. 2021—2030地球科学发展战略——宜居地球的过去、现在与未来[M]. 北京: 科学出版社, 2021: i-iii.
2 HOLLAND H D. When did the Earth’s atmosphere become oxic? a reply[J]. The Geochemical News, 1999, 100: 20-22.
3 OCH L M, SHIELDS-ZHOU G A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57.
4 ROSCOE S M. Huronian rocks and uraniferous conglomerates in the Canadian Shield[J]. Geological Survey of Canada, 1969: 68-40. DOI:10.4095/102290 .
5 ERIKSSON P G, CHENEY E S. Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the lower Proterozoic sequences of southern Africa[J]. Precambrian Research, 1992, 54(2/3/4): 257-269.
6 ZHAI Mingguo, ZHANG Lianchang, CHEN Bin. Major geological events and metallogenesis in the precambrian of North China Craton[M]. Beijing: Science Press, 2018: 168-170.
翟明国, 张连昌, 陈斌. 华北克拉通前寒武纪重大地质事件与成矿[M]. 北京: 科学出版社, 2018: 168-170.
7 CHEN Yanjing. The geologic environment catastrophe at about 2300 Ma[J]. Young Geologists in Nanjing University, 1987, 1: 119-125.
陈衍景. 论23亿年前地质环境的突变[J]. 南大青年地质学家, 1987, 1: 119-125.
8 CHEN Yanjing. Evidence for the catastrophe in geologic environment at about 2300 Ma and the discussions on several problems[J]. Journal of Stratigraphy, 1990, 14(3): 178-186.
陈衍景. 23亿年地质环境突变的证据及若干问题的讨论[J]. 地层学杂志, 1990, 14(3): 178-186.
9 CHEN Yanjing, JI Haizhang, FU Shigu, et al. The challenge to traditional geological theory by the discover of catastrophe events in 2.3 billion years: a new understanding of some major geological problems[J]. Advances in Earth Science, 1991, 6(2): 63-68.
陈衍景, 季海章, 富士谷, 等. 23亿年灾变事件的揭示对传统地质理论的挑战——关于某些重大地质问题的新认识[J]. 地球科学进展, 1991, 6(2): 63-68.
10 CHEN Yanjing, DENG Jian. REE geochemical characteristics and evolution of early Precambrian sediments: evidence from the southern margin of the Northern China Craton[J]. Geochimica, 1993(1): 93-104.
陈衍景, 邓键. 华北克拉通南缘早前寒武纪沉积物稀土地球化学特征及演化[J]. 地球化学, 1993(1): 93-104.
11 CHEN Yanjing, OUYANG Ziyuan, YANG Qiujian, et al. A new idea of the Archean-Proterozoic boundary[J]. Geological Review, 1994, 40(6): 483-488.
陈衍景, 欧阳自远, 杨秋剑, 等. 关于太古宙—元古宙界线的新认识[J]. 地质论评, 1994, 40(6): 483-488.
12 CHEN Yanjing, YANG Qiujian, DENG Jian, et al. Important turning point: proclaim of the Earth’s 2300 Ma geo-environment catastrophe and significance[J]. Geology-Geochemistry, 1996(3): 106-125.
陈衍景, 杨秋剑, 邓健, 等. 地球演化的重要转折——2300 Ma时地质环境灾变的揭示及其意义[J]. 地质地球化学, 1996(3): 106-125.
13 CHEN Yanjing, LIU Congqiang, CHEN Huayong, et al. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: implications for several geoscientific problems[J]. Acta Petrologica Sinica,2000, 16(2): 233-244.
陈衍景, 刘丛强, 陈华勇, 等. 中国北方石墨矿床及赋矿孔达岩系碳同位素特征及有关问题讨论[J]. 岩石学报, 2000, 16(2): 233-244.
14 TANG H S, CHEN Y J. Global glaciations and atmospheric change at ca. 2.3 Ga[J]. Geoscience Frontiers, 2013, 4(5): 583-596.
15 LUO Genming, ZHU Xiangkun, WANG Shuijiong, et al. Mechanisms and climatic-ecological effects of the Great Oxidation Event in the early Proterozoic[J]. Science China: Earth Sciences, 2022, 52(9): 1 665-1 693.
罗根明, 朱祥坤, 王水炯, 等. 元古宙早期大氧化事件的成因机制与气候生态效应[J]. 中国科学: 地球科学, 2022, 52(9): 1 665-1 693.
16 FARQUHAR J, BAO H M, THIEMENS M. Atmospheric influence of Earth’s earliest sulfur cycle[J]. Science, 2000, 289(5 480): 756-758.
17 FARQUHAR J, SAVARINO J, AIRIEAU S, et al. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere[J]. Journal of Geophysical Research: Planets, 2001, 106(E12): 32 829-32 839.
18 PAVLOV A A, KASTING J F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere[J]. Astrobiology, 2002, 2(1): 27-41.
19 BEKKER A, HOLLAND H D. Oxygen overshoot and recovery during the early Paleoproterozoic[J]. Earth and Planetary Science Letters, 2012, 317/318: 295-304.
20 KARHU J A, HOLLAND H D. Carbon isotopes and the rise of atmospheric oxygen[J]. Geology, 1996, 24(10): 867-870.
21 CONDIE K C, des MARAIS D J, ABBOTT D. Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates?[J]. Precambrian Research, 2001, 106(3/4): 239-260.
22 KUMP L R, JUNIUM C, ARTHUR M A, et al. Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event[J]. Science, 2011, 334(6 063): 1 694-1 696.
23 LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7 488): 307-315.
24 PLANAVSKY N J, REINHARD C T, WANG X L, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6 209): 635-638.
25 COLE D B, REINHARD C T, WANG X L, et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic[J]. Geology, 2016, 44(7): 555-558.
26 HARDISTY D S, LU Z L, BEKKER A, et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate[J]. Earth and Planetary Science Letters, 2017, 463: 159-170.
27 CANFIELD D E, van ZUILEN M A, NABHAN S, et al. Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118. DOI:10.1073/pnas.2101544118 .
28 TANG Guojun, CHEN Yanjing, HUANG Baoling, et al. Paleoproterozoic δ13Ccarb positive excursion event: research progress on 2.3 Ga catastrophe[J]. Journal of Mineralogy and Petrology, 2004, 24(3): 103-109.
唐国军, 陈衍景, 黄宝玲, 等. 古元古代δ13Ccarb正向漂移事件: 2.3Ga环境突变研究的进展[J]. 矿物岩石, 2004, 24(3): 103-109.
29 WARKE M R, Di ROCCO T, ZERKLE A L, et al. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24): 13 314-13 320.
30 OUYANG G, SHE Z B, PAPINEAU D, et al. Dynamic carbon and sulfur cycling in the aftermath of the Lomagundi-Jatuli Event: evidence from the Paleoproterozoic Hutuo Supergroup, North China Craton[J]. Precambrian Research, 2020, 337. DOI:10.1016/j.precamres.2019.105549 .
31 MÄND K, PLANAVSKY N J, PORTER S M, et al. Chromium evidence for protracted oxygenation during the Paleoproterozoic[J]. Earth and Planetary Science Letters, 2022, 584. DOI:10.1016/j.epsl.2022.117501 .
32 OSSA O F, SPANGENBERG J E, BEKKER A, et al. Moderate levels of oxygenation during the late stage of Earth’s Great Oxidation Event[J]. Earth and Planetary Science Letters, 2022, 594. DOI:10.1016/j.epsl.2022.117716 .
33 BRASIER A T, MARTIN A P, MELEZHIK V A, et al. Earth’s earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia[J]. Precambrian Research, 2013, 235: 278-294.
34 GUMSLEY A P, CHAMBERLAIN K R, BLEEKER W, et al. Timing and tempo of the great oxidation event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1 811-1 816.
35 POULTON S W, BEKKER A, CUMMING V M, et al. A 200-million-year delay in permanent atmospheric oxygenation[J]. Nature, 2021, 592(7 853): 232-236.
36 LUO G M, ONO S, BEUKES N J, et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago[J]. Science Advances, 2016, 2(5). DOI:10.1126/sciadv.1600134 .
37 IZON G, LUO G M, UVEGES B T, et al. Bulk and grain-scale minor sulfur isotope data reveal complexities in the dynamics of Earth’s oxygenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(13). DOI:10.1073/pnas.2025606119 .
38 UVEGES B T, IZON G, ONO S, et al. Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event[J]. Nature Communications, 2023, 14. DOI:10.1038/s41467-023-35820-w .
39 MARTIN A P, CONDON D J, PRAVE A R, et al. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event) [J]. Earth-Science Reviews, 2013, 127: 242-261.
40 KIPP M A, STÜEKEN E E, BEKKER A, et al. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 875-880.
41 MÄND K, LALONDE S V, ROBBINS L J, et al. Palaeoproterozoic oxygenated oceans following the Lomagundi-Jatuli Event[J]. Nature Geoscience, 2020, 13(4): 302-306.
42 LI Y H, SATISH-KUMAR M, KIRAN S, et al. 2.0 Ga orogenic graphite deposits and associated 13C-enriched meta-carbonate rocks from South China Craton: implications for global Lomagundi event[J]. Geoscience Frontiers, 2022, 13(4). DOI:10.1016/j.gsf.2022.101409 .
43 HODGSKISS M S W, CROCKFORD P W, TURCHYN A V. Deconstructing the Lomagundi-Jatuli carbon isotope excursion[J]. Annual Review of Earth and Planetary Sciences, 2023, 51: 301-330.
44 HAO J H, KNOLL A H, HUANG F, et al. Cycling phosphorus on the Archean Earth: part II. phosphorus limitation on primary production in Archean ecosystems[J]. Geochimica et Cosmochimica Acta, 2020, 280: 360-377.
45 OLEJARZ J, IWASA Y, KNOLL A H, et al. The Great Oxygenation Event as a consequence of ecological dynamics modulated by planetary change[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-23286-7 .
46 SCHIRRMEISTER B E, de VOS J M, ANTONELLI A, et al. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(5): 1 791-1 796.
47 SCHIRRMEISTER B E, GUGGER M, DONOGHUE P C J. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils[J]. Palaeontology, 2015, 58(5): 769-785.
48 PLANAVSKY N J, CROWE S A, FAKHRAEE M, et al. Evolution of the structure and impact of Earth’s biosphere[J]. Nature Reviews Earth & Environment, 2021, 2(2): 123-139.
49 WILMETH D T, LALONDE S V, BERELSON W M, et al. Evidence for benthic oxygen production in Neoarchean lacustrine stromatolites[J]. Geology, 2022, 50(8): 907-911.
50 BROCKS J J, LOGAN G A, BUICK R, et al. Archean molecular fossils and the early rise of eukaryotes[J]. Science, 1999, 285(5 430): 1 033-1 036.
51 FRENCH K L, HALLMANN C, HOPE J M, et al. Reappraisal of hydrocarbon biomarkers in Archean rocks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(19): 5 915-5 920.
52 CARDONA T, SÁNCHEZ-BARACALDO P, RUTHERFORD A W, et al. Early Archean origin of photosystem II[J]. Geobiology, 2019, 17(2): 127-150.
53 WANG X L, OSSA O F, HOFMANN A, et al. Uranium isotope evidence for Mesoarchean biological oxygen production in shallow marine and continental settings[J]. Earth and Planetary Science Letters, 2020, 551. DOI:10.1016/j.epsl.2020.116583 .
54 FISCHER W W, HEMP J, JOHNSON J E. Evolution of oxygenic photosynthesis[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 647-683.
55 MAO H K, MAO W L. Key problems of the four-dimensional Earth system[J]. Matter and Radiation at Extremes, 2020, 5(3). DOI:10.1063/1.5139023 .
56 KUMP L R, BARLEY M E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago[J]. Nature, 2007, 448(7 157): 1 033-1 036.
57 LEE C T A, YEUNG L Y, MCKENZIE N R, et al. Two-step rise of atmospheric oxygen linked to the growth of continents[J]. Nature Geoscience, 2016, 9(6): 417-424.
58 KADOYA S, CATLING D C, NICKLAS R W, et al. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation[J]. Nature Communications, 2020, 11(1). DOI:10.1038/s41467-020-16493-1 .
59 CATLING D C, ZAHNLE K J, MCKAY C P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth[J]. Science, 2001, 293(5 531): 839-843.
60 CHEN Y J, CHEN W Y, LI Q G, et al. Discovery of the Huronian Glaciation Event in China: evidence from glacigenic diamictites in the Hutuo Group in Wutai Shan[J]. Precambrian Research, 2019, 320: 1-12.
61 GALIMOV I M, KUZNETSOVA N G, PROKHOROV V S. The problem of the composition of the Earth’s ancient atmosphere composition in connection with results of isotopic analyses of carbon from the Precambrian carbonates[J]. Geochemistry, 1968, 11: 1 376-1 381.
62 SCHIDLOWSKI M, EICHMANN R, JUNGE C E. Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget[J]. Precambrian Research, 1975, 2(1): 1-69.
63 SCHIDLOWSKI M, EICHMANN R, JUNGE C E. Carbon isotope geochemistry of the Precambrian Lomagundi carbonate Province, Rhodesia[J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 449-455.
64 LINDSAY J F, BRASIER M D. Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian Basins[J]. Precambrian Research, 2002, 114(1/2): 1-34.
65 BEKKER A, KARHU J A, KAUFMAN A J. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America[J]. Precambrian Research, 2006, 148(1/2): 145-180.
66 PRÉAT A, BOUTON P, THIÉBLEMONT D, et al. Paleoproterozoic high δ13C Dolomites from the Lastoursville and Franceville Basins (SE Gabon): stratigraphic and synsedimentary subsidence implications[J]. Precambrian Research, 2011, 189(1/2): 212-228.
67 LIU C H, ZHAO G C, SUN M, et al. U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonic implications[J]. Gondwana Research, 2011, 20(1): 106-121.
68 PENG P, FENG L J, SUN F B, et al. Dating the Gaofan and Hutuo groups-targets to investigate the Paleoproterozoic great oxidation event in North China[J]. Journal of Asian Earth Sciences, 2017, 138: 535-547.
69 MAMMONE N, BEKKER A, CHAMBERLAIN K, et al. Testing the early Paleoproterozoic connection of the Superior and Wyoming cratons with geochronology and geochemistry[J]. Precambrian Research, 2022, 381. DOI:10.1016/j.precamres.2022.106818 .
70 HORIE K, HIDAKA H, GAUTHIER-LAFAYE F. U-Pb geochronology and geochemistry of zircon from the Franceville series at Bidoudouma, Gabon[C]// Goldschmidt Conference Abstracts 2005,Accessory Mineral Geochemistry I, 2005, 69: A11.
71 HANNAH J L, STEIN H J, ZIMMERMAN A, et al. Re-Os geochronology of shungite: a 2.05 Ga fossil oil field in Karelia[C]// The 33rd international geological congress. Oslo, 2008.
72 OVCHINNIKOVA G V, KUSNETZOV A B, MELEZHIK V A, et al. Pb-Pb age of Jatulian carbonate rocks: the Tulomozero Formation of southeaste Karelia[J]. Stratigraphy and Geological Correlation, 2007, 15(4): 359-372.
73 BEKKER A, KARHU J A, ERIKSSON K A, et al. Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change?[J]. Precambrian Research, 2003, 120(3/4): 279-325.
74 OSSA O F, EICKMANN B, HOFMANN A, et al. Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event[J]. Earth and Planetary Science Letters, 2018, 486: 70-83.
75 MELEZHIK V A, FALLICK A E, BRASIER A T, et al. Carbonate deposition in the Palaeoproterozoic Onega basin from Fennoscandia: a spotlight on the transition from the Lomagundi-Jatuli to Shunga events[J]. Earth-Science Reviews, 2015, 147: 65-98.
76 MAHESHWARI A, SIAL A N, GAUCHER C, et al. Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay[J]. Precambrian Research, 2010, 182(4): 274-299.
77 MELEZHIK V A, FALLICK A E, MEDVEDEV P V, et al. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-‘red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment[J]. Earth-Science Reviews, 1999, 48(1/2): 71-120.
78 PRAVE A R, KIRSIMÄE K, LEPLAND A, et al. The grandest of them all: the Lomagundi-Jatuli Event and Earth’s oxygenation[J]. Journal of the Geological Society, 2022, 179(1). DOI:10.1144/jgs2021-036 .
79 PENG P, LIU X, FENG L J, et al. Rhyacian intermittent large igneous provinces sustained Great Oxidation Event: evidence from North China Craton[J]. Earth-Science Reviews, 2023, 238. DOI:10.1016/j.earscirev.2023.104352 .
80 BLÄTTLER C L, CLAIRE M W, PRAVE A R, et al. Two-billion-year-old evaporites capture Earth’s great oxidation[J]. Science, 2018, 360(6 386): 320-323.
81 KANZAKI Y, MURAKAMI T. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols[J]. Geochimica et Cosmochimica Acta, 2016, 174: 263-290.
82 PARTIN C A, BEKKER A, PLANAVSKY N J, et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth and Planetary Science Letters, 2013, 369/370: 284-293.
83 PLANAVSKY N J, BEKKER A, HOFMANN A, et al. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(45): 18 300-18 305.
84 EGUCHI J, SEALES J, DASGUPTA R. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon[J]. Nature Geoscience, 2020, 13(1): 71-76.
85 BACHAN A, KUMP L R. The rise of oxygen and siderite oxidation during the Lomagundi Event[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(21): 6 562-6 567.
86 HODGSKISS M S W, CROCKFORD P W, PENG Y B, et al. A productivity collapse to end Earth’s Great Oxidation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17 207-17 212.
87 CANFIELD D E, NGOMBI-PEMBA L, HAMMARLUND E U, et al. Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16 736-16 741.
88 HARDISTY D S, LU Z, PLANAVSKY N J, et al. An iodine record of Paleoproterozoic surface ocean oxygenation[J]. Geology, 2014, 42(7): 619-622.
89 MELEZHIK V A, PRAVE A R, HANSKI E J, et al. Reading the archive of Earth’s oxygenation: volume 3: global events and the fennoscandian arctic russia-drilling early Earth project[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
90 KREITSMANN T, LEPLAND A, BAU M, et al. Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event: the carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia[J]. Precambrian Research, 2020, 347. DOI:10.1016/j.precamres.2020.105855 .
91 PARNELL J, BROLLY C. Increased biomass and carbon burial 2 billion years ago triggered mountain building[J]. Communications Earth & Environment, 2021, 2(1). DOI:10.1038/s43247-021-00313-5 .
92 PARNELL J, BROLLY C, BOYCE A J. Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy[J]. Geological Magazine, 2021, 158(9): 1 711-1 718.
93 KERR G B, PRAVE A R, MARTIN A P, et al. The Palaeoproterozoic global carbon cycle: insights from the Loch Maree Group, NW Scotland[J]. Journal of the Geological Society, 2016, 173(1): 170-176.
94 MEDVEDEV P V, MELEZHIK V A, FILIPPOV M M. Palaeoproterozoic petrified oil field (Shunga Event)[J]. Paleontological Journal, 2009, 43(8): 972-979.
95 MARTIN A P, PRAVE A R, CONDON D J, et al. Multiple Palaeoproterozoic carbon burial episodes and excursions[J]. Earth and Planetary Science Letters, 2015, 424: 226-236.
96 ZHAO G C, CAWOOD P A, WILDE S A, et al. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162.
97 CHEN X, ZHOU Y, SHIELDS G A. Progress towards an improved Precambrian seawater 87Sr/86Sr curve[J]. Earth-Science Reviews, 2022, 224. DOI:10.1016/j.earscirev.2021.103869 .
98 PAYNE J L, BOYER A G, BROWN J H, et al. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1): 24-27.
99 HUANG Yongjian, WANG Chengshan, GU Jian. Cretaceous Oceanic Anoxic events: research progress and forthcoming prospects[J]. Acta Geologica Sinica, 2008, 82(1): 21-30.
黄永建, 王成善, 顾健. 白垩纪大洋缺氧事件:研究进展与未来展望[J]. 地质学报, 2008, 82(1): 21-30.
100 ZHAO X D, ZHENG D R, WANG H, et al. Carbon cycle perturbation and mercury anomalies in terrestrial Oceanic Anoxic Event 1b from Jiuquan Basin, NW China[J]. Geological Society, London, Special Publications, 2022, 521(1): 185-196.
101 TURGEON S C, CREASER R A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode[J]. Nature, 2008, 454(7 202): 323-326.
102 LIU H, ZARTMAN R E, IRELAND T R, et al. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 854-18 859.
103 SCHRÖDER S, BEKKER A, BEUKES N J, et al. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2-2.1 Gyr shallow-marine Lucknow Formation, South Africa[J]. Terra Nova, 2008, 20(2): 108-117.
104 BELLEFROID E J, HOOD A V S, HOFFMAN P F, et al. Constraints on Paleoproterozoic atmospheric oxygen levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(32): 8 104-8 109.
105 PAISTE K, FIKE D A, KIRSIMÄE K, et al. Testing the global significance of the sulfur isotope record of the ca. 2.0 Ga Zaonega Formation: a micro-scale S isotope investigation[J]. Geochimica et Cosmochimica Acta, 2022, 331: 86-104.
106 CHEN Weiyu, CHEN Yanjing. Records of the Great Oxidation Event in the Hutuo Group, Shanxi, China: a reassessment of the δ13Ccarb data[J]. Acta Petrologica Sinica, 2018, 34(12): 3 709-3 720.
陈威宇, 陈衍景. 大氧化事件在山西滹沱群中的记录:碳酸盐岩碳同位素资料分析[J]. 岩石学报, 2018, 34(12): 3 709-3 720.
107 ZHONG Hua, MA Yongsheng. Carbon isotope and early Proterozoic Strata Correlation[J]. Journal of Stratigraphy, 1995, 19(1): 30-35.
钟华, 马永生. 碳同位素与早元古代地层对比[J]. 地层学杂志, 1995, 19(1): 30-35.
108 KONG Fanfan, YUAN Xunlai, ZHOU Chuanming. Paleoproterozoic glaciation: evidence from carbon isotope record of the Hutuo Group, Wutai Mountain area of Shanxi Province, China[J]. Chinese Science Bulletin, 2011, 56(32): 2 922-2 930.
孔凡凡, 袁训来, 周传明. 古元古代冰期事件:山西五台地区滹沱群的碳同位素证据[J]. 科学通报, 2011, 56(32): 2 699-2 707.
109 SHE Z B, YANG F Y, LIU W, et al. The termination and aftermath of the Lomagundi-Jatuli carbon isotope excursions in the Paleoproterozoic Hutuo Group, North China[J]. Journal of Earth Science, 2016, 27(2): 297-316.
[1] 牛雪琦, 时巍巍, 吴文欣, 刘树伟, 杨平, 李思亮, 晏智锋. 内陆水体 CH4 冒泡排放研究进展[J]. 地球科学进展, 2023, 38(8): 802-814.
[2] 郑旻, 罗敏, 潘彬彬, 陈多福. 海洋沉积物溶解氧消耗研究进展[J]. 地球科学进展, 2023, 38(3): 236-255.
[3] 何志, 田军. 中中新世气候转型期太平洋深层环流变化与碳循环[J]. 地球科学进展, 2023, 38(1): 17-31.
[4] 陆瑶, 黄良波, 贾珺杰, 高扬. 内陆水体初级生产力评估方法研究进展[J]. 地球科学进展, 2023, 38(1): 57-69.
[5] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[6] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[7] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[8] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[9] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[10] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[11] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[12] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[13] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[14] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[15] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
阅读次数
全文


摘要