地球科学进展 ›› 2022, Vol. 37 ›› Issue (10): 1054 -1065. doi: 10.11867/j.issn.1001-8166.2022.042

研究论文 上一篇    下一篇

大数据环境下滑坡宏观位移阶段空间分布规律及预警判据研究
王凯 1( ), 张少杰 2, 马娟 3( ), 杨红娟 2, 刘敦龙 4, 杨超平 2   
  1. 1.中原工学院 建筑工程学院,河南 郑州 450007
    2.中国科学院 成都山地灾害与环境研究所 山地灾害与地表过程重点实验室,四川 成都 610041
    3.中国地质环境监测院,北京 100081
    4.成都信息工程大学 软件工程学院,四川 成都 610041
  • 收稿日期:2022-03-31 修回日期:2022-06-12 出版日期:2022-10-10
  • 通讯作者: 马娟 E-mail:6696@zut.edu.cn;majuan@mail.cgs.gov.cn
  • 基金资助:
    国家重点研发计划项目“村寨地质灾害智能监测与治理技术研发及应用示范”(2020YFD1100701);中原工学院青年骨干教师培养计划“基于斜坡单元的区域降雨型滑坡机理预报模型研究”(2020XQG13)

Research on the Spatial Distribution Law and Early-Warning Criteria of Landslide Displacement Stages in a Big Data Environment

Kai WANG 1( ), Shaojie ZHANG 2, Juan MA 3( ), Hongjuan YANG 2, Dunlong LIU 4, Chaoping YANG 2   

  1. 1.Institute of Civil Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
    2.Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    3.China Institute of Geo-environment Monitoring, Beijing 100081, China
    4.College of Software Engineering, Chengdu University of Information Technology, Chengdu 610041, China
  • Received:2022-03-31 Revised:2022-06-12 Online:2022-10-10 Published:2022-10-18
  • Contact: Juan MA E-mail:6696@zut.edu.cn;majuan@mail.cgs.gov.cn
  • About author:WANG Kai (1991-), male, Zhengzhou City, Henan Province, Lecturer. Research areas include rainfall type landslides risk assessment and warning. E-mail: 6696@zut.edu.cn
  • Supported by:
    the National Key Research and Development Program of China “Research and application of intelligent monitoring and treatment technology for geohazards in villages”(2020YFD1100701);The Young Scholar Training Program of Zhongyuan University of Technology “Physical prediction model of regional scale landslides based slope unit”(2020XQG13)

准确识别滑坡当前所处变形阶段是滑坡预警的重点问题。许多滑坡位移监测曲线并不存在明显的三阶段特征,难以准确识别滑坡目前所处的阶段。基于此,利用形态学思想突破传统斋藤法的限制,建立能够从形态各异的位移曲线中识别滑坡宏观位移阶段的方法;运用该方法从全国4类岩性大区GNSS地表位移监测数据库中识别出1 944条滑坡宏观变形阶段,构建变形阶段大数据样本环境;分析各岩性区内滑坡宏观位移阶段日变形速率分布规律,利用聚类分析构建变形阶段多级预警判据,并对各级预警区间出现的空间概率及持续时间进行讨论。结果表明,4种岩性区内滑坡位移阶段日变形速率均呈现幂函数分布规律,其中日变形速率在10 mm/d以下的数量占比最多;聚类分析表明,各岩性区“无—蓝色—黄色—橙色—红色”五级预警区间内的变形阶段数量均呈现幂函数分布规律。同一预警等级下,岩性1区至岩性4区的变形速率预警阈值呈现递减趋势。变形阶段持续时间分析表明,日速率处于0.08~2.14 mm/d范围的变形阶段持续时间最长,为120.22~160.96 d;日速率处于2 734.18~31 770.00 mm/d范围的变形阶段持续时间最短,为0.004 3~0.020 0 d。分析了大数据环境下我国4类岩性区滑坡宏观位移阶段空间分布规律及预警判据,为今后智能型滑坡位移预警模型构建提供科学依据和指导作用。

Identification of the landslide deformation stage is a key aspect of landslide warning systems. However, many displacement curves lack the obvious characteristics of the three stages, making it challenging to identify the deformation stages of landslides. To overcome the defects of the Saito method, we proposed a method to extract the deformation stages based on a morphology analysis. A total of 1944 deformation stages were identified from the GNSS surface-displacement monitoring database to form a big data environment. Then, we analyzed the spatial distribution of the displacement stages of various lithologic zones in China and used cluster analysis to develop multi-stage warning criteria for deformation stages. The spatial probability and duration of each warning level were also discussed in this study. Analysis results indicated that the power law adequately described the distribution of daily deformation rate for each lithologic region, with daily deformation rates below 10 mm/d accounting for the majority of observations. Cluster analysis revealed that the number of deformation stages within the “none”, “blue”, “yellow”, “orange”, and “red” warning levels also followed the power rule for each lithologic region. It should be noted that the warning threshold of the deformation rate decreased from lithology 1 to lithology 4 at the same warning level. According to the duration analysis of the deformation stage, the longest-lasting daily rate was 0.30~2.14 mm/d with a duration of 120.22~160.96 days; whereas the shortest-lasting daily rate was 2 734.18~31 770.00 mm/d with a duration of 0.004 3~0.020 0 days. In this study, we analyzed the spatial distribution and early-warning criteria of landscape development stages in a big data environment, which could provide a scientific foundation and direction for the development of an intelligent landslide warning model.

中图分类号: 

表1 各岩性区内滑坡数量
Table 1 The number of landslides in different lithologic zones
图1 滑坡监测点位空间分布
Fig. 1 The spatial distribution of landslide monitoring
图2 各岩性区典型滑坡监测变形曲线
(a)岩性1区:云南省红桥乡庄房村滑坡;(b)岩性2区:云南省红河县下寨村滑坡;(c)岩性3区:广西省凌云县那党屯滑坡;(d) 岩性4区:湖北省丹江口市492#不稳定斜坡
Fig. 2 The typical displacement monitoring curves of different lithologic zones
(a) The lithology 1: the “Zhuangfangcun” landslide in Hongqiao Town, Yunnan Province; (b) The lithology 2: the “Xiazhaicun” landslide in Honghe County, Yunnan Province; (c) The lithology 3: the “Nadangtun” landslide in Lingyun County, Guangxi Province; (d) The lithology 4: the 492# unstable slope in Danjiangkou City, Hubei Province
表2 基于聚类分析的多级预警阈值
Table 2 The multilevel warning thresholds based on cluster analysis
图3 日变形速率频率分布直方图
(a)岩性1区:云南省红桥乡庄房村滑坡;(b)岩性2区:云南省红河县下寨村滑坡;(c)岩性3区:广西省凌云县那党屯滑坡;(d) 岩性4区:湖北省丹江口市492#不稳定斜坡
Fig. 3 The frequency distribution histogram of daily deformation rate
(a) The lithology 1: the “Zhuangfangcun” landslide in Hongqiao Town, Yunnan Province; (b) The lithology 2: the “Xiazhaicun” landslide in Honghe County, Yunnan Province; (c) The lithology 3: the “Nadangtun” landslide in Lingyun County, Guangxi Province; (d) The lithology 4: the 492# unstable slope in Danjiangkou City, Hubei Province
图4 岩性1区至岩性4区变形阶段日变形速率累积分布曲线
Fig. 4 The cumulative distribution curves of daily deformation rate in lithology 1~4
表3 各岩性区上升段与平缓段分界点计算表
Table 3 The calculation of boundary point of ascent and flat stage in each lithologic zone
图5 变形速率“常用对数—持续时间”直方分布图
(a)岩性1区:云南省红桥乡庄房村滑坡;(b)岩性2区:云南省红河县下寨村滑坡;(c)岩性3区:广西省凌云县那党屯滑坡;(d) 岩性4区:湖北省丹江口市492#不稳定斜坡
Fig. 5 The histogram of “common logarithm-duration” distribution of daily deformation rate
(a) The lithology 1: the “Zhuangfangcun” landslide in Hongqiao Town, Yunnan Province; (b) The lithology 2: the “Xiazhaicun” landslide in Honghe County, Yunnan Province; (c) The lithology 3: the “Nadangtun” landslide in Lingyun County, Guangxi Province; (d) The lithology 4: the 492# unstable slope in Danjiangkou City, Hubei Province
表4 岩性 1~4持续时间最长与持续时间最短的变形速率
Table 4 The daily deformation rate with the longest and shortest duration of lithology 1~4
图6 不同岩性区K均值聚类分析结果图
(a)岩性1区:云南省红桥乡庄房村滑坡;(b)岩性2区:云南省红河县下寨村滑坡;(c)岩性3区:广西省凌云县那党屯滑坡;(d) 岩性4区:湖北省丹江口市492#不稳定斜坡
Fig. 6 The K-means clustering analysis results of different lithologic areas
(a) The lithology 1: the “Zhuangfangcun” landslide in Hongqiao Town, Yunnan Province; (b) The lithology 2: the “Xiazhaicun” landslide in Honghe County, Yunnan Province; (c) The lithology 3: the “Nadangtun” landslide in Lingyun County, Guangxi Province; (d) The lithology 4: the 492# unstable slope in Danjiangkou City, Hubei Province
表5 大数据环境下变形速率多级预警阈值聚类结果 (mm/d)
Table 5 Multi-stage warning threshold clustering results of daily deformation rate under big data environment
图7 岩性1区至岩性4区五级预警区间内变形阶段数量分布直方图
(a)岩性1区:云南省红桥乡庄房村滑坡;(b)岩性2区:云南省红河县下寨村滑坡;(c)岩性3区:广西省凌云县那党屯滑坡;(d) 岩性4区:湖北省丹江口市492#不稳定斜坡
Fig. 7 The histogram distribution of deformation stages within level 5 warning intervals of lithology 1~4
(a) The lithology 1: the “Zhuangfangcun” landslide in Hongqiao Town, Yunnan Province; (b) The lithology 2: the “Xiazhaicun” landslide in Honghe County, Yunnan Province; (c) The lithology 3: the “Nadangtun” landslide in Lingyun County, Guangxi Province; (d) The lithology 4: the 492# unstable slope in Danjiangkou City, Hubei Province
表6 岩性 1区至岩性 4区部分滑坡预警结果检验
Table 6 The verification of landslide warning results in the lithology 1~4
表7 不同预警区间出现的空间概率及平均持续时间
Table 7 The spatial probability and average duration of different warning intervals
1 SAITO M. Research on forecasting the time of occurrence of slope failure[J]. Railway Technical Research Institute, Quarterly Reports, 1969, 17(2):29-38.
2 HE Keqiang, GUO Dong, ZHANG Peng, et al. The direction ratio of vertical displacement for rainfall-induced landslides and its early warning criterion[J]. Rock and Soil Mechanics, 2017, 38(12): 3 649-3 659, 3 669.
贺可强, 郭栋, 张朋, 等. 降雨型滑坡垂直位移方向率及其位移监测预警判据研究[J]. 岩土力学, 2017, 38(12): 3 649-3 659, 3 669.
3 XU Qiang, TANG Minggao, XU Kaixiang, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1 104-1 112.
许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1 104-1 112.
4 ZHAO Yonghong, WANG Hang, ZHANG Qiong, et al. Overview of landslide displacement monitoring methods[J]. Progress in Geophysics, 2018, 33(6): 2 606-2 612.
赵永红, 王航, 张琼, 等. 滑坡位移监测方法综述[J]. 地球物理学进展, 2018, 33(6): 2 606-2 612.
5 XU Q, YUAN Y, ZENG Y P, et al. Some new pre-warning criteria for creep slope failure[J]. Science China Technological Sciences, 2011, 54(1): 210-220.
6 XUE L, QIN S Q, LI P, et al. New quantitative displacement criteria for slope deformation process: from the onset of the accelerating creep to brittle rupture and final failure[J]. Engineering Geology, 2014, 182: 79-87.
7 YANG B B, YIN K L, LACASSE S, et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16(4): 677-694.
8 INTRIERI E, CARLÀ T, GIGLI G. Forecasting the time of failure of landslides at slope-scale: a literature review[J]. Earth-Science Reviews, 2019, 193: 333-349.
9 MIAO F S, WU Y P, XIE Y H, et al. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model[J]. Landslides, 2018, 15(3): 475-488.
10 XU Q, PENG D L, ZHANG S, et al. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai Terrace, China[J]. Engineering Geology, 2020, 278: 105817.
11 CHAE B G, PARK H J, CATANI F, et al. Landslide prediction, monitoring and early warning: a concise review of state-of-the-art[J]. Geosciences Journal, 2017, 21(6): 1 033-1 070.
12 BAI Jie, JU Nengpan, ZHANG Chengqiang, et al. Characteristics and successful early warning case of Xingyi landslide in Guizhou Province[J]. Journal of Engineering Geology, 2020, 28(6): 1 246-1 258.
白洁, 巨能攀, 张成强, 等. 贵州兴义滑坡特征及过程预警研究[J]. 工程地质学报, 2020, 28(6): 1 246-1 258.
13 XU Qiang, ZENG Yuping, QIAN Jiangpeng, et al. Study on a improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China, 2009, 28(4): 501-505.
许强, 曾裕平, 钱江澎, 等. 一种改进的切线角及对应的滑坡预警判据[J]. 地质通报, 2009, 28(4): 501-505.
14 QI Xing, ZHU Xing, XU Qiang, et al. Improvement and application of landslide proximity time prediction method based on saito model[J]. Journal of Engineering Geology, 2020, 28(4): 832-839.
亓星, 朱星, 许强, 等. 基于斋藤模型的滑坡临滑时间预报方法改进及应用[J]. 工程地质学报, 2020, 28(4): 832-839.
15 WANG Yifan, QI Xing, CHENG Qian, et al. Tangent angle early warning-based method for data processing of landslide uniform deformation rate[J]. Water Resources and Hydropower Engineering, 2021, 52(12): 185-190.
王一帆, 亓星, 程倩, 等. 基于切线角预警的滑坡匀速变形速率数据处理方法[J]. 水利水电技术, 2021, 52(12): 185-190.
16 WANG Dongyue. Research on key technologies of landslide early warning based on high precision measurement[D]. Beijing: Beijing University of Technology, 2020.
王东岳. 基于高精度测量的山体滑坡预警关键技术研究[D]. 北京: 北京工业大学, 2020.
17 LIU Chuanzheng. Three types of displacement-time curves and early warning of landslides[J]. Journal of Engineering Geology, 2021, 29(1): 86-95.
刘传正. 累积变形曲线类型与滑坡预测预报[J]. 工程地质学报, 2021, 29(1): 86-95.
18 HUANG Xiaohu, LEI Dexin, XIA Junbao, et al. Forecast analysis and application of stepwise deformation of landslide induced by rainfall[J]. Rock and Soil Mechanics, 2019, 40(9): 3 585-3 592, 3 602.
黄晓虎, 雷德鑫, 夏俊宝, 等. 降雨诱发滑坡阶跃型变形的预测分析及应用[J]. 岩土力学, 2019, 40(9): 3 585-3 592, 3 602.
19 LI Cong, ZHU Jiebing, WANG Bin, et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1 407-1 414.
李聪, 朱杰兵, 汪斌, 等. 滑坡不同变形阶段演化规律与变形速率预警判据研究[J]. 岩石力学与工程学报, 2016, 35(7): 1 407-1 414.
20 XU Qiang, PENG Dalei, HE Chaoyang, et al. Theory and method of monitoring and early warning for sudden loess landslide—a case study at Heifangtai Terrace[J]. Journal of Engineering Geology, 2020, 28(1): 111-121.
许强, 彭大雷, 何朝阳, 等. 突发型黄土滑坡监测预警理论方法研究: 以甘肃黑方台为例[J]. 工程地质学报, 2020, 28(1): 111-121.
21 WANG Nianqin, SHEN Huihui, LU Xingsheng. Development status and problem countermeasures of slope deformation monitoring technology[J]. Science Technology and Engineering, 2021, 21(19): 7 845-7 855.
王念秦, 申辉辉, 鲁兴生. 边坡变形监测技术发展现状及问题对策[J]. 科学技术与工程, 2021, 21(19): 7 845-7 855.
22 XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374.
许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374.
23 LU Ke, YU Bin, HAN Lin, et al. A study of the relationship between frequency of debris flow and the lithology in the catchment of debris flow[J]. Advances in Earth Science, 2011, 26(9): 980-990.
鲁科, 余斌, 韩林, 等. 泥石流流域岩性的坚固系数与暴发频率的关系[J]. 地球科学进展, 2011, 26(9): 980-990.
24 YIN Y P, WANG H D, GAO Y L, et al. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China[J]. Landslides, 2010, 7(3): 339-349.
25 JU N P, HUANG J, HUANG R Q, et al. A real-time monitoring and early warning system for landslides in Southwest China[J]. Journal of Mountain Science, 2015, 12(5): 1 219-1 228.
[1] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[2] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[3] 张捷,包浩生. 生物喀斯特及其微形态研究[J]. 地球科学进展, 1995, 10(5): 457-463.
阅读次数
全文


摘要