地球科学进展 ›› 2024, Vol. 39 ›› Issue (1): 1 -11. doi: 10.11867/j.issn.1001-8166.2024.008

院士论坛 上一篇    下一篇

中国人类世科学研究新进展
周卫健 1 , 2 , 4( ), 赵雪 1 , 2 , 3, 陈宁 1 , 2   
  1. 1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,陕西 西安 710061
    2.陕西省 加速器质谱技术及应用重点实验室,西安加速器质谱中心,陕西 西安 710061
    3.西安地球 环境创新研究院,陕西 西安 710061
    4.西安交通大学,陕西 西安 710049
  • 收稿日期:2023-10-17 修回日期:2023-12-24 出版日期:2024-01-10
  • 基金资助:
    国家自然科学基金项目(41991250);中国科学院战略性先导科技专项(B类)(XDB40010100)

New Progress in the Anthropocene Science in China

Weijian ZHOU 1 , 2 , 4( ), Xue ZHAO 1 , 2 , 3, Ning CHEN 1 , 2   

  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
    2.Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi’an AMS Center, Xi’an 710061, China
    3.Xi’an Institute for Innovative Earth Environment Research, Xi’an 710061, China
    4.Xi’an Jiaotong University, Xi’an 710049, China
  • Received:2023-10-17 Revised:2023-12-24 Online:2024-01-10 Published:2024-01-26
  • About author:ZHOU Weijian, Professor, Academician of the Chinese Academy of Sciences, research areas include environmental tracing by cosmogenic nuclides and global change. E-mail: weijian@loess.llqg.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(41991250);The Strategic Priority Research Program of the Chinese Academy of Sciences(XDB40010100)

国际地层委员会人类世工作组决议人类世应由全球界线层型剖面和点位(“金钉子”)定义为一个正式的地质年代单位。20世纪中叶以来人类活动突变式增强,改变了原有的地球演化速率和方向,对地球环境造成极为显著的影响,并在地质记录中留下清晰的具有全球同步特性的物理、化学和生物印记,为识别这一年代地层单位的底界提供了最佳选择。当前,全球共有12个人类世“金钉子”候选剖面和点位参评。与此同时,中国学者在人类活动代用指标体系构建、人类世候选“金钉子”研究与国际对比方面取得了突出进展,发现人工放射性核素、微塑料、δ13C、δ15N和硅藻等均可作为人类活动理想的标志物,且远离城市和人类活动影响的中国四海龙湾玛珥湖沉积物剖面对全球信号敏感,239,240Pu浓度于1953年快速增加,多环芳烃、129I、烟炱14C、碳球粒、DNA、δ13C和重金属等指标在1953年前后均存在系统性变化,因此提出1953年作为人类世底界。中国四海龙湾湖沉积物剖面与日本别府海湾沉积物剖面被人类世工作组提议作为人类世“金钉子”辅助剖面。未来人类世科学研究的最终目标应是在阐明人类活动对地球系统影响的基础上,深化人地系统耦合与适应的可持续发展理论和技术创新。

The Anthropocene Working Group (AWG) of the International Commission on Stratigraphy voted that the Anthropocene should be defined by a Global boundary Stratotype Section and Point (GSSP or ‘golden spike’) as a formal chronostratigraphic unit. Increasing evidence has shown that human activities have drastically intensified since the mid-twentieth century, altering the original rate and direction of Earth’s evolution, triggering a profound impact on Earth’s environment, and leaving their imprint on geological records through physical, chemical, and biological markers. Consequently, the 1950s was assumed to be the ideal onset of the Anthropocene. Currently, 12 candidate sites for the GSSP of the Anthropocene have been proposed for consideration by the AWG. Chinese researchers have made outstanding progress in recent years regarding the establishment of a system of proxies for human activities and the global comparison of the candidate sites for the GSSP of the Anthropocene. These proxies, including anthropogenic radioactive isotopes, microplastics, δ13C, δ15N, and diatoms, have great potential as markers of human activities. These proxies recorded in the sediments of Sihailongwan Maar Lake, which is far away from cities and less affected by human activities, indicate that this site is sensitive to global change. The concentrations of 239, 240Pu have drastically increased since 1953 CE in the sediment profile collected from Sihailongwan Maar Lake. as Additionally, other proxies such as PAHs, 129I, soot 14C, SCP (spheroidal carbonaceous particles), DNA, δ13C, and Pb exhibit synchronous changes near 1953 CE, indicating the onset of Anthropocene. Two sediment stratotype profiles collected from Sihailongwan Maar Lake and Beppu Bay, Japan, were selected by the AWG as auxiliary sections for the GSSP of the Anthropocene. The ultimate goal of Anthropocene science should be to deepen the theory and technological innovation of sustainable development of the Earth-humans system and adaptation based on clarifying the impact of human activities on the Earth system.

中图分类号: 

图1 人类活动对地球环境的影响
(a)全新世以来人类活动对地球系统造成重要影响,展示了对人类世开始时间的几种看法(据参考文献[ 25 ]修改);(b)~(e)过去20 000年以来地球温度和大气CO 2浓度变化(据参考文献[ 24 ]修改);(b)更新世和全新世之间“金钉子”的界线(虚线) 42 ,全球温度异常(相对于11 500 BP至6 500 BP的早期全新世平均值)(蓝色),大气CO 2浓度(黄色) 43 ;(c)早期提出的人类世候选“金钉子”的界线(虚线),它假设早期广泛的农业影响导致了全球环境变化,全球温度异常(相对于1961—1990年的平均值)(蓝色) 44 ,大气CO 2浓度(黄色) 45 ;(d)界线(虚线)代表旧世界和新世界的碰撞以及曾经不同生物的同质化,Law Dome冰芯记录的大气CO 2浓度显著下降(黄色) 46 - 47 ,全球温度数据异常(相对于1961—1990年的平均值)(蓝色) 44 ;(e)以核爆建议的金钉子界线(虚线),大气CO 2浓度(1958年前为冰芯记录,1958年后为夏威夷Mauna Loa站观测记录)(黄色) 46 - 48 ,全球温度异常(相对于1961—1990年的平均值)(蓝色) 48 ;(f)~(i)1750—2010年地球系统关键指标变化趋势(据参考文献[ 36 ]修改);(f)南极、格陵兰和澳大利亚冰芯记录的大气甲烷含量变化 46 - 47 49 ;(g)全球平均表层海水氢离子浓度表示的海洋酸化 50 - 51 ;(h)全球人口数量 52 ;(i)全球淡水消耗量 53
Fig. 1 The impact of human activities on the Earth’s environment
(a) The period when human activities have a significant impact on the Earth system since the Holocene, suggesting several views about the beginning of the Anthropocene (modified after reference [ 25 ]); (b)~(e) Changes in Earth temperature and atmospheric CO 2 over the past 20 000 years (modified after reference [ 24 ]); (b) GSSP boundary between the Pleistocene and Holocene (dashed line) 42 , with global temperature anomalies (relative to the early Holocene average over the period 11 500 BP to 6 500 BP) (blue), and atmospheric carbon dioxide (yellow) 43 ; (c) Early Anthropogenic Hypothesis GSSP suggested boundary (dashed line), which posits that early extensive farming impacts caused global environmental changes, with global temperature anomalies (relative to the average over the period 1961 to 1990) (blue) 44 , and atmospheric carbon dioxide (yellow) 45 ; (d) The boundary (dashed line) represented the collision of the Old World and New World peoples and homogenization of once distinct biotas, and defined by the pronounced dip in atmospheric carbon dioxide (dashed line) from the Law Dome ice core (yellow) 46 - 47 , with global temperature data anomalies (relative to the average over the period 1961 to 1990) (blue) 44 ; (e) Bomb GSSP suggested boundary (dashed line), with atmospheric carbon dioxide from Mauna Loa, Hawaii, post-1958, and ice core records pre-1958 (yellow) 46 - 48 , and global temperature anomalies (relative to the average over the period 1961 to 1990) (blue) 48 ; (f)~(i) Changes in key indicators of the Earth system from 1750 to 2010 (modified after reference [ 36 ]); (f) Carbon dioxide from firn and ice core records (Law Dome, Antarctica) and Cape Grim, Australia 46 - 47 49 ; (g) Ocean acidification expressed as global mean surface ocean hydrogen ion concentration 50 - 51 ; (h) Global population 52 ; (i) Global water use 53
图2 全球人类世候选“金钉子”剖面和点位分布图(据参考文献[ 14 ]修改)
红色实心圆为现有的9个候选点位,白色实心圆为退出竞选的3个剖面;图中点位经纬度:东哥特兰盆地沉积物(57.283 0°N,20.120 4°E);旧金山河口沉积物(37.549 5°N,122.183 1°E);西尔斯维尔水库沉积物(37.406 8°N,122.237 7°E);克劳福德湖沉积物(43.468 6°N,79.948 7°E);四海龙湾玛珥湖沉积物(42.286 8°N, 126.601 2°E);弗林德斯珊瑚(17.717 9°S,148.451 0°E);西岸花园珊瑚(27.876 2°N,93.814 7°E);帕尔默冰芯(73.852 1°S,65.452 6°E);欧内斯托洞穴堆积物(45.977 2°N,11.657 5°E);斯涅日卡泥炭沉积物(50.739 1°N,15.707 7°E);别府海湾沉积物(33.277 8°N,131.537 3°E);维也纳人类活动沉积剖面(48.199 1°N,16.372 6°E)
Fig. 2 Location of the global GSSP candidatesmodified after reference 14 ])
Red solid circle reprerent nine candidates, white solid circle reprerent withdrawal of the three sites from the selection of the GSSP for Anthropocene;Latitude and longitude of the sites: East Gotland Basin (57.283 0°N, 20.120 4°E); San Francisco Bay (37.549 5°N,122.183 1°E); Searsville Reservoir (37.406 8°N, 122.237 7°E); Crawford Lake (43.468 6°N, 79.948 7°E); Sihailongwan Lake (42.286 8°N, 126.601 2°E); Flinders Reef (17.717 9°S, 148.451 0°E); West Flower Garden Bank (27.876 2°N, 93.814 7°E); Palmer Ice Sheet (73.852 1°S, 65.452 6°E); Ernesto Cave (45.977 2°N, 11.657 5°E); Sniezka Sudetes (50.739 1°N,15.707 7°E); Beppu Bay (33.277 8°N,131.537 3°E); Vienna (48.199 1°N, 16.372 6°E)
图3 四海龙湾玛珥湖沉积物及 239240Pu浓度随时间变化
(a)四海龙湾玛珥湖照片;(b)冷冻钻 239,240Pu浓度随时间的变化;(c)冷冻钻岩芯及纹层年代
Fig. 3 Freeze cores collected from Sihailongwan Maar Lake and the temporal variations of 239240Pu concentrations
(a) Photo of Sihailongwan Maar Lake;(b) Temporal variations of 239,240Pu concentrations measured in the freeze core; (c) Varve counting results of depth versus age
图4 四海龙湾玛珥湖沉积物典型人类世指标体系在20世纪中叶的系统性变化 82
(a)不同类型人类活动的代用指标体系及其关键变化时段;(b)四海龙湾玛珥湖沉积物 239,240Pu、 129I/ 127I、烟炱 14C,碳球粒、多环芳烃、 Pb、δ 13C、DNA以及浮游植物多样性指标自1850年以来的变化
Fig. 4 Systematic variations of the typical Anthropocene proxies in sediment cores from Sihailongwan Maar Lake at the middle of the 20th century 82
(a) Different types of proxies indicating human activities and their key change periods; (b) Variations of 239,240Pu, 129I/ 127I, soot 14C, spheroidal carbonaceous particles, polycyclic aromatic hydrocarbons, Pb, δ 13C, DNA, and phytoplankton diversity (Shannon index) in sediment from Sihailongwan Maar Lake since 1850
1 CRUTZEN P J, STOERMER E F. The “Anthropocene” [J]. IGBP News Letter, 2000, 41: 17-18.
2 CRUTZEN P J. Geology of mankind[J]. Nature, 2002, 415(6 867). DOI:10.1038/415023a .
3 ZALASIEWICZ J, WILLIAMS M, SMITH A, et al. Are we now living in the Anthropocene?[J]. GSA Today, 2008, 18: 4-8.
4 ZALASIEWICZ J, WILLIAMS M, STEFFEN W, et al. The new world of the Anthropocene [J]. Environmental Science and Technology, 2010, 44: 2 228-2 231.
5 ZALASIEWICZ J, WATERS C N, SUMMERHAYES C P, et al. The working group on the Anthropocene: summary of evidence and interim recommendations [J]. Anthropocene, 2017, 19: 55-60.
6 AWG. Results of binding vote by AWG released on 21st May 2019 [C/OL]. 2019. [2023-12-20]. .
7 SUBRAMANIAN M. Humans versus Earth: the quest to define the Anthropocene [J]. Nature, 2019, 572: 168-170.
8 KETTERER M E, HAFER K M, JONES V J, et al. Rapid dating of recent sediments in Loch Ness: inductively coupled plasma mass spectrometric measurements of global fallout plutonium[J]. Science of the Total Environment, 2004, 322(1/2/3): 221-229.
9 KUDO A, ZHENG J, KOERNER R M, et al. Global transport rates of 137Cs and 239+240Pu originating from the Nagasaki A-bomb in 1945 as determined from analysis of Canadian Arctic ice cores[J]. Journal of Environmental Radioactivity, 1998, 40(3): 289-298.
10 SU Y, HU X, TANG H J, et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy[J]. Nature Nanotechnology, 2022, 17(1): 76-85.
11 FIAŁKIEWICZ-KOZIEŁ B, SMIEJA-KRÓL B, FRONTASYEVA M, et al. Anthropogenic- and natural sources of dust in peatland during the Anthropocene[J]. Scientific Reports, 2016, 6(1). DOI: 10.1038/srep38731 .
12 ZALASIEWICZ J, WATERS C N, WOLFE A P, et al. Making the case for a formal Anthropocene Epoch: an analysis of ongoing critiques[J]. Newsletters on Stratigraphy, 2017, 50(2): 205-226.
13 WATERS C N, ZALASIEWICZ J, SUMMERHAYES C, et al. Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene series: where and how to look for potential candidates[J]. Earth-Science Reviews, 2018, 178: 379-429.
14 WATERS C N, TURNER S D, ZALASIEWICZ J, et al. Candidate sites and other reference sections for the Global boundary Stratotype Section and Point of the Anthropocene series [J]. The Anthropocene Review, 2023, 10(1): 3-24.
15 MCCARTHY F M, PATTERSON R T, HEAD M J, et al. The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate Global boundary Stratotype Section and Point for the Anthropocene series [J]. The Anthropocene Review, 2023, 10(1): 146-176.
16 WITZE A. This quiet lake could mark the start of a new Anthropocene epoch [J]. Nature, 2023, 619: 441-442.
17 GIBBARD P L, BAUER A M, EDGEWORTH M, et al. A practical solution: the Anthropocene is a geological event, not a formal epoch [J]. Episodes, 2022, 45(4): 349-357.
18 RUDDIMAN W F. The early anthropogenic hypothesis: challenges and responses [J]. Reviews of Geophysics, 2007, 45(3).DOI: 10.1029/2006RG000207 .
19 FINNEY S C, EDWARDS L E. The “Anthropocene” epoch: scientific decision or political statement?[J]. GSA Today, 2016, 26(3/4): 4-10.
20 HEAD M J, ZALASIEWICZ J A, WATERS C N, et al. The proposed Anthropocene Epoch/Series is underpinned by an extensive array of mid-20th century stratigraphic event signals [J]. Journal of Quaternary Science, 2022, 37(7): 1 181-1 187.
21 STEFFEN W, ROCKSTRÖM J, RICHARDSON K, et al. Trajectories of the Earth system in the Anthropocene [J]. The Proceedings of the National Academy of Sciences, 2018, 115(33): 8 252-8 259.
22 WATERS C N, ZALASIEWICZ J, SUMMERHAYES C, et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene [J]. Science,2016, 351. DOI: 10.1126/science.aad2622 .
23 ZHANG Zhiqiang. The new word of the Anthropocene [J]. Advances in Earth Science, 2010, 25(9): 997-1 000.
张志强.新的地质时期———人类世[J].地球科学进展,2010, 25(9):997-1 000.
24 LEWIS S L, MASLIN M A. Defining the Anthropocene [J]. Nature, 2015, 519: 171-180.
25 ELLIS E C. Anthropogenic transformation of the terrestrial biosphere[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1 938): 1 010-1 035.
26 RUDDIMAN W F. The anthropogenic greenhouse era began thousands of years ago[J]. Climatic Change, 2003, 61(3): 261-293.
27 BROECHER W C, STOCKER T F. The Holocene CO2 rise: Anthropogenic or natural?[J]. Eos,Transactions American Geophysical Union, 2006, 87(3): 27. DOI:10.1029/2006EO030002 .
28 STOCKER B D, STRASSMANN K, JOOS F. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model[J]. Biogeosciences, 2011, 8(1): 69-88.
29 LIU Xue, ZHANG Zhiqiang, ZHENG Junwei, et al. Discussion on the anthropocene research[J]. Advances in Earth Science, 2014, 29(5): 640-649.
刘学, 张志强, 郑军卫, 等. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
30 IPBES. Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services [M]. Bonn: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2016.
31 FARNSWORTH A, EUNICE LO Y T, VALDES P J, et al. Climate extremes likely to drive land mammal extinction during next supercontinent assembly[J]. Nature Geoscience, 2023, 16(10): 901-908.
32 RUDDIMAN W F, THOMSON J S. The case for human causes of increased atmospheric CH4 over the last 5000 years[J]. Quaternary Science Reviews, 2001, 20(18): 1 769-1 777.
33 RUDDIMAN W F, GUO Z T, ZHOU X, et al. Early rice farming and anomalous methane trends[J]. Quaternary Science Reviews, 2008, 27(13/14): 1 291-1 295.
34 RUDDIMAN W F. The anthropocene[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 45-68.
35 ZALASIEWICZ J, WATERS C N, WILLIAMS M, et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal[J]. Quaternary International, 2015, 383: 196-203.
36 STEFFEN W, BROADGATE W, DEUTSCH L, et al. The trajectory of the Anthropocene: the great acceleration [J]. The Anthropocene Review, 2015, 2(1): 81-98.
37 MATSUGUMA Y, TAKADA H, KUMATA H, et al. Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(2): 230-239.
38 ZALASIEWICZ J, WATERS C N, IVAR DO SUL J A, et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene[J]. Anthropocene, 2016, 13: 4-17.
39 HOLTGRIEVE G W, SCHINDLER D E, HOBBS W O, et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere[J]. Science, 2011, 334(6 062): 1 545-1 548.
40 HASTINGS M G, JARVIS J C, STEIG E J. Anthropogenic impacts on nitrogen isotopes of ice-core nitrate[J]. Science, 2009, 324(5 932). DOI: 10.1126/science.1170510 .
41 WYNN P M, LOADER N J, FAIRCHILD I J. Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records[J]. Environmental Pollution, 2014, 187: 98-105.
42 WALKER M, JOHNSEN S, RASMUSSEN S O, et al. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records[J]. Journal of Quaternary Science, 2009, 24: 3-17.
43 SHAKUN J D, CLARK P U, HE F, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation[J]. Nature, 2012, 484: 49-54.
44 MARCOTT S A, SHAKUN J D, CLARK P U, et al. A reconstruction of regional and global temperature for the past 11,300 years[J]. Science, 2013, 339: 1 198-1 201.
45 MONNIN E, INDERMUHLE A, DALLENBACH A, et al. Atmospheric CO2 concentrations over the last glacial termination[J]. Science, 2001, 291: 112-114.
46 MACFARLING M C, ETHERIDGE D, TRUDINGER C, et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP[J]. Geophysical Research Letters, 2006, 33. DOI: 10.1029/2006GL026152 .
47 ETHERIDGE D M, STEELE L P, FRANCEY R J, et al. Atmospheric methane between 1000 AD and present: evidence of anthropogenic emissions and climatic variability[J]. Journal Geophysical Research, 1998, 103: 15 979-15 993.
48 ALEXANDER L V, ALLEN S, BINDOFF N L, et al. Climate change 2013: the physical science basis[M]// Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013.
49 LANGENFELDS R L, STEELE L P, LEIST M A, et al. Atmospheric methane, carbon dioxide, hydrogen, carbon monoxide, and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography, baseline 2007-2008[M]. Melbourne:Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, 2011: 62-66.
50 CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles[M]// STOCKER T F, QIN D, PLATTNER G K. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, New York: Cambridge University Press, 2013: 465-544.
51 BOPP L, RESPLANDY L, ORR J C, et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models[J]. Biogeosciences, 2013, 10: 6 225-6 245.
52 History Database of the Global Environment (2013) Netherlands Environmental Assessment Agency. HYDE[EB/OL].(2023-12-15)[2023-12-18]. .
53 SCHMIED H M, CACERES D, EISNER S, et al. The global water resources and use model Water GAP v2.2d: model description and evaluation[J]. Geoscientific Model Development, 2021, 14(2): 1 037-1 079.
54 WATERS C N, WILLIAMS M, ZALASIEWICZ J, et al. Epochs, events and episodes: marking the geological impact of humans[J]. Earth-Science Reviews, 2022, 234. DOI: 10.1016/j.earscirev.2022.104171 .
55 ROSOL C, SCHÄFER G N, TURNER S D, et al. Evidence and experiment: curating contexts of Anthropocene geology[J]. The Anthropocene Review, 2023, 10(1): 330-339.
56 LU Cairong, WANG Guangrong. What are the academicians paying attention to—the latest information from Chinese research frontier [J]. Policy & Management, 2004, 11(6): 26-28.
陆彩荣,王光荣.院士们在关注什么——来自中国科研前沿的最新信息[J].科学咨询(决策管理),2004, 11(6): 26-28.
57 LIU Dongsheng. Demand of Anthropocene study in the new stage of geoscience: in honor of late geologist Huang Jiqing for his innovative spirit[J]. Quaternary Sciences, 2004, 24(4): 369-378.
刘东生. 开展“人类世”环境研究,做新时代地学的开拓者——纪念黄汲清先生的地学创新精神[J]. 第四纪研究, 2004, 24(4): 369-378.
58 WANG Pinxian, TIAN Jun, HUANG Enqing, et al. Earth system and evolution[M]. Beijing: Science Press, 2018: 446-450.
汪品先,田军,黄恩清,等. 地球系统与演变[M]. 北京:科学出版社,2018: 446-450.
59 LIAO H Q, BU W T, ZHENG J, et al. Vertical distributions of radionuclides (239+240Pu, 240Pu/239Pu, and 137Cs) in sediment cores of Lake Bosten in northwestern China[J]. Environmental Science & Technology, 2014, 48(7): 3 840-3 846.
60 WU F C, ZHENG J, LIAO H Q, et al. Vertical distributions of plutonium and 137Cs in lacustrine sediments in northwestern China: quantifying sediment accumulation rates and source identifications[J]. Environmental Science & Technology, 2010, 44(8): 2 911-2 917.
61 ZHAO X, HOU X L, DU J Z, et al. Anthropogenic 129I in the sediment cores in the East China Sea: sources and transport pathways[J]. Environmental Pollution, 2019, 245: 443-452.
62 ZHAO X, HOU X L, ZHANG D L, et al. Records of iodine isotopes (129I, 127I) in the Barkol peat bog from northwest China and their sources, transport and preservation[J]. Chemosphere, 2021, 279. DOI: 10.1016/j.chemosphere.2021.130531 .
63 TONG X N, HU J F, XI D P, et al. Depositional environment of the Late Santonian lacustrine source rocks in the Songliao Basin (NE China): implications from organic geochemical analyses[J]. Organic Geochemistry, 2018, 124: 215-227.
64 HU J F, ZHOU H D, PENG P A, et al. Reconstruction of a paleotemperature record from 0.3-3.7 ka for subtropical South China using lacustrine branched GDGTs from Huguangyan Maar[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 167-176.
65 YAN M T, CHEN X F, CHU W, et al. Microplastic pollution and enrichment of distinct microbiota in sediment of mangrove in Zhujiang River Estuary, China[J]. Journal of Oceanology and Limnology, 2023, 41(1): 215-228.
66 WU Y H, WANG S M, XIA W L, et al. Dating recent lake sediments using Spheroidal Carbonaceous Particle (SCP)[J]. Chinese Science Bulletin, 2005, 50(10): 1 016-1 020.
67 DONG M T, CHEN W, CHEN X, et al. Geochemical markers of the Anthropocene: perspectives from temporal trends in pollutants [J]. Science of the Total Environment, 2021, 763. DOI:10.1016/j.scitotenv.2020.142987 .
68 ZHANG P Z, WANG X B, CHEN J F, et al. δ13C values and hydrogen index records in sediment organic matter of RH core of Zoig Basin,eastern Qing-Zang (Tibet) Plateau and their environmental significance [J]. Science China Chemistry, 1995, 8: 1 015-1 024.
69 LANG Yunchao, LIU Congqiang, ZHAO Zhiqi. A review of studies on sources and migration of various contaminants in surface and ground waters by using boron and its isotopes[J]. Earth Science Frontiers, 2002, 9(4): 409-415.
郎赟超, 刘丛强, 赵志琦. 硼及其同位素对水体污染物的示踪研究[J]. 地学前缘, 2002, 9(4): 409-415.
70 CHEN X, MCGOWAN S, ZENG L H, et al. Changes in carbon and nitrogen cycling in a floodplain lake over recent decades linked to littoral expansion, declining riverine influx, and eutrophication[J]. Hydrological Processes, 2017, 31(17): 3 110-3 121.
71 HAN Y M, WEI C, HUANG R J, et al. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years[J]. Scientific Reports, 2016, 6(1). DOI: 10.1038/srep19151 .
72 NI H Y, HAN Y M, CAO J J, et al. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China[J]. Atmospheric Environment, 2015, 123: 399-406.
73 HAN Y M, AN Z S, ARIMOTO R, et al. Sediment soot radiocarbon indicates that recent pollution controls slowed fossil fuel emissions in southeastern China[J]. Environmental Science & Technology, 2022, 56(3): 1 534-1 543.
74 LIU C C, YAN H, WANG G Z, et al. Species specific Sr/Ca-δ18O relationships for three Tridacnidae species from the northern South China Sea[J]. Chemical Geology, 2021, 584. DOI: 10.1016/j.chemgeo.2021.120519 .
75 YAN H, SHAO D, WANG Y H, et al. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: a new high-resolution SST proxy[J]. Geochimica et Cosmochimica Acta, 2013, 112: 52-65.
76 CHENG Z J, WENG C Y, STEINKE S, et al. Anthropogenic modification of vegetated landscapes in Southern China from 6, 000 years ago[J]. Nature Geoscience, 2018, 11(12): 939-943.
77 HUANG X Z, ZHANG J, REN L L, et al. Intensification and driving forces of pastoralism in Northern China 5.7 ka ago [J]. Geophysical Research Letters, 2021, 48(7). DOI: 10.1029/2020GL092288 .
78 CHEN X, YANG X D, DONG X H, et al. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China)[J]. Hydrobiologia, 2011, 661: 223-234.
79 YANG X D, ANDERSON N J, DONG X H, et al. Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication[J]. Freshwater Biology, 2008, 53: 1 273-1 290.
80 ZHANG K, YANG X D, XU M, et al. Confronting challenges of managing degraded lake ecosystems in the Anthropocene, exemplified from the Yangtze River Basin in China[J]. Anthropocene, 2018, 24: 30-39.
81 HUO S L, ZHANG H X, MONCHAMP M E, et al. Century-long homogenization of algal communities is accelerated by nutrient enrichment and climate warming in lakes and reservoirs of the north temperate zone[J]. Environmental Science & Technology, 2022, 56(6): 3 780-3 790.
82 HAN Y M, AN Z S, LEI D W, et al. The Sihailongwan maar Lake, northeastern China as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series[J]. The Anthropocene Review, 2023, 10(1): 177-200.
83 FROEHLICH M B, CHAN W Y, TIMS S G, et al. Time-resolved record of 236U and 239,240Pu isotopes from a coral growing during the nuclear testing program at Enewetak Atoll (Marshall Islands)[J]. Journal of Environmental Radioactivity, 2016, 165: 197-205.
84 HAN Y M, MCNEILL J R, ROSE N L, et al. Combustion products as markers for the Anthropocene [M]. Berlin: HKW, 2022.
85 ZHAO Jianbo, Yi JIE. On several basic theoretical questions of geology of Anthropocene[J]. Journal of Central China Normal University (Natural Sciences), 2008, 42(4): 649-653.
赵剑波, 揭毅. 人类世地质学几个基本理论问题[J]. 华中师范大学学报(自然科学版), 2008, 42(4): 649-653.
[1] 江鸿, 韩永明, 刘卫国, 曹蕴宁, 胡婧, 樊会敏, 刘博. 四海龙湾沉积物多指标反映人类活动从 1850年开始显著增强[J]. 地球科学进展, 2024, 39(1): 82-95.
[2] 赵显烨, 王伟, 关成国, 宋晨冉, 庞科, 陈哲, 周传明, 袁训来. 古元古代早中期大氧化事件及碳循环扰动[J]. 地球科学进展, 2023, 38(8): 838-851.
[3] 张瑜, 马黎春, 王凯. 罗布泊干盐湖第四纪环境演变研究进展[J]. 地球科学进展, 2022, 37(2): 149-164.
[4] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[5] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[6] 关秀宇, 郭杰, 陈海燕, 修迪, 张运强. 冀北承德盆地奥陶纪冶里组叠层石的发现及沉积环境[J]. 地球科学进展, 2018, 33(5): 545-553.
[7] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[8] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[9] 王斌,郑洪波,王平,何忠. 渭河盆地新生代地层与沉积演化研究: 现状和问题[J]. 地球科学进展, 2013, 28(10): 1126-1135.
[10] 沈文杰,张华,孙永革,林杨挺,梁婷,杨志军,周永章. 二叠纪—三叠纪界线大火燃烧的地层记录:研究进展回顾与评述[J]. 地球科学进展, 2012, 27(6): 613-623.
[11] 胡广,胡文瑄,曹剑,姚素平,王学寅,刘友祥. 闽西下白垩统坂头组锆石U-Pb年龄及地层对比[J]. 地球科学进展, 2011, 26(9): 933-943.
[12] 梅冥相. 微生物席沉积学:一个年轻的沉积学分支[J]. 地球科学进展, 2011, 26(6): 586-597.
[13] 李明松, 孙跃武, 赵国伟. 吉林延边地区汪清县大兴沟早二叠世华夏植物群的发现及其地质意义[J]. 地球科学进展, 2011, 26(3): 339-346.
[14] 马会珍,张立军,龚一鸣. 华南泥盆纪 Chondrites 的特征及其对古氧相的示踪[J]. 地球科学进展, 2010, 25(9): 966-973.
[15] 姚玉鹏,刘羽. 第四纪作为地质年代和地层单位的国际争议与最终确立[J]. 地球科学进展, 2010, 25(7): 775-781.
阅读次数
全文


摘要