地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 251 -256. doi: 10.11867/j.issn.1001-8166.2003.02.0251

研究论文 上一篇    下一篇

基于DEM的流域特征提取综述
李丽,郝振纯   
  1. 河海大学水资源开发利用国家专业实验室,江苏 南京 210098
  • 收稿日期:2002-05-13 修回日期:2002-10-10 出版日期:2003-04-10
  • 通讯作者: 李丽 E-mail:llwjh@163.com
  • 基金资助:

    国家重点基础研究发展规划项目“我国生存环境演变和北方干旱化趋势研究”(编号:G199043400)资助.

THE AUTOMATED EXTRACTION OF CATCHMENT PROPERTIES FROM DIGITAL ELEVATION MODELS

Li Li, Hao Zhenchun   

  1. Water Resources Development & Utilization Laboratory,Hehai University,Nanjing 210098,China
  • Received:2002-05-13 Revised:2002-10-10 Online:2003-04-10 Published:2003-04-01

回顾了自DEM出现以来它在流域特征提取方面的应用和发展,论述和比较了提取流域特征的各种方法。包括确定流向的单流向法(D8法、Rho8法、Lea方法、DEMON法以及 D∞法)和多流向法;提取河网的识别谷点法和基于流向提取河网的方法;提取河网过程中洼地和平原区的流向确定、河网提取的方法;划分子流域和提取流域边界线的方法;计算分布式子流域特征的方法,其中重点论述了子流域长度和坡度的计算方法,以及提取控制点所控制的排水区的方法。

The automated methods to extract catchment properties from digital elevation data were described in this paper. They are related to the determination of flow direction in unit grid, the extraction of drainage networks, the extraction of catchment boundary, the treatment of flow directions and theextraction of drainage networks in pits and plat areas, the partition of subcatchment and the calculation of distributed catchment properties. The methods of determining flow direction in unit grid include single direction methods ,such as D8 method, Rho8 method, Lea method, DEMON method and D∞ method, and multitude directions methods. The algorithms of subcatchment properties including subcatchment length and subcatchment slope are different because of the different application. Several algorithms were mentioned in the paper. Also, an example was given about the extraction of catchment controlled by hydrology station. In which the D8 method was used to determine the flow direction of unit grid. And the result was satisfying basically.

中图分类号: 

[1] Li Zhiling,Zhu Qing. Digital Elevation Models [M]. Wuhan: Mapping Science and Technology University Press, 2000.[李志林,朱庆. 数字高程模型[M]. 武汉:测绘科技大学出版社,2000.]

[2] Tribe Andrea. Automated recognition of valley lines and drainage networks from grid digital elevation models:A review and a new method [J]. Journal of Hydrology, 1992, 139: 263-293.

[3] Garbrecht J, Martz L W. Digital elevation model issues in water resources modeling [A]. In: Proceedings of the 19th ESRI International User Conference [C]. San Diego, California,1999.

[4] Garbrecht J, Martz L W, Syed K H, et al. Determination of representative catchment properties from digital elevation models[A]. In:Proceedings of the 1999 International Water Resources Engineering Conference [C]. Seattle,Washington: 1999.

[5] Band L E. Topographic partition of watersheds with digital elevation models [J]. Water Resources Research, 1986, 22 (1): 15-24.

[6] Martz L W, Garbrecht J. Numerical definition of drainage network and subcatchment areas from digital elevation models [J]. Computers & Geosciences, 1992, 18 (6): 747-761.

[7] O'Callaghan J F, Mark D M. The extraction of drainage networks from digital elevation data [J]. Computer Vision, Graphics, and Image Processing, 1984, 28: 323-344.

[8] Tarboton D G. A new method for the determination of flow direction and upslope areas in grid digital elevation models [J]. Water Resources Research, 1997, 33(2): 309-319.

[9] Costa-Cabral M C, Burges S J. Digital elevation model networks (DEMON): A model of flow over hillslope for computation of contributing and dispersal areas [J]. Water Resources Research, 1994, 30(6): 1 681-1 692.

[10] Fairfield J, Leymarie P. Drainage networks from grid digital elevation models [J]. Water Resources Research, 1991, 27(5): 709-717.

[11] Lea N L. An Aspect Driven Kinematic Routing Algorithm in Overland Flow: Hydraulics and Erosion Mechanics [M]. New York : Chapman & Hall, 1992.

[12] Quinn P, Beven K, Chevalier P, et al. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models [J]. Hydrological Processes, 1991, 5: 59-79.

[13] Freeman T G. Calculating catchment area with divergent flow based on a regular grid [J]. Computers & Geosciences, 1991, 17(3): 413-422.

[14] Johnson S K, Rosenfeld A. Digital detection of pits, peaks, ridges and ravines[J]. IEEE Trans actions System actions of Man Cybernetics, 1975, Scientific Manpower Commission 5: 472-480.

[15] Carroll R. Automated gully delineation using digital elevation data [A]. In: 49th Annual Meeting[C]. Washington, DC: Technical Papers, 1983. 144-151.

[16] Tribe A S. Towards the automated recognition of landforms (valley heads) from digital elevation models [A]. In: Proceedings of the Fourth International Symposium on Spatial Data Handling [C]. Zurich, 1990, 1: 45-52.

[17] Qian J, Ehrich R W, Campbell J B. DNESYS-An expert system for automatic extraction of drainage networks from digital elevation data [J]. IEEE Transactions on Geoscience Remote Sensing, 1990, 28: 29-44.

[18] Garbrecht J, Martz L W. Automated channel ordering and node indexing for raster channel networks [J]. Computers & Geosciences , 1997, 23(9): 901-906.

[19] Moore I D, Grayson R B, Ladson A R. Digital terrain modeling: A review of hydrological [J]. Geomorphological and Biological Applications, Hydrological Processes, 1991, 5(1): 7-35.

[20] Martz L W, Garbrecht J. The treatment of flat areas and closed depressions in automated drainage analysis of raster digital elevation models [J]. Hydrological Processes, 1998, 12: 843-855.

[21] Jenson S K, Domingue J O. Extraction topographic structure from digital elevation data for geographic information system analysis [J]. Photogrammetric Engineering and Remote Sensing,1988, 54(11): 1 593-1 600.

[22] Garbrecht J, Martz L W. The assignment of drainage direction over flat surfaces in raster digital elevation models [J]. Journal of Hydrology, 1997, 193: 204-213.

[23] Martz L W, Garbrecht J. Hydrological applications of GIS 3: Raster digital elevation models [J]. Hydrological Processes, 1998, 12: 843-855.

[24] Weibel R, Heller M, A framework for digital terrain modelling [A]. In: Proceedings of the Fourth International Symposium on Spatial Data Handling [C]. Zurich: 1990, 1: 219-229.

[25] Skidmore A K. Terrain position as mapped from a gridded digital elevation model [J]. International Journal of Geographical Information Systems, 1990, 4: 33-49.

[26] Hutchinson M F. Calculation of hydrologically sound digital elevation models [A]. In: Proceedings of the Third International Symposium on Spatial Data Handling [C]. Sydney: 1988.117-133.

[27] Martz L W, DeJong E. Using Cesium-137 to assess the variability of net soil erosion and its association with topography in a Canadian prairie landscape[J]. Catena, 1987, 14(95): 439-451.

[1] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[2] 邱新法,仇月萍,曾燕. 重庆山地月平均气温分布式模拟研究[J]. 地球科学进展, 2009, 24(6): 621-628.
[3] 李梦洁,郑建飞,曾燕,邱新法,杨羡敏. 浙江省高分辨率太阳直接辐射图的计算和绘制[J]. 地球科学进展, 2008, 23(3): 299-305.
[4] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[5] 郝振纯;池宸星;王玲;王跃奎. DEM空间分辨率的初步分析[J]. 地球科学进展, 2005, 20(5): 499-504.
[6] 李硕,曾志远,张运生. 数字地形分析技术在分布式水文建模中的应用[J]. 地球科学进展, 2002, 17(5): 769-775.
阅读次数
全文


摘要