地球科学进展 ›› 2023, Vol. 38 ›› Issue (8): 866 -878. doi: 10.11867/j.issn.1001-8166.2023.048

“事件沉积与灾害历史”专栏 上一篇    

三维数字岩芯技术在珠江三角洲第四纪软沉积物变形研究中的应用
加依娜·叶尔扎提 1 , 2( ), 陈震 1 , 3, 张献河 4, 林小明 4, 吴维盛 4, 黄孝波 4, 闫亚鹏 5, 汤永杰 1, 刘洁 1 , 6 , 7( )   
  1. 1.中山大学 地球科学与工程学院,广东 珠海 519082
    2.新疆宝地矿业股份有限公司,新疆 乌鲁木齐 830000
    3.广东中大深地科学研究院有限公司,广东 广州 510275
    4.广东省地质调查院,广东 广州 510080
    5.广东省佛山地质局,广东 佛山 528000
    6.广东省地质过程与矿产资源探查重点实验室,广东 珠海 519082
    7.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
  • 收稿日期:2023-06-09 修回日期:2023-07-06 出版日期:2023-08-10
  • 通讯作者: 刘洁 E-mail:jiayina@mail2.sysu.edu.cn;liujie86@mail.sysu.edu.cn
  • 基金资助:
    广东省国土资源保护与治理专项资金项目“珠江三角洲基底断裂探查与研究”(2017201);“佛山市南海区城市地质调查”(JF2021(NH)WZ0246)

Application of 3D Digital Core Technique to the Deformation of Quaternary Soft Sediment in the Pearl River Delta

Yeerzhati JIAYINA 1 , 2( ), Zhen CHEN 1 , 3, Xianhe ZHANG 4, Xiaoming LIN 4, Weisheng WU 4, Xiaobo HUANG 4, Yapeng YAN 5, Yongjie TANG 1, Jie LIU 1 , 6 , 7( )   

  1. 1.School of Earth Sciences and Engineering, Sun Yat-sen University, Guangdong Zhuhai 519082, China
    2.Xinjiang Baodi Mining Co. , Ltd. , Urumqi 830000, China
    3.GDZD Institute on Deep-Earth Sciences Co. , Ltd. , Guangzhou 510275, China
    4.Geological Survey of Guangdong Province, Guangzhou 510080, China
    5.Guangdong Foshan Geological Survey, Guangdong Foshan 528000, China
    6.Guangdong Provincial Key Laboratory of Mineral Resources & Geological Processes, Guangdong Zhuhai 519082, China
    7.Southern Marine Science and Engineering Guangdong;Laboratory (Zhuhai), Guangdong Zhuhai 519082, China
  • Received:2023-06-09 Revised:2023-07-06 Online:2023-08-10 Published:2023-08-28
  • Contact: Jie LIU E-mail:jiayina@mail2.sysu.edu.cn;liujie86@mail.sysu.edu.cn
  • About author:JIAYINA Yeerzhati (1996-), female, Altay Prefecture, Xinjiang Uygur Autonomous Region, Master student. Research area inclueds rock micro CT technology. E-mail: jiayina@mail2.sysu.edu.cn
  • Supported by:
    the Specially Funded Project for Land and Resources Protection and Governance in Guangdong Province “Exploration and research on basement faults in the Pearl River Delta”(2017201);“Urban Geological Survey of Nanhai District, Foshan City” (Grant No. JF2021(NH)WZ0246)

珠江三角洲地区是否存在晚第四纪的断裂活动是大湾区战略规划的一个重要参考因素。活动断裂带内第四纪松散沉积物是断层活动的主要标志及信息载体,细致、立体地观测松散沉积物并非易事。通过采用X射线全岩芯扫描技术,对珠江三角洲地区主要断裂带上的钻孔岩芯进行了扫描和处理,使用体渲染技术对岩芯的三维结构进行可视化,重点观测第四系未固结沉积物的变形现象。研究表明,岩芯CT扫描图像不仅克服了未固结岩芯难以自由转动、无法开展多角度观测的困难,而且可以揭示大量在岩芯照片上无法观察到的现象,如岩芯的内部非均匀结构、物质分布情况、裂缝的展布形态,以及裂缝处的物质成分变化等。结合沉积物测年结果,可以给出断裂活动时间。因此,对于未固结沉积物钻孔岩芯,全岩芯CT扫描可以作为优选的观测、分析新手段,在未来的工程探查和活动断裂研究中加以推广。

The presence of Late Quaternary faults in the Pearl River Delta region is an important factor that may affect the development of the Greater Bay Area. Loose Quaternary sediments within active fault zones are the main markers and information carriers of fault activity, comprehensive observations of loose sediments from the point view of three-dimension are difficult. In this study, borehole cores from the main fault zones in Xilingang, Guangzhou were X-ray CT scanned using whole-core scanning devices, images were processed and visualized by using the volume rendering technique to investigate the 3D structures of the cores focusing on the deformation of Quaternary unconsolidated sediments. The study demonstrates that the CT scan of borehole cores enables us to virtually observe cores with reality from different perspectives by free rotations, which is impossible to reach physically for unconsolidated cores, and further reveals a large number of phenomena that cannot be observed from conventional core photographs, including the internal heterogeneous structures, the distribution of materials, and the extending pattern and compositions of fractures. Combined with the dating results of sediments, the time of fault activity can be estimated. Therefore, whole-core CT scanning can be a preferred new method for studying unconsolidated borehole cores and is recommended for geological exploration and active fault investigations in areas covered by soft sediments.

中图分类号: 

图1 珠江三角洲及研究区地理位置
(a)珠江三角洲盆地及区域断裂展布图;(b)西淋岗地区钻孔分布及勘探剖面位置图
Fig. 1 Geographical locations of the Pearl River Delta Basin and our study area
(a) Location of regional faults and some boreholes in the Pearl River Delta Basin; (b) Locations of boreholes and exploring profiles in Xilingang area
表1 ZK0053岩性特征描述
Table 1 Lithologic characterization of ZK0053
深度范围/m 地层 岩性及沉积相 其他
0~3.20 人工填土 人工填土
3.20~10.00 全新统灯笼沙(Qh dl 灰黑色、灰褐色黏土质粉砂,见螺、腐木、贝壳等发育,滨海相、潮坪相沉积 见“泥包砂”现象发育,8.80 m处见“微褶皱”发育
10.00~13.50 全新统万顷沙(Qh w 深灰色、灰白色含泥质细砂,河流相沉积为主 10.55~11.05 m处见薄层状黏土发育“微褶皱层”
13.50~15.30 更新统三角组(Qpsj 褐红色花斑土,局部见黄褐色黏土,风成沉积 发育微褶皱纹层、层内扭曲、卷曲变形等同生变形,局部发育“泥包砂”
15.30~16.50 更新统三角组(Qpsj 灰黑色黏土夹灰白色黏土质粉砂,河漫滩或沼泽相沉积 发育层状扭曲、卷曲变形
16.50~17.10 更新统三角组(Qpsj 褐红色黏土夹灰白色粉细砂,河漫滩或沼泽相沉积 17.00 m处见一宽2 mm“沙脉”
17.10~24.10 更新统三角组(Qpsj 灰黑色黏土夹薄层状灰白色粉砂,河漫滩或沼泽相沉积 发育明显同层扭曲、褶皱
24.10~24.30 更新统三角组(Qpsj 深灰色、灰白色粉细砂夹少量石英质砾,河漫滩或沼泽相沉积
24.30~26.90 更新统西南组(Qpx 深灰色、灰黑色黏土质粉细砂,滨海相或潮坪相沉积 见“挤压片理”、层内扭曲,局部见碳质夹层、绿泥石化
26.90~27.80 更新统西南组(Qpx 灰黑色粉细砂,夹少量黏土,滨海相、潮坪相沉积
27.80~28.80 更新统西南组(Qpx 黄褐色强风化碎裂化花岗岩,风成沉积 局部见硅化,未胶结,角砾大小为0.1~5.0 cm
28.80~29.40 更新统西南组(Qpx 深灰色含泥质粉细砂,河流相沉积 发育类“片理化构造”,见绿泥石、绢云母填充
29.40~29.87 更新统西南组(Qpx 浅绿色粉细砂,河流相沉积 见4条近垂直“砂脉”,呈波浪状起伏,宽1~5 mm,出露长度约50 cm
29.87~95.00 白垩系(K) 硅化、碎裂化花岗岩,褐铁矿化、硅化、绢云母化碎裂岩,绿泥石化中粒二长花岗岩,构造角砾岩、碎斑岩等 基岩破碎带
表2 ZK0065岩性特征描述
Table 2 Lithologic characterization of ZK0065
表3 ZK0053ZK0065第四纪沉积物 14C测年结果表
Table 3 14C dating results of quaternary sediments of ZK0053 and ZK0065
图2 钻孔ZK0053ZK0065岩芯照片
(a)ZK0053;(b)ZK0065
Fig. 2 Photographs of cores of ZK0053 and ZK0065
表4 岩芯样品 CT扫描信息
Table 4 CT scan information of core sample
图3 体渲染使用的色彩表
(a)灰度色阶和近于线性变化透明度设置;(b)蓝—黄伪彩色和局部突出透明度设置
Fig. 3 Colormaps used for volume rendering
(a) Grayscale colormap and near-linear transparency setting; (b) Blue-yellow colormap and locally highlighted transparency setting
图4 ZK0053钻孔6~7 m17~18 m深度岩芯图像
(a)6~7 m深度岩芯照片;(b)6~7 m深度岩芯线性灰度体渲染结果图; (c)6~7 m深度岩芯伪彩色体渲染结果图;(d)17~18 m深度岩芯照片;(e)17~18 m深度岩芯线性灰度体渲染结果图
Fig. 4 Images of cores in 6~7 m and 17~18 m depth of ZK0053
(a) Photograph of the core in 6~7 m; (b) Grayscale volume rendering of the core in 6~7 m; (c) Pseudo-color volume rendering of the core in 6~7 m; (d) Photograph of the core in 17~18 m; (e) Grayscale volume rendering of the core in 17~18 m
图5 ZK0053钻孔14~15 m深度岩芯图像
(a)岩芯照片;(b)岩芯伪彩色体渲染结果;(c)图(b)中红框部分岩芯经顺时针旋转90°后的伪彩色体渲染结果;(d)图(c)中黄线处的XY方向截面;(e)图(b)中黄线处的YZ方向截面;(f)图(b)中黄线处的XZ方向截面
Fig. 5 Images of the core in the depth of 14~15 m of ZK0053
(a) Photograph of the core segment; (b) Pseudo-color volume rendering of the core segment; (c) Pseudo-color volume rendering of the zoom-in image of the framed segment in (b); (d) Slice view of volume rendering, position indicated by the line in (c); (e) Cross-section view of YZ direction of the core in (b); (f) Cross-section view of XZ direction in (b)
图6 ZK0053钻孔18~19 m深度岩芯图像
(a)岩芯照片;(b)岩芯伪彩色体渲染结果;(c)~(e)分别为图(b)黄线处的XY方向截面
Fig. 6 Images of the core in the depth of 18~19 m of ZK0053
(a) Photograph of the core segment; (b) Pseudo-color volume rendering of the core segment; (c)~(e) Slice views of the volume rendering in the positions indicated by lines in (b)
图7 ZK0053钻孔15~16 m29~30 m深度岩芯图像
(a)15~16 mm深度岩芯照片;(b)15~16 m深度岩芯线性灰度体渲染结果图; (c)15~16 m深度岩芯伪彩色体渲染结果图;(d)15~16 m深度裂缝处的灰度变化曲线图[对应图(b)中橙色线的位置];(e)29~30 m深度裂缝处的灰度变化曲线图[对应图(f)中橙色线的位置];(f)29~30 m深度岩芯照片;(g)29~30 m深度岩芯线性灰度体渲染结果图; (h)29~30 m深度岩芯伪彩色体渲染结果图
Fig. 7 Images of the core in the depth of 15~16 m and 29~30 m of ZK0053
(a) Photograph of the core segment in the depth of 15~16 m; (b) Greyscale volume rendering of the core segment in the depth of 15~16 m; (c) Pseudo-color volume rendering of the core segment in the depth of 15~16 m; (d) Greyscale slice view in the position indicated by the line in panel (b) with greyscale values along the bold line across the crack in the depth of 15~16 m; (e) Greyscale slice view in the position indicated by the line in panel (f) with greyscale values along the bold line in the depth of 29~30 m; (f) Photograph of the core segment in the depth of 29~30 m; (g) Greyscale volume rendering of the core segment in the depth of 29~30 m; (h) Pseudo-color volume rendering of the core segment in the depth of 29~30 m
图8 ZK0065钻孔15~16 m深度岩芯图像
(a)岩芯照片;(b)岩芯线性灰度体渲染结果图;(c)岩芯伪彩色体渲染结果图
Fig. 8 Images of the core in the depth of 15~16 m of ZK0065
(a) Photograph of the core segment; (b) Greyscale volume rendering of the core segment; (c) Pseudo-color volume rendering of the core segment
图9 位于广州番禺的DH07钻孔9.35~10.35 m深度岩芯图像
(a)岩芯照片;(b)岩芯线性灰度体渲染结果图;(c)岩芯伪彩色体渲染结果图
Fig. 9 Images of the core in the depth of 9.35~10.35 m of DH07 located in PanyuGuangzhou
(a) Photograph of the core segment; (b) Greyscale volume rendering of the core segment; (c) Pseudo-color volume rendering of the core segment
1 WANG Shanshan. Modern sedimentary environments in the Pearl River Delta and nearshore estuaries and environmental evolution since the Late Pleistocene[D]. Qingdao: Ocean University of China, 2008.
王珊珊. 珠江三角洲和近岸河口海域现代沉积环境及晚更新世以来的环境演变[D].青岛:中国海洋大学, 2008.
2 YANG Bo, ZHANG Changming, LI Shaohua, et al. Late Oligocene-Early Miocene paleoseismic record and hydrocarbon geological significance in the Pearl River Estuary Basin[J]. Natural Gas Geoscience, 2014, 25(6): 534-847.
杨波,张昌明,李少华,等.珠江口盆地晚渐新世—早中新世古地震记录及油气地质意义[J].天然气地球科学,2014, 25(6): 834-847.
3 HUANG Ping, ZHANG Ke, YU Zhangxin, et al. Reanalysis of the stratigraphic sequence and new understanding of neotectonic movement of the Pearl River Delta since the Late Pleistocene[J]. South China Journal of Seismology,2021,41(4): 10-20.
黄屏,张珂,余章馨,等.晚更新世以来珠江三角洲地层层序再分析及新构造运动新认识[J].华南地震,2021,41(4): 10-20.
4 CHEN Zhen, WANG Wen, HUANG Ping, et al. Soft-sediment deformation structures of mottled clay in Huizhou Quaternary basin, coastal South China[J]. Frontiers in Earth Science, 2023, 11:1-13.
5 YU Zhangxin, ZHANG Ke, LIANG Hao, et al. Late quaternary tectonic movements in the Pearl River Delta, China, revealed from stratigraphic profiles[J]. Tropical Geography, 2016, 36(3): 334-342.
余章馨,张珂,梁浩,等.对珠江三角洲第四纪断裂运动的再认识[J].热带地理,2016, 36(3): 334-342.
6 STOCK S R. Recent advances in X-ray microtomography applied to materials [J]. International Materials Reviews, 2008, 53: 129-181.
7 MCPHEE C, REED J, ZUBIZARRETA I. Core analysis: a best practice guide[M]. Developments in Petroleum Science, 2015. DOI:10.1016/B978-0-444-63533-4.00001-9 .
8 LIN Chengyan, WU Yuqi, REN Lihua, et al. Review of digital core modeling methods[J]. Progress in Geophysics, 2018, 33(2): 679-689.
林承焰, 吴玉其, 任丽华, 等.数字岩心建模方法研究现状及展望[J]. 地球物理学进展, 2018, 33(2): 679-689.
9 HIGGINS M.D. Measurement of crystal size distributions[J]. American Mineralogist, 2000, 85: 1 105-1 116.
10 CARLSON W D, DENISON C. Mechanisms of porphyroblast crystallization: results from high-resolution computed X-ray tomography[J]. Science,1992, 257: 1 236-1 239.
11 CARLSON W D, DENISON C, KETCHAM R. High-resolution X-ray computed tomography as a tool for visualization and quantitative analysis of igneous textures in three dimensions[J]. Visual Geosciences, 2000, 4: 1-14.
12 JERRAM D A, HIGGINS M D. 3D analysis of rock textures: quantifying igneous microstructures[J]. Elements, 2007, 3(4): 239-245.
13 THIEMEYER N, HABESETZER J, PEINL M, et al. The application of high resolution X-ray computed tomography on naturally deformed rock salt: multi-scale investigations of the structural inventory[J]. Journal of Structural Geology, 2015, 77: 92-106.
14 BAKER D R, MANCINI L, POLACCI M, et al. An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks[J]. Lithos, 2012, 148: 262-276.
15 GODEL B. High-resolution X-ray computed tomography and its application to ore deposits: from data acquisition to quantitative three-dimensional measurements with case studies from Ni-Cu-PGE Deposits[J]. Economic Geology, 2013,108(8): 2 005-2 019.
16 KTLE J R, KETCHAM R A. Application of high resolution X-ray computed tomography to mineral deposit origin, evaluation, and processing[J]. Ore Geology Reviews, 2015, 65:821-839.
17 YOSHITO Nakashima, JUNKO Komatsubara. Seismically induced soft-sediment deformation structures revealed by X-ray computed tomography of boring cores[J].Tectonophysics, 2016, 683: 138-147.
18 HUANG Yukun, XIA Fa, CHEN Guoneng. Faulting tectonics and its control response of the form and development of the Pearl River Delta[J]. Acta Oceanologica Sinica, 1983, 5(3):316-327.
黄玉昆,夏法,陈国能.断裂构造对珠江三角洲形成和发展的控制作用[J]. 海洋学报,1983, 5(3): 316-327.
19 CHEN Guoneng, ZHANG Ke, HE Xikun, et al. Paleo-geographic evolution of the Pearl River Delta since the Late Pleistocene[J]. Quaternary Sciences, 1994(1): 67-74.
陈国能,张珂,贺细坤,等. 珠江三角洲晚更新世以来的沉积—古地理[J]. 第四纪研究, 1994(1): 67-74.
20 YAO Yantao, ZHEN Wenhuan, LIU Zaifeng, et al. Neotectonics of the Pearl River Delta and its relationship with the deltaic evolution[J]. South China Journal of Seismology, 2008, 28(1): 29-40.
姚衍桃,詹文欢,刘再峰,等. 珠江三角洲的新构造运动及其与珠江三角洲演化的关系[J]. 华南地震, 2008,28(1): 29-40.
21 ZHANG Hunan. The fault delta[J]. Acta Geographica Sinica, 1980, 35(1): 58-67.
张虎男. 断块型三角洲[J]. 地理学报, 1980, 35(1): 58-67.
22 HUANG Zhenguo, LI Pingri, ZHANG Zhongying, et al. Formation, development and evolution of the Pearl River Delta[M]. Guangzhou: Popular Science Press of Guangzhou, 1982:272.
黄镇国,李平日,张仲英,等. 珠江三角洲形成发育演变[M].广州:科普出版社广州分社,1982: 272.
23 Guangdong Provincial Bureau of Geology and Mineral Resources. The regional geological annals of Guangdong Province [M]. Beijing: Geological Press, 1988.
广东省地矿局. 广东省区域地质志[M]. 北京: 地质出版社,1988.
24 CHEN Weiguang, WEI Bolin, ZHAO Hongmei, et al. The neotectonic in Pearl River Delta area[J]. South China Journal of Seismology, 2002, 22(1): 8-18.
陈伟光,魏柏林,赵红梅,等. 珠江三角洲地区新构造运动[J]. 华南地震,2002, 22(1): 8-18.
25 CHEN Guoneng, ZHANG Ke, CHEN Huafu, et al. A study on the neotectonics of the faults in the Pearl River Delta area[J]. South China Journal of Seismology, 1995, 15(3): 16-21.
陈国能,张珂,陈华富,等. 珠江三角洲断裂构造最新活动性研究[J]. 华南地震,1995, 15(3): 16-21.
26 TANG Yukun, CHEN Guoneng, PENG Zhuolun, et al. Late Quaternary tectonics of the Pearl River Delta, SE China: evidence from Xilingang[J]. Geodinamica Acta, 2011, 24(3/4): 133-139.
27 WANG Ping, GUO Liangtian, DONG Haogang, et al. Discuss on the origin of Xilin hill fault at the eastside of Guang-Cong fault, Pearl River Delta[J]. Acta Petrologica Sinica, 2011, 27(10): 3 129-3 140.
王萍, 郭良田, 董好刚, 等. 珠江三角洲广从断裂东侧西淋岗断层成因论证[J]. 岩石学报, 2011, 27(10): 3 129-3 140.
28 LU Y, WAlDMAN N, ALSOP G IAN, et al. Interpreting soft sediment deformation and mass transport deposits as seismites in the Dead Sea depocenter[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8 305-8 325.
29 MOLENAAR A, VAN DAELE M, HUANG J J S, et al. Disentangling factors controlling earthquake-triggered soft-sediment deformation in lakes[J]. Sedimentary Geology, 2022, 438. DOI:10.1016/j.sedgeo.2022.106200 .
30 ZEHNER B. Interactive exploration of tensor fields in geosciences using volume rendering [J]. Computers & Geosciences, 2006, 32(1): 73-84.
31 LJUNG P, KRVGER J, GROLLER E, et al. State of the art in transfer functions for direct volume rendering[J]. Computer Graphics Forum, 2016, 35(3): 669-691.
32 ZHANG Shoupeng, FANG Zhengwei, YANG Shidi, et al. Technique and application of three-dimensional visualized information collection of full diameter oil and gas reservoir cores[J]. Petroleum Geology & Experiment, 2017, 39(5): 706-710.
张守鹏, 方正伟, 杨诗棣, 等. 全直径油气储层岩心三维可视化信息采集方法及应用前景[J]. 石油实验地质, 2017, 39(5): 706-710.
33 WANG J, CHEN Z, GAO Q, et al. New research on the origin of mottled clay in Quaternary basins in the coastal area of south China[J]. Aeolian Research, 2018, 32: 170-1 80.
34 BRANDES C, WINSEMANN J. Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity[J]. International Journal of Earth Sciences, 2013, 102(8): 2 255-2 274.
35 ANDREA B, ENRICO C, MASSIMO M, et al. Earthquaketriggered soft-sediment deformation structures (seismites) in travertine deposits [J]. Tectonophysics,2018, 745. DOI:10.1016/j.tecto.2018.08.021 .
36 SONG Fangmin, WANG Yipeng, LI Chuanyou, et al. New insight into the quaternary activity of Wuguishan southern piedmont fault in Zhujiang Delta[J]. Seismology and Geology, 2001, 23(4): 521-526.
宋方敏,汪一鹏,李传友,等.珠江三角洲五桂山南麓断裂第四纪活动新知[J].地震地质, 2001, 23(4): 521-526.
37 XIA Qingsong, TIAN Jingchun. Characteristics and geological significance of seismites of the Yanchang formation, upper Triassic, Ordos basin[J]. Acta Sedmentologica Sinica, 2007, 25(2): 246-252.
夏青松, 田景春. 鄂尔多斯盆地南部上三叠统延长组震积岩的发现及地质意义 [J]. 沉积学报, 2007, 25(2): 246-252.
38 LU Jinyan. Application of shallow seismic and elastic wave CT in fault detection in Xilingang area[J]. Chinese Journal of Engineering Geophysics, 2021, 18(4): 479-485.
卢进延. 浅层地震和弹性波CT在西淋岗地区断裂探测中的应用[J]. 工程地球物理学报, 2021, 18(4): 479-485.
[1] 王凯, 张少杰, 马娟, 杨红娟, 刘敦龙, 杨超平. 大数据环境下滑坡宏观位移阶段空间分布规律及预警判据研究[J]. 地球科学进展, 2022, 37(10): 1054-1065.
[2] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[3] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[4] 李国平, 李山山, 黄楚惠. 高原切变线与高原低涡相互作用的研究现状与展望[J]. 地球科学进展, 2017, 32(9): 919-925.
[5] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[6] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[7] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
[8] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(9): 922-939.
[9] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[10] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[11] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[12] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[13] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[14] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[15] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
阅读次数
全文


摘要