地球科学进展 ›› 2023, Vol. 38 ›› Issue (8): 852 -865. doi: 10.11867/j.issn.1001-8166.2023.045

大气探测与遥感 上一篇    下一篇

箱式水汽循环模型构建研究进展
王宁 1( ), 郭海龙 1, 曾新民 2( )   
  1. 1.国防科技大学气象海洋学院,湖南 长沙 410003
    2.河海大学水文水资源学院,江苏 南京 210098
  • 收稿日期:2023-03-09 修回日期:2023-06-18 出版日期:2023-08-10
  • 通讯作者: 曾新民 E-mail:wangning19@nudt.edu.cn;xinmin.zeng@hhu.edu.cn
  • 基金资助:
    国家自然科学基金项目“三维箱式水汽循环模型构建研究”(42205069);“大气静力适应过程中能量谱动力机制研究”(42005051)

Research Progress in the Construction of a Bulk Model for Moisture Cycling

Ning WANG 1( ), Hailong GUO 1, Xinmin ZENG 2( )   

  1. 1.College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410003, China
    2.College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
  • Received:2023-03-09 Revised:2023-06-18 Online:2023-08-10 Published:2023-08-28
  • Contact: Xinmin ZENG E-mail:wangning19@nudt.edu.cn;xinmin.zeng@hhu.edu.cn
  • About author:WANG Ning (1988-), male, Kaifeng City, Henan Province, Lecturer. Research area includes hydrometeorology. E-mail: wangning19@nudt.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Study on the establishment of three-dimensional bulk model for moisture cycling”(42205069);“Study on dynamic mechanism of energy spectrum in atmospheric hydrostatic adjustment process”(42005051)

水汽循环过程深刻影响着区域及全球天气气候系统的演变,基于水汽平衡方程的箱式模型在水汽循环研究中具有广泛应用。对当前箱式水汽循环模型进行了系统梳理,根据模型的计算框架将现有模型分为欧拉模型和拉格朗日模型,对2类模型不同发展阶段代表性模型的基本假设、数理推导过程和模型特点等进行了归纳;随后论述了箱式水汽循环模型的发展规律以及常用模型的优缺点和适用范围等;最后,指出了当前模型构建过程中假设水汽均匀混合和整层大气的问题,并对未来箱式水汽循环模型的构建进行了展望。

Moisture cycling strongly affects the development of regional and global weather and climate systems. Bulk models derived from the water vapor balance equation are widely used to study water vapor cycling. The existing bulk modes of moisture cycling were systematically determined, and based on the calculation framework of the model, existing models were divided into Euler and Lagrange types time. The basic assumptions, mathematical derivation process, and characteristics of the representative models in the different developmental stages of the two types of models are summarized. Subsequently, the development trend of the bulk model for moisture cycling, the advantages and disadvantages of frequently used models, and the scope of application are discussed. Finally, the problem of assuming well-mixed moisture and a one-layer atmosphere in the current models as well as the future development of bulk models for moisture cycling are discussed.

中图分类号: 

图1 降水再循环示意图
Fig. 1 Schematic of precipitation recycling
表1 主要箱式水汽循环模型汇总(具体假设见表 2
Table 1 The main bulk moisture cycling modelsthe specific hypotheses are shown in Table 2
维度 提出者 出发方程 假设 模型结果 参数含义
一维模型 Budyko 39 方程(8) H1a, H2-H5 r P = E ¯ L 2 F 1 + + E ¯ L r P ρ P 分别为区域和局地降水再循环率, E E ¯ 分别为蒸发和平均蒸发,L为区域长度, F 1 + 为单位宽度的水汽入流, s 为大气可降水量, u 为整层水汽加权平均的纬向风
Drozdov等 48 方程(12) H1a, H2, H4 ρ P ( x ) = 1 - e x p ( - 0 x E s u d x '
二维模型 Brubaker等 41 方程(9) H1b, H2, H3, H6a r P = E ¯ A r 2 F A + + E ¯ A r A r 为区域面积, F A + 为流入区域 A 的总水汽, F A + F A , m + 分别为流入格元 A 的总水汽和区域内蒸发水汽, E A 为格元 A 的蒸发水汽, E A 为区域 A 的蒸发水汽
Eltahir等 44 方程(10) H1c, H2 ρ P = F Δ A , m + + E Δ A F Δ A + + E Δ A
伊兰等 46 方程(10) H1b, H2, H6b ρ P = 2 F Δ A , m + + E Δ A 2 F Δ A + + E Δ A
Schär等 49 方程(9) H1a, H1d, H2 r P = E A F A + + E A
Ent等 45 方程(8) H1e 数值求解得到各源区水汽含量
Burde等 42 方程(12) H1a, H2 ρ P ( x ) = 1 - e x p ( - 0 x E s u d x '
Dominguez等 43 方程(12) H1a ρ P ( t ) = 1 - e x p ( - 0 t E s d t ' )

2层

二维模型

Ent等 38 方程(8)的2层形式 H1e 数值求解上下层水汽平衡方程得到各源区水汽含量 下标1和2分别表示下层和上层大气相关变量, F u F d )表示下(上)层向上(下)层输送的水汽
Dominguez等 37 方程(12)的2层形式 H1a d ρ P , 1 d t = E + ρ P , 2 F d s 1 - ρ P , 1 E + F d s 1 d ρ P , 2 d t = F u s 2 ρ P , 1 - F u s 2 ρ P , 2
表21中水汽循环模型构建中所用假设汇总
Table 2 Assumptions used in the construction of moisture cycling models in Table 1
序号 具体含义 数学表达 参数含义
H1a 均匀混合:平流水汽和蒸发水汽具有同等的降水概率 P m / P = s m / s

P :降水

E :蒸发

s :大气可降水量

Q :水汽通量

F - :水汽出流

F + :水汽入流

r P :区域降水再循环率

ρ P :局地降水再循环率

u :整层水汽加权平均纬向风

v :整层水汽加权平均经向风

下标 m :来自区域内蒸发

下标 a :来自区域外平流

下标 A :区域变量

下标 A :格元变量

上横杠“ ¯ ”表示区域平均

H1b 均匀混合:通过格元或区域的平流水汽和蒸发水汽具有同等的降水概率 P a / P = Q a / Q
H1c 均匀混合:格元出流水汽中蒸发水汽与总水汽的比例等于格元的局地降水再循环率 ρ P = P Δ A , m / P Δ A = F Δ A , m / F Δ A -
H1d 均匀混合:区域出流水汽中蒸发水汽与总水汽的比例等于区域降水再循环率 r P = P A , m / P A = F A , m - / F A -
H1e 均匀混合:来自蒸发水汽的大气可降水量、平流和降水占其总量的比例均相等 s Δ A , m s Δ A = ( s Δ A , m u ) x ( s Δ A u ) x = ( s Δ A , m v ) y ( s Δ A v ) y = P Δ A , m P Δ A
H2 长时间尺度上,忽略大气可降水量的时间变化 / t = 0
H3 区域内各处蒸发、降水和平流降水恒等于其区域平均值 E = E ¯ P = P ¯ P a = P ¯ a
H4 研究区域为一个长为 L 的长方形区域 x 0 = L
H5 流场为同长方形区域的长边平行的一维均一流体 u = c o n s t v = 0
H6a 通过区域的总水汽和平流水汽通量等于其入流和出流的算数平均 Q A = ( F A + + F A - ) / 2 Q A , a = ( F A , a + + F A , a - ) / 2
H6b 通过格元的总水汽和平流水汽通量等于其入流和出流的算数平均 Q Δ A = ( F Δ A + + F Δ A - ) / 2 Q Δ A , a = ( F Δ A , a + + F Δ A , a - ) / 2
图2 欧拉箱式水汽循环模型发展路线图
Fig. 2 Development roadmap of Euler moisture cycling models
图3 拉格朗日箱式水汽循环模型发展路线图
Fig. 3 Development roadmap of Lagrange moisture cycling models
图4 快速再循环过程(a)和两层模型(b)示意图
Fig. 4 Schematics of fast recyclingaand two-layer modelsb
表3 常用箱式水汽循环模型优缺点及适用范围
Table 3 Advantages and disadvantages of commonly used box-type water vapor cycle model and its application range
模型类型 模型名称 优点 缺点 适用范围 参考文献
欧拉模型 Brubaker 结果为解析形式,计算简便 假设较多,只能计算长时间尺度的区域降水再循环率 整个地区长时间降水再循环过程研究 50 - 52 67 - 68
Eltahir 计算相对简单,可以给出区域内局地降水再循环率的分布,进而评估区域蒸发对域内不同地区的降水贡献 只能应用于长时间尺度,无法给出域外水汽源地 区域内部长时间降水再循环特征研究 54 - 55 57 69 - 70
伊兰 计算相对简单,可以给出区域内局地降水再循环率的分布,进而评估区域蒸发对域内不同地区的降水贡献 只能应用于长时间尺度,无法给出域外水汽源地 区域内部长时间降水再循环特征研究 46 , 71]
WAM 假设少,计算效率相对较高,可以得到任意时间尺度的降水和蒸发再循环率、水汽源地和落区等多种结果 无法给出水汽输送路径,可能出现数值不稳定 任意时间尺度水汽再循环,以及水汽源地和落区研究 72 - 77
拉格朗日模型 DRM 假设少,可以得到任意时间尺度的降水和蒸发再循环率、水汽源地和落区等多种结果,可以给出水汽输送路径 计算量较大 任意时间尺度水汽再循环,水汽源地和落区以及水汽输送路径研究 61 78 - 85
改进模型 WAM-2layers 在WAM模型的基础上部分考虑了垂直风切变和水汽非均匀混合的影响 同WAM模型 垂直风切变较强区域各类水汽循环研究 13 86 - 88
2L-DRM 在DRM模型的基础上部分考虑了垂直风切变和水汽非均匀混合的影响 计算量较大,计算时假设整层与分层气流具有同样的轨迹 垂直风切变较强区域各类水汽循环研究 37
1 CHENG T F, LU M Q, DAI L. Moisture channels and pre-existing weather systems for East Asian rain belts[J]. NPJ Climate and Atmospheric Science, 2021, 4(1): 1-13.
2 DIRMEYER P A, SCHLOSSER C A, BRUBAKER K L. Precipitation, recycling, and land memory: an integrated analysis[J]. Journal of Hydrometeorology, 2009, 10(1): 278-288.
3 JIANG Tong, SUN Hemin, LI Xiucang, et al. Impact of climate change on water cycle[J]. Meteorological Monthly, 2020, 46(3): 289-300.
姜彤, 孙赫敏, 李修仓, 等. 气候变化对水文循环的影响[J]. 气象, 2020, 46(3): 289-300.
4 te WIERIK S A, CAMMERAAT E L H, GUPTA J, et al. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns[J]. Water Resources Research, 2021, 57(7). DOI:10.1029/2020WR029234 .
5 van NOORDWIJK M, ELLISON D. Rainfall recycling needs to be considered in defining limits to the world’s green water resources[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8 102-8 103.
6 OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5 790): 1 068-1 072.
7 SUN B, WANG H J. Inter-decadal transition of the leading mode of inter-annual variability of summer rainfall in East China and its associated atmospheric water vapor transport[J]. Climate Dynamics, 2015, 44(9): 2 703-2 722.
8 LU Guihua, HE Hai. View of global hydrological cycle[J]. Advances in Water Science, 2006, 17(3):419-424.
陆桂华, 何海. 全球水循环研究进展[J]. 水科学进展, 2006, 17(3):419-424.
9 TANG Qiuhong. Global change hydrology: terrestrial water cycle and global change[J]. Science China: Earth Sciences, 2020, 63: 459-462.
汤秋鸿. 全球变化水文学:陆地水循环与全球变化[J]. 中国科学:地球科学, 2020, 50(3): 436-438.
10 JIN Junliang, HE Jian, HE Ruimin, et al. Impacts of climate change to water resources and extreme hydrological event in the Huaihe River Basin[J]. Scientia Geographica Sinica, 2017, 37(8): 1 226-1 233.
金君良, 何健, 贺瑞敏, 等. 气候变化对淮河流域水资源及极端洪水事件的影响[J]. 地理科学, 2017, 37(8): 1 226-1 233.
11 JIN Junliang, WANG Guoqing, LIU Cuishan, et al. Future evolution trends of water resources in Haihe River Basin under the climate change[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2016, 37(5):1-6.
金君良, 王国庆, 刘翠善, 等. 气候变化下海河流域未来水资源演变趋势[J]. 华北水利水电大学学报(自然科学版), 2016, 37(5):1-6.
12 SUN R C, YUAN H L, LIU X L, et al. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River Basin[J]. Journal of Hydrology, 2016, 536: 302-319.
13 PRANINDITA A, WANG-ERLANDSSON L, FETZER I, et al. Moisture recycling and the potential role of forests as moisture source during European heatwaves[J]. Climate Dynamics, 2022, 58(1): 609-624.
14 TRENBERTH K E. Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1): 123-138.
15 XU X D, SHI X Y, WANG Y Q, et al. Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China[J]. Meteorology and Atmospheric Physics, 2008, 100(1): 217-231.
16 GIMENO L, STOHL A, TRIGO R, et al. Oceanic and terrestrial sources of continental precipitation[J]. Reviews of Geophysics, 2012, 50(4). DOI: 10.1029/2012RG000389 .
17 LI Hu, PAN Xiaoduo. An overview of research methods on water vapor transport and sources in the Tibetan Plateau[J]. Advances in Earth Science, 2022, 37(10): 1 025-1 036.
李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1 025-1 036.
18 LI Xiucang, JIANG Tong, WU Ping. Progress and prospect of the moisture recycling models[J]. Advances in Earth Science, 2020, 35(10): 1 029-1 040.
李修仓, 姜彤, 吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1 029-1 040.
19 STOHL A, FORSTER C, FRANK A, et al. Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2[J]. Atmospheric Chemistry and Physics, 2005, 5(9): 2 461-2 474.
20 DRAXLER R, HESS G. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308.
21 DIRMEYER P A, BRUBAKER K L. Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D16): 19 383-19 397.
22 DIRMEYER P A, BRUBAKER K L. Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor[J]. Journal of Hydrometeorology, 2007, 8(1): 20-37.
23 ZHANG Hongwen, XU Yu, GAO Yanhong. Simulation study on precipitation recycling ratio in the Tibetan Plateau from 1982 to 2005[J]. Advances in Earth Science, 2020, 35(3): 297-307.
张宏文, 续昱, 高艳红. 1982—2005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
24 WEI J F, DIRMEYER P A, BOSILOVICH M G, et al. Water vapor sources for Yangtze River Valley rainfall: climatology, variability, and implications for rainfall forecasting[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D5). DOI: 10.1029/2011JD016902 .
25 JOUSSAUME S, SADOURNY R, VIGNAL C. Origin of precipitating water in a numerical simulation of the July climate[J]. Ocean-Air Interact, 1986, 1: 43-56.
26 KOSTER R, JOUZEL J, SUOZZO R, et al. Global sources of local precipitation as determined by the NASA/GISS GCM[J]. Geophysical Research Letters, 1986, 13(2): 121-124.
27 BOSILOVICH M G, SUD Y C, SCHUBERT S D, et al. Numerical simulation of the large-scale North American monsoon water sources[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16). DOI: 10.1029/2002JD003095 .
28 NUMAGUTI A. Origin and recycling processes of precipitating water over the Eurasian continent: experiments using an atmospheric general circulation model[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D2): 1 957-1 972.
29 WERNER M, HEIMANN M, HOFFMANN G. Isotopic composition and origin of polar precipitation in present and glacial climate simulations[J]. Tellus B, 2001, 53(1): 53-71.
30 SODEMANN H, WERNLI H, SCHWIERZ C. Sources of water vapour contributing to the Elbe flood in August 2002—a tagging study in a mesoscale model[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(638): 205-223.
31 WEI J H, KNOCHE H R, KUNSTMANN H. Contribution of transpiration and evaporation to precipitation: an ET-Tagging study for the Poyang Lake region in Southeast China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(14): 6 845-6 864.
32 KNOCHE H R, KUNSTMANN H. Tracking atmospheric water pathways by direct evaporation tagging: a case study for West Africa[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12 345-12 358.
33 DOMINGUEZ F, MIGUEZ-MACHO G, HU H C. WRF with water vapor tracers: a study of moisture sources for the North American monsoon[J]. Journal of Hydrometeorology, 2016, 17(7): 1 915-1 927.
34 GAO Y H, CHEN F, MIGUEZ-MACHO G, et al. Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF[J]. Climate Dynamics, 2020, 55(9/10): 2 921-2 937.
35 ZHANG H W, GAO Y H, XU J W, et al. Decomposition of future moisture flux changes over the Tibetan Plateau projected by global and regional climate models[J]. Journal of Climate, 2019, 32(20): 7 037-7 053.
36 NAVALE A, KARTHIKEYAN L. Understanding recycled precipitation at different spatio-temporal scales over India: an eulerian water tagging approach[J]. Water Resources Research, 2023, 59(1). DOI: 10.1029/2022WR032605 .
37 DOMINGUEZ F, HU H, MARTINEZ J A. Two-layer dynamic recycling model (2L-DRM): learning from moisture tracking models of different complexity[J]. Journal of Hydrometeorology, 2020, 21(1): 3-16.
38 van der ENT R J, TUINENBURG O A, KNOCHE H R, et al. Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?[J]. Hydrology and Earth System Sciences, 2013, 17(12): 4 869-4 884.
39 BUDYKO M I. Climate and life[M]. New York: Academic Press, 1974.
40 BURDE G I, ZANGVIL A. The estimation of regional precipitation recycling. part I: review of recycling models[J]. Journal of Climate, 2001, 14(12): 2 497-2 508.
41 BRUBAKER K L, ENTEKHABI D, EAGLESON P S. Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6): 1 077-1 089.
42 BURDE G I, ZANGVIL A. The estimation of regional precipitation recycling. part II: a new recycling model[J]. Journal of Climate, 2001, 14(12): 2 509-2 527.
43 DOMINGUEZ F, KUMAR P, LIANG X Z, et al. Impact of atmospheric moisture storage on precipitation recycling[J]. Journal of Climate, 2006, 19: 1 513-1 530.
44 ELTAHIR E A B, BRAS R L. Precipitation recycling in the Amazon Basin[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(518): 861-880.
45 van der ENT R J, SAVENIJE H H G, SCHAEFLI B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research, 2010, 46(9). DOI:10.1029/2010WR009127 .
46 YI Lan, TAO Shiyan. Construction and analysis of a precipitation recycling model[J]. Advances in Water Science, 1997, 8(3): 205-211.
伊兰, 陶诗言. 一个降水再循环模型的建立及分析[J]. 水科学进展, 1997, 8(3): 205-211.
47 DOMINGUEZ F, KUMAR P. Precipitation recycling variability and ecoclimatological stability-a study using NARR data. part I: central U.S. Plains ecoregion[J]. Journal of Climate, 2008, 21(20): 5 165-5 176, 5 178.
48 DROZDOV O A, GRIGOR’EVA A S. The hydrologic cycle in the atmosphere[M]. Russia: Israel Program for Scientific Translations, 1965.
49 SCHÄR C, LÜTHI D, BEYERLE U, et al. The soil-precipitation feedback: a process study with a regional climate model[J]. Journal of Climate, 1999, 12(3): 722-741.
50 GUO Y P, WANG C H. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades[J]. Journal of Hydrology, 2014, 517: 826-835.
51 LI R L, WANG C H, WU D. Changes in precipitation recycling over arid regions in the Northern Hemisphere[J]. Theoretical and Applied Climatology, 2018, 131(1): 489-502.
52 YAO Junqiang, YANG Qing, WU Likun, et al. Quantifying recycled moisture fraction in precipitation of Tianshan Mountains[J]. Desert and Oasis Meteorology, 2016, 10(5):37-43.
姚俊强, 杨青, 伍立坤, 等. 天山地区水汽再循环量化研究[J]. 沙漠与绿洲气象, 2016, 10(5): 37-43.
53 BURDE G I, ZANGVIL A, LAMB P J. Estimating the role of local evaporation in precipitation for a two-dimensional region[J]. Journal of Climate, 1996, 9(6): 1 328-1 338.
54 KANG Hongwen, GU Xiangqian, FU Xiang, et al. Precipitation recycling over the Northern China[J]. Journal of Applied Meteorological Science, 2005, 16(2): 139-147.
康红文, 谷湘潜, 付翔, 等. 我国北方地区降水再循环率的初步评估[J]. 应用气象学报, 2005, 16(2): 139-147.
55 KANG Hongwen, GU Xiangqian, ZHU Congwen, et al. Precipitation recycling in southern and central China[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 892-900.
康红文, 谷湘潜, 祝从文, 等. 我国中部和南部地区降水再循环率评估[J]. 大气科学, 2004, 28(6): 892-900.
56 KURITA N, NUMAGUTI A, SUGIMOTO A, et al. Relationship between the variation of isotopic ratios and the source of summer precipitation in eastern Siberia[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11). DOI:10.1029/2001JD001359 .
57 FU Xiang, XU Xiangde, KANG Hongwen. Research on precipitation recycling during Meiyu season over middle-lower reaches of Changjiang River in 1998[J]. Meteorological Science and Technology, 2006, 34(4): 394-399.
付翔, 徐祥德, 康红文. 长江中下游1998年夏季梅雨期降水再循环研究[J]. 气象科技, 2006, 34(4): 394-399.
58 ZHANG J X, WANG S S, HE Y L, et al. Contribution of the precipitation-recycling process to the wetting trend in Xinjiang, China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(11). DOI:10.1029/2021JD036407 .
59 MARTINEZ J A, DOMINGUEZ F. Sources of atmospheric moisture for the La plata River basin[J]. Journal of Climate, 2014, 27(17): 6 737-6 753.
60 van der ENT R J, SAVENIJE H H G. Length and time scales of atmospheric moisture recycling[J]. Atmospheric Chemistry and Physics, 2011, 11(5): 1 853-1 863.
61 WANG N, ZENG X M, ZHENG Y Q, et al. The atmospheric moisture residence time and reference time for moisture tracking over China[J]. Journal of Hydrometeorology, 2018, 19(7): 1 131-1 147.
62 GOESSLING H F, REICK C H. On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture[J]. Atmospheric Chemistry and Physics, 2013, 13(11): 5 567-5 585.
63 BOSILOVICH M G. On the vertical distribution of local and remote sources of water for precipitation[J]. Meteorology and Atmospheric Physics, 2002, 80(1): 31-41.
64 BURDE G I. Bulk recycling models with incomplete vertical mixing. part I: conceptual framework and models[J]. Journal of Climate, 2006, 19(8): 1 461-1 472.
65 LETTAU H, LETTAU K, MOLION L C B. Amazonia’s hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects[J]. Monthly Weather Review, 1979, 107(3): 227-238.
66 BURDE G I, GANDUSH C, BAYARJARGAL Y. Bulk recycling models with incomplete vertical mixing. part II: precipitation recycling in the Amazon Basin[J]. Journal of Climate, 2006, 19(8): 1 473-1 489.
67 ZHAO Y, ZHOU T J. Interannual variability of precipitation recycle ratio over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(2). DOI:10.1029/2020JD033733 .
68 GUO L, KLINGAMAN N P, DEMORY M E, et al. The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability[J]. Climate Dynamics, 2018, 51(11): 4 139-4 156.
69 WU P, DING Y H, LIU Y J, et al. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China[J]. International Journal of Climatology, 2019, 39(14): 5 241-5 255.
70 LI X C, WU P, DING Y H, et al. Spatial-temporal variation of precipitation recycling over the Tibetan Plateau under climate warming[J]. Atmospheric Research, 2022, 280. DOI:10.1016/.atmosres.2022.106431 .
77 HAI H E, GUIHUA L U. Precipitation recycling in Tarim River Basin[J]. Journal of Hydrologic Engineering, 2013, 18(11): 1 549-1 556.
72 LIU Y B, ZHANG C, TANG Q H, et al. Moisture source variations for summer rainfall in different intensity classes over Huaihe River Valley, China[J]. Climate Dynamics, 2021, 57(3/4): 1 121-1 133.
73 ZHANG C, LI Q. Tracking the moisture sources of an extreme precipitation event in Shandong, China in July 2007: a computational analysis[J]. Journal of Meteorological Research, 2014, 28(4): 634-644.
74 ZHANG C, TANG Q H, CHEN D L, et al. Tracing changes in atmospheric moisture supply to the drying Southwest China[J]. Atmospheric Chemistry and Physics, 2017, 17(17): 10 383-10 393.
75 ZHANG C, TANG Q H, CHEN D L, et al. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J]. Journal of Hydrometeorology, 2019, 20(2): 217-229.
76 ZHAO T, ZHAO J S, HU H C, et al. Source of atmospheric moisture and precipitation over China’s major river basins[J]. Frontiers of Earth Science, 2016, 10(1): 159-170.
77 LI Ying, SU Fengge, TANG Qiuhong, et al. Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(6): 1 088-1 103.
李颖, 苏凤阁, 汤秋鸿, 等. 青藏高原主要流域的降水水汽来源[J]. 中国科学:地球科学, 2022, 52(7): 1 328-1 344.
78 HE Y L, TIAN W L, HUANG J P, et al. The mechanism of increasing summer water vapor over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(10). DOI:10.1029/2020JD034166 .
79 HUA L J, ZHONG L H, KE Z J. Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China[J]. Theoretical and Applied Climatology, 2017, 127(3): 513-531.
80 HUA L J, ZHONG L H, KE Z J. Precipitation recycling and soil-precipitation interaction across the arid and semi-arid regions of China[J]. International Journal of Climatology, 2016, 36(11): 3 708-3 722.
81 HUA L J, ZHONG L H, MA Z G. Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(23): 12 522-12 540.
82 LI R L, WANG C H. Precipitation recycling using a new evapotranspiration estimator for Asian-African arid regions[J]. Theoretical and Applied Climatology, 2020, 140(1): 1-13.
83 REN Y, YU H P, LIU C X, et al. Attribution of dry and wet climatic changes over central Asia[J]. Journal of Climate, 2022, 35(5): 1 399-1 421.
84 WANG N, ZENG X M, GUO W D, et al. Quantitative diagnosis of moisture sources and transport pathways for summer precipitation over the mid-Lower Yangtze River Basin[J]. Journal of Hydrology, 2018, 559: 252-265.
85 WANG C H, LI J M, ZHANG F M, et al. Changes in the moisture contribution over global arid regions[J]. Climate Dynamics, 2023, 61(1): 543-557.
86 ZHANG C. Moisture sources for precipitation in Southwest China in summer and the changes during the extreme droughts of 2006 and 2011[J]. Journal of Hydrology, 2020, 591. DOI: 10.1016/j.jhydrol.2020.125333 .
87 CHEN J H, LI Y, XIONG B, et al. Comparison of moisture sources of summer precipitation in 1998 and 2020 in the middle and lower reaches of Yangtze River Basin[J]. International Journal of Climatology, 2023, 43(8): 3 493-3 505.
88 LI Y, WANG C H, PENG H, et al. Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region[J]. Hydrology and Earth System Sciences, 2021, 25(9): 4 759-4 772.
89 TUINENBURG O A, STAAL A. Tracking the global flows of atmospheric moisture and associated uncertainties[J]. Hydrology and Earth System Sciences, 2020, 24(5): 2 419-2 435.
[1] 黄春林, 侯金亮, 李维德, 顾娟, 张莹, 韩伟孝, 王维真, 温小虎, 朱高峰. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展, 2023, 38(5): 441-452.
[2] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[3] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[4] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[5] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[6] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[7] 胡玥, 刘传琨, 卢粤晗, 刘杰, 郑春苗. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1158-1166.
[8] 彭 雯, 高艳红, 王婉昭. 土壤温湿状况对黄河源区水循环过程的影响[J]. 地球科学进展, 2012, 27(11): 1252-1261.
[9] 卢善龙,吴炳方,闫娜娜,李发鹏,文美平,王京. 河川径流遥感监测研究进展[J]. 地球科学进展, 2010, 25(8): 820-826.
[10] 马耀明,姚檀栋,胡泽勇,王介民. 青藏高原能量与水循环国际合作研究的进展与展望[J]. 地球科学进展, 2009, 24(11): 1280-1284.
[11] 苏中波,张廷,马耀明,贾立,文军. 青藏高原地区能量水分循环:地表能量平衡和湍流热通量[J]. 地球科学进展, 2006, 21(12): 1224-1236.
[12] 夏军,孙雪涛,谈戈. 中国西部流域水循环研究进展与展望[J]. 地球科学进展, 2003, 18(1): 58-067.
[13] 赵生才. 全球变化与中国水循环前沿科学问题———香山科学会议第 187次学术讨论会[J]. 地球科学进展, 2002, 17(4): 628-630.
[14] 邓慧平. 气候与土地利用变化对水文水资源的影响研究[J]. 地球科学进展, 2001, 16(3): 436-441.
阅读次数
全文


摘要