60 |
ROSA L P, dos SANTOS M A, MATVIENKO B, et al. Biogenic gas production from major Amazon Reservoirs, Brazil[J]. Hydrological Processes, 2003, 17(7): 1 443-1 450.
|
61 |
dos SANTOS M A, ROSA L P, SIKAR B, et al. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants[J]. Energy Policy, 2006, 34(4): 481-488.
|
62 |
MAECK A, DELSONTRO T, MCGINNIS D F, et al. Sediment trapping by dams creates methane emission hot spots[J]. Environmental Science & Technology, 2013, 47(15): 8 130-8 137.
|
63 |
BEAULIEU J J, WALDO S, BALZ D A, et al. Methane and carbon dioxide emissions from reservoirs: controls and upscaling[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125. DOI:10.1029/2019JG005474 .
|
64 |
LINKHORST A, PARANAíBA J R, MENDONçA R, et al. Spatially resolved measurements in tropical reservoirs reveal elevated methane ebullition at river inflows and at high productivity[J]. Global Biogeochemical Cycles, 2021, 35(5). DOI:10.1029/2020GB006717 .
|
65 |
SAWAKUCHI H O, BASTVIKEN D, SAWAKUCHI A O, et al. Methane emissions from Amazonian Rivers and their contribution to the global methane budget[J]. Global Change Biology, 2014, 20(9): 2 829-2 840.
|
66 |
KOMIYA S, NOBORIO K, KATANO K, et al. Contribution of ebullition to methane and carbon dioxide emission from water between plant rows in a tropical rice paddy field[J]. International Scholarly Research Notices, 2015. DOI:10.1155/2015/623901 .
|
67 |
SOUED C, HARRISON J A, MERCIER-BLAIS S, et al. Reservoir CO2 and CH4 emissions and their climate impact over the period 1900-2060[J]. Nature Geoscience, 2022, 15(9): 700-705.
|
68 |
SUN H Y, YU R H, LIU X Y, et al. Drivers of spatial and seasonal variations of CO2 and CH4 fluxes at the sediment water interface in a shallow eutrophic lake[J]. Water Research, 2022, 222. DOI:10.1016/j.watres.2022.118916 .
|
69 |
BERBERICH M E, BEAULIEU J J, HAMILTON T L, et al. Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: importance of organic matter source and quantity[J]. Limnology and Oceanography, 2020, 65(6): 1 336-1 358.
|
70 |
BORGES A V, DARCHAMBEAU F, TEODORU C R, et al. Globally significant greenhouse-gas emissions from African inland waters[J]. Nature Geoscience, 2015, 8(8): 637-642.
|
71 |
XUE H, YU R H, ZHANG Z Z, et al. Greenhouse gas emissions from the water-air interface of a grassland river: a case study of the Xilin River[J]. Scientific Reports, 2021, 11(1): 1-14.
|
72 |
HOLGERSON M A. Drivers of carbon dioxide and methane supersaturation in small, temporary ponds[J]. Biogeochemistry, 2015, 124(1/2/3): 305-318.
|
73 |
PEACOCK M, AUDET J, BASTVIKEN D, et al. Global importance of methane emissions from drainage ditches and canals[J]. Environmental Research Letters, 2021, 16(4). DOI: 10.1088/1748-9326/abeb36 .
|
74 |
XU Xinwanghao. The temporal and spatial dynamics of greenhouse gases emissions and controlling factors from coastal saline wetlands in Jiangsu Province, Southeast China[D]. Nanjing: Nanjing University, 2015.
|
|
许鑫王豪. 滨海湿地温室气体通量及影响因素分析[D]. 南京: 南京大学, 2015.
|
75 |
WALTER K M, SMITH L C, STUART CHAPIN F III. Methane bubbling from northern lakes: present and future contributions to the global methane budget[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1 856): 1 657-1 676.
|
76 |
GRINHAM A, DUNBABIN M, ALBERT S. Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir[J]. Science of the Total Environment, 2018, 621: 1 199-1 207.
|
77 |
st. LOUIS V L, KELLY C A, DUCHEMIN É,et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate[J]. BioScience, 2000, 50(9): 766-775.
|
78 |
DAVIDSON T A, AUDET J, JEPPESEN E, et al. Synergy between nutrients and warming enhances methane ebullition from experimental lakes[J]. Nature Climate Change, 2018, 8(2): 156-160.
|
79 |
XU Xinwanghao, ZHAO Yifei, ZOU Xinqing, et al. Advances in the research on methane emissions of coastal saline wetlands in China[J]. Journal of Natural Resources, 2015, 30(9): 1 594-1 605.
|
|
许鑫王豪, 赵一飞, 邹欣庆, 等. 中国滨海湿地CH4通量研究进展[J]. 自然资源学报, 2015, 30(9): 1 594-1 605.
|
80 |
XIAO Qitao. Study on greenhouse gases(CO2、CH4、N2O) fluxes of water-air interface in Lake Taihu[D]. Nanjing: Nanjing University of Information Science & Technology, 2014.
|
|
肖启涛. 太湖水—气界面温室气体(CO2、CH4、N2O)通量研究[D]. 南京: 南京信息工程大学, 2014.
|
81 |
TAKAGAKI N, KOMORI S. Effects of rainfall on mass transfer across the air-water interface[J]. Journal of Geophysical Research, 2007, 112(C6). DOI:10.1029/2006JC003752 .
|
82 |
FUSÉ V S, PRIANO M E, WILLIAMS K E, et al. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods[J].Environmental Monitoring and Assessment, 2016, 188(10): 1-12.
|
83 |
GUéRIN F, DESHMUKH C, LABAT D, et al. Effect of sporadic destratification, seasonal overturn, and artificial mixing on CH4 emissions from a subtropical hydroelectric reservoir[J]. Biogeosciences, 2016, 13(12): 3 647-3 663.
|
84 |
SAVVICHEV A S, KADNIKOV V V, KALLISTOVA A Y, et al. Light-dependent methane oxidation is the major process of the methane cycle in the water column of the Bol’shie Khruslomeny Polar Lake[J]. Microbiology, 2019, 88(3): 370-374.
|
85 |
SHELLEY F, INGS N, HILDREW A G, et al. Bringing methanotrophy in rivers out of the shadows[J]. Limnology and Oceanography, 2017, 62(6): 2 345-2 359.
|
86 |
GRINHAM A, O’SULLIVAN C, DUNBABIN M, et al. Drivers of anaerobic methanogenesis in sub-tropical reservoir sediments[J]. Frontiers in Environmental Science, 2022, 10: 1-12.
|
87 |
HUTTUNEN J T, VäISäNEN T S, HELLSTEN S K, et al. Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs[J]. Boreal Environment Research, 2006, 11(1): 27-34.
|
88 |
VENTURI S, TASSI F, CABASSI J, et al. Exploring methane emission drivers in wetlands: the cases of massaciuccoli and porta lakes (Northern Tuscany, Italy)[J]. Applied Sciences, 2021, 11(24). DOI:10.3390/app112412156 .
|
89 |
LI Y, SHANG J H, ZHANG C, et al. The role of freshwater eutrophication in greenhouse gas emissions: a review[J]. Science of the Total Environment, 2021, 768. DOI:10.1016/j.scitotenv.2020.144582 .
|
90 |
CONRAD R, ROTHFUSS F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium[J]. Biology and Fertility of Soils, 1991, 12(1): 28-32.
|
91 |
BEAULIEU J J, DELSONTRO T, DOWNING J A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09100-5 .
|
92 |
LIU Yili, LI Zhulin, HE Yunfeng. The factors influencing generation, transmission and oxidation of methane in wetlands: a review[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(9): 157-162.
|
|
刘意立, 李竺霖, 何云峰. 影响湿地甲烷产生、传输与氧化因素的研究进展[J]. 西北农林科技大学学报(自然科学版), 2014, 42(9): 157-162.
|
93 |
SAWAKUCHI H O, BASTVIKEN D, SAWAKUCHI A O, et al. Oxidative mitigation of aquatic methane emissions in large Amazonian rivers[J]. Global Change Biology, 2016, 22(3): 1 075-1 085.
|
94 |
MARTINEZ D, ANDERSON M A. Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA)[J]. Science of the Total Environment, 2013, 454: 457-465.
|
95 |
LIN Hai, ZHOU Gang, LI Xuguang, et al. Greenhouse gases emissions from pond culture ecosystem of Chinese mitten crab and their comprehensive global warming potentials in summer[J]. Journal of Fisheries of China, 2013, 37(3): 417-424.
|
|
林海, 周刚, 李旭光, 等. 夏季池塘养殖中华绒螯蟹生态系统温室气体排放及综合增温潜势[J]. 水产学报, 2013, 37(3): 417-424.
|
96 |
FEARNSIDE P M. Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’gases[J]. Environmental Conservation, 1995, 22(1): 7-19.
|
97 |
KELLY C A, RUDD J W M, BODALY R A, et al. Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir[J]. Environmental Science & Technology, 1997, 31(5): 1 334-1 344.
|
98 |
XU X F, YUAN F M, HANSON P J, et al. Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems[J]. Biogeosciences, 2016, 13(12): 3 735-3 755.
|
99 |
WANG Q G, LI S B, JIA P, et al. A review of surface water quality models[J]. The Scientific World Journal, 2013. DOI:10.1155/2013/231768 .
|
100 |
KELLNER E, BAIRD A, OOSTERWOUD M, et al. Effect of temperature and atmospheric pressure on methane (CH4) ebullition from near-surface peats[J]. Geophysical Research Letters, 2006, 33(18). DOI:10.1029/2006GL027509 .
|
101 |
MA S, JIANG L F, WILSON R M, et al. Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data-model fusion[J]. Biogeosciences, 2022, 19(8): 2 245-2 262.
|
102 |
TOKIDA T, MIYAZAKI T, MIZOGUCHI M, et al. Falling atmospheric pressure as a trigger for methane ebullition from peatland[J]. Global Biogeochemical Cycles, 2007, 21(2). DOI:10.1029/2006GB002790 .
|
103 |
WANG Jiawen, HE Ping, XU Jie, et al. A review on aquatic ecosystem mesocosms[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1 129-1 140.
|
|
王佳文, 何萍, 徐杰, 等. 水生态系统中宇宙发展现状[J]. 应用生态学报, 2021, 32(3): 1 129-1 140.
|
1 |
IPCC. Global warming of 1.5 ℃: IPCC special report on impacts of global warming of 1.5 ℃ above pre-industrial levels in contextof strengthening response to climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge: Cambridge University Press, 2022.
|
2 |
SAUNOIS M, STAVERT A R, POULTER B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1 561-1 623.
|
3 |
FORSTER P, STORELVMO T, ARMOUR K, et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity[M]. Cambridge: Cambridge University Press, 2021.
|
4 |
IEA. Global methane tracker[M/OL]. 2022. [2023-03-13]. .
|
5 |
RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013,503(7 476): 355-359.
|
6 |
ZHENG Y J, WU S, XIAO S Q, et al. Global methane and nitrous oxide emissions from inland waters and estuaries[J]. Global Change Biology, 2022, 28(15): 4 713-4 725.
|
7 |
ROSENTRETER J A, BORGES A V, DEEMER B R, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources[J]. Nature Geoscience, 2021, 14(4): 225-230.
|
8 |
BASTVIKEN D, COLE J, PACE M, et al. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate[J]. Global Biogeochemical Cycles, 2004, 18(4). DOI: 10.1029/2004GB002238 .
|
9 |
BAULCH H M, DILLON P J, MARANGER R, et al. Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important?[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4). DOI:10.1029/2011JG001656 .
|
10 |
STANLEY E H, CASSON N J, CHRISTEL S T, et al. The ecology of methane in streams and rivers: patterns, controls, and global significance[J]. Ecological Monographs, 2016, 86(2): 146-171.
|
11 |
YANG P, ZHANG Y F, YANG H, et al. Ebullition was a major pathway of methane emissions from the aquaculture ponds in southeast China[J]. Water Research, 2020, 184. DOI:10.1016/j.watres.2020.116176 .
|
12 |
FANG X T, WANG C, ZHANG T R, et al. Ebullitive CH4 flux and its mitigation potential by aeration in freshwater aquaculture: measurements and global data synthesis[J]. Agriculture, Ecosystems & Environment, 2022, 335. DOI:10.1016/j.agee.2022.108016 .
|
13 |
CASPER P, MABERLY S C, HALL G H, et al. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere[J]. Biogeochemistry, 2000, 49: 1-19.
|
14 |
HUTTUNEN J T, ALM J, LIIKANEN A, et al. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions[J]. Chemosphere, 2003, 52(3): 609-621.
|
15 |
WIK M, VARNER R K, ANTHONY K W, et al. Climate-sensitive northern lakes and ponds are critical components of methane release[J]. Nature Geoscience, 2016, 9(2): 99-105.
|
16 |
HERRERO O S, ROMERO GONZáLEZ-QUIJANO C, CASPER P, et al. Methane emissions from contrasting urban freshwaters: rates, drivers, and a whole-city footprint[J]. Global Change Biology, 2019, 25(12): 4 234-4 243.
|
17 |
ZHANG L W, XIA X H, LIU S D, et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau[J]. Nature Geoscience, 2020, 13(5): 349-354.
|
18 |
WANG G Q, XIA X H, LIU S D, et al. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions[J]. Water Research, 2021, 189. DOI: 10.1016/j.watres.2020.116654 .
|
19 |
CRAWFORD J T, STANLEY E H, SPAWN S A, et al. Ebullitive methane emissions from oxygenated wetland streams[J]. Global Change Biology, 2014, 20(11): 3 408-3 422.
|
20 |
HOLGERSON M A, RAYMOND P A. Large contribution to inland water CO2 and CH4 emissions from very small ponds[J]. Nature Geoscience, 2016, 9(3): 222-226.
|
21 |
CONRAD R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J]. Organic Geochemistry, 2005, 36(5): 739-752.
|
22 |
ZHU Donglin. Study on the generation, release and driving mechanism of methane in Taihu and Xuanwu Lake[D]. Nanjing: Nanjing University, 2012.
|
|
祝栋林. 太湖及玄武湖甲烷气体产生、释放及影响机制研究[D]. 南京: 南京大学, 2012.
|
23 |
BRIDGHAM S D, CADILLO-QUIROZ H, KELLER J K, et al. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales[J]. Global Change Biology, 2013, 19(5): 1 325-1 346.
|
24 |
WU Wenxin. Characteristics and influencing factors of greenhouse gases emissions from the Zhongtianshe River Basin in the Tianmu Lake area[D]. Nanjing: Nanjing Normal University, 2020.
|
|
吴文欣. 天目湖地区中田舍河流域水体温室气体排放特征及影响因素[D]. 南京: 南京师范大学, 2020.
|
25 |
BOSSE U, FRENZEL P, CONRAD R. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment[J]. Federation of European Microbiological Societies Microbiology Ecology, 1993, 13(2): 123-134.
|
26 |
THAUER R K. Functionalization of methane in anaerobic microorganisms[J]. Angewandte Chemie International Edition, 2010, 49(38): 6 712-6 713.
|
27 |
BASTVIKEN D, COLE J J, PACE M L, et al. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G2). DOI:10.1029/2007JG000608 .
|
28 |
MAECK A, HOFMANN H, LORKE A. Pumping methane out of aquatic sediments-Ebullition forcing mechanisms in an impounded river[J]. Biogeosciences, 2014, 11(11): 2 925-2 938.
|
29 |
DELSONTRO T, MCGINNIS D F, SOBEK S, et al. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments[J]. Environmental Science & Technology, 2010, 44(7): 2 419-2 425.
|
30 |
OSTROVSKY I, TĘGOWSKI J. Hydroacoustic analysis of spatial and temporal variability of bottom sediment characteristics in Lake Kinneret in relation to water level fluctuation[J]. Geo-Marine Letters, 2010, 30(3): 261-269.
|
31 |
JOYCE J, JEWELL P W. Physical controls on methane ebullition from reservoirs and lakes[J]. Environmental & Engineering Geoscience, 2003, 9(2): 167-178.
|
32 |
ZHANG Cheng. On the process and mechamism of methane emission from eutrophic ponds [D]. Wuhan: China University of Geosciences, 2018.
|
|
张成. 富营养化池塘甲烷排放过程与机制研究[D]. 武汉: 中国地质大学, 2018.
|
33 |
YANG Ping, TONG Chuan. Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems:a review[J]. Acta Ecologica Sinica, 2015, 35(20): 6 868-6 880.
|
|
杨平, 仝川. 淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J]. 生态学报, 2015, 35(20): 6 868-6 880.
|
34 |
WU S, LI S Q, ZOU Z H, et al. High methane emissions largely attributed to ebullitive fluxes from a subtropical river draining a rice paddy watershed in China[J]. Environmental Science & Technology, 2019, 53(7): 3 499-3 507.
|
35 |
WIK M, CRILL P M, VARNER R K, et al. Multiyear measurements of ebullitive methane flux from three subarctic lakes[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(3): 1 307-1 321.
|
36 |
KELLER M, STALLARD R F. Methane emission by bubbling from Gatun Lake, Panama[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D4): 8 307-8 319.
|
37 |
WANG Jiao. Analysis of methane emission characteristics and its influencing factors over aquaculture ponds[D]. Nanjing: Nanjing University of Information Science & Technology, 2020.
|
|
王娇. 养殖塘CH4排放特征及其影响因子的分析[D]. 南京: 南京信息工程大学, 2020.
|
38 |
CHEN S, WANG D Q, DING Y, et al. Ebullition controls on CH4 emissions in an urban, eutrophic river: a potential time-scale bias in determining the aquatic CH4 flux[J]. Environmental Science & Technology, 2021, 55(11): 7 287-7 298.
|
39 |
DANDO P R, HOVLAND M. Environmental effects of submarine seeping natural gas[J]. Continental Shelf Research, 1992, 12(10): 1 197-1 207.
|
40 |
DELSONTRO T, KUNZ M J, KEMPTER T, et al. Spatial heterogeneity of methane ebullition in a large tropical reservoir[J]. Environmental Science & Technology, 2011, 45(23): 9 866-9 873.
|
41 |
OSTROVSKY I. Methane bubbles in Lake Kinneret: quantification and temporal and spatial heterogeneity[J]. Limnology and Oceanography, 2003, 48(3): 1 030-1 036.
|
42 |
GRINHAM A, DUNBABIN M, GALE D, et al. Quantification of ebullitive and diffusive methane release to atmosphere from a water storage[J]. Atmospheric Environment, 2011, 45(39): 7 166-7 173.
|
43 |
WALTER ANTHONY K M, VAS D A, BROSIUS L, et al. Estimating methane emissions from northern lakes using ice-bubble surveys[J]. Limnology and Oceanography: Methods, 2010, 8(11): 592-609.
|
44 |
GREENE S, WALTER ANTHONY K M, ARCHER D, et al. Modeling the impediment of methane ebullition bubbles by seasonal lake ice[J]. Biogeosciences, 2014, 11(23): 6 791-6 811.
|
45 |
GåLFALK M, NILSSON PåLEDAL S R, BASTVIKEN D. Sensitive drone mapping of methane emissions without the need for supplementary ground-based measurements[J]. ACS Earth and Space Chemistry, 2021, 5(10): 2 668-2 676.
|
46 |
MAHER D T, DREXL M, TAIT D R, et al. iAMES: an inexpensive, automated methane ebullition sensor[J]. Environmental Science & Technology, 2019, 53(11): 6 420-6 426.
|
47 |
SIECZKO A K, DUC N T, SCHENK J, et al. Diel variability of methane emissions from lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35): 21 488-21 494.
|
48 |
PU Yini, JIA Lei, YANG Shijun, et al. The methane ebullition flux over algae zone of lake Taihu[J]. China Environmental Science, 2018, 38(10): 3 914-3 924.
|
|
蒲旖旎, 贾磊, 杨诗俊, 等. 太湖藻型湖区CH4冒泡通量[J]. 中国环境科学, 2018, 38(10): 3 914-3 924.
|
49 |
DESHMUKH C. Greenhouse gas emissions (CH4, CO2 and N2O) from a newly flooded hydroelectric reservoir in subtropical South Asia: the case of Nam Theun 2 Reservoir, Lao PDR[D]. Toulouse: Université Paul Sabatier-Toulouse III, 2013.
|
50 |
PRAETZEL L S E, SCHMIEDESKAMP M, KNORR K H. Temperature and sediment properties drive spatiotemporal variability of methane ebullition in a small and shallow temperate lake[J]. Limnology and Oceanography, 2021, 66(7): 2 598-2 610.
|
51 |
ZHANG C, CHENG S G, LONG L, et al. Diel and seasonal methane flux across water-air interface of a subtropic eutrophic pond[J]. Toxicological & Environmental Chemistry, 2018, 100(4): 413-424.
|
52 |
ABEN R C H, BARROS N, van DONK E, et al. Cross continental increase in methane ebullition under climate change[J]. Nature Communications, 2017, 8. DOI: 10.1038/s41467-017-01535-y .
|
53 |
WILKINSON J, MAECK A, ALSHBOUL Z, et al. Continuous seasonal river ebullition measurements linked to sediment methane formation[J]. Environmental Science & Technology, 2015, 49(22): 13 121-13 129.
|
54 |
de MELLO N A S T, BRIGHENTI L S, BARBOSA F A R, et al. Spatial variability of methane (CH4) ebullition in a tropical hypereutrophic reservoir: silted areas as a bubble hot spot[J]. Lake and Reservoir Management, 2018, 34(2): 105-114.
|
55 |
DEEMER B R, HARRISON J A, LI S Y, et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis[J]. BioScience, 2016, 66(11): 949-964.
|
56 |
TAN Z L, ZHUANG Q L. Arctic Lakes are continuous methane sources to the atmosphere under warming conditions[J]. Environmental Research Letters, 2015, 10(5). DOI 10.1088/1748-9326/10/5/054016.
|
57 |
ZHANG W, XIAO S, XIE H, et al. Diel and seasonal variability of methane emissions from a shallow and eutrophic pond[J]. Biogeosciences Discussion, 2020. DOI:10.5194/bg-2020-178 .
|
58 |
MATTHEWS E, JOHNSON M S, GENOVESE V, et al. Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions[J]. Scientific Reports, 2020, 10(1): 1-9.
|
59 |
NIMICK D A, GAMMONS C H, PARKER S R. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review[J]. Chemical Geology, 2011, 283(1/2): 3-17.
|