1 |
CRUTZEN P J, STOERMER E F. The “Anthropocene” [J]. IGBP News Letter, 2000, 41: 17-18.
|
2 |
CRUTZEN P J. Geology of mankind[J]. Nature, 2002, 415(6 867). DOI:10.1038/415023a .
|
3 |
ZALASIEWICZ J, WILLIAMS M, SMITH A, et al. Are we now living in the Anthropocene?[J]. GSA Today, 2008, 18: 4-8.
|
4 |
ZALASIEWICZ J, WILLIAMS M, STEFFEN W, et al. The new world of the Anthropocene [J]. Environmental Science and Technology, 2010, 44: 2 228-2 231.
|
5 |
ZALASIEWICZ J, WATERS C N, SUMMERHAYES C P, et al. The working group on the Anthropocene: summary of evidence and interim recommendations [J]. Anthropocene, 2017, 19: 55-60.
|
6 |
AWG. Results of binding vote by AWG released on 21st May 2019 [C/OL]. 2019. [2023-12-20]. .
|
7 |
SUBRAMANIAN M. Humans versus Earth: the quest to define the Anthropocene [J]. Nature, 2019, 572: 168-170.
|
8 |
KETTERER M E, HAFER K M, JONES V J, et al. Rapid dating of recent sediments in Loch Ness: inductively coupled plasma mass spectrometric measurements of global fallout plutonium[J]. Science of the Total Environment, 2004, 322(1/2/3): 221-229.
|
9 |
KUDO A, ZHENG J, KOERNER R M, et al. Global transport rates of 137Cs and 239+240Pu originating from the Nagasaki A-bomb in 1945 as determined from analysis of Canadian Arctic ice cores[J]. Journal of Environmental Radioactivity, 1998, 40(3): 289-298.
|
10 |
SU Y, HU X, TANG H J, et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy[J]. Nature Nanotechnology, 2022, 17(1): 76-85.
|
11 |
FIAŁKIEWICZ-KOZIEŁ B, SMIEJA-KRÓL B, FRONTASYEVA M, et al. Anthropogenic- and natural sources of dust in peatland during the Anthropocene[J]. Scientific Reports, 2016, 6(1). DOI: 10.1038/srep38731 .
|
12 |
ZALASIEWICZ J, WATERS C N, WOLFE A P, et al. Making the case for a formal Anthropocene Epoch: an analysis of ongoing critiques[J]. Newsletters on Stratigraphy, 2017, 50(2): 205-226.
|
13 |
WATERS C N, ZALASIEWICZ J, SUMMERHAYES C, et al. Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene series: where and how to look for potential candidates[J]. Earth-Science Reviews, 2018, 178: 379-429.
|
14 |
WATERS C N, TURNER S D, ZALASIEWICZ J, et al. Candidate sites and other reference sections for the Global boundary Stratotype Section and Point of the Anthropocene series [J]. The Anthropocene Review, 2023, 10(1): 3-24.
|
15 |
MCCARTHY F M, PATTERSON R T, HEAD M J, et al. The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate Global boundary Stratotype Section and Point for the Anthropocene series [J]. The Anthropocene Review, 2023, 10(1): 146-176.
|
16 |
WITZE A. This quiet lake could mark the start of a new Anthropocene epoch [J]. Nature, 2023, 619: 441-442.
|
17 |
GIBBARD P L, BAUER A M, EDGEWORTH M, et al. A practical solution: the Anthropocene is a geological event, not a formal epoch [J]. Episodes, 2022, 45(4): 349-357.
|
18 |
RUDDIMAN W F. The early anthropogenic hypothesis: challenges and responses [J]. Reviews of Geophysics, 2007, 45(3).DOI: 10.1029/2006RG000207 .
|
19 |
FINNEY S C, EDWARDS L E. The “Anthropocene” epoch: scientific decision or political statement?[J]. GSA Today, 2016, 26(3/4): 4-10.
|
20 |
HEAD M J, ZALASIEWICZ J A, WATERS C N, et al. The proposed Anthropocene Epoch/Series is underpinned by an extensive array of mid-20th century stratigraphic event signals [J]. Journal of Quaternary Science, 2022, 37(7): 1 181-1 187.
|
21 |
STEFFEN W, ROCKSTRÖM J, RICHARDSON K, et al. Trajectories of the Earth system in the Anthropocene [J]. The Proceedings of the National Academy of Sciences, 2018, 115(33): 8 252-8 259.
|
22 |
WATERS C N, ZALASIEWICZ J, SUMMERHAYES C, et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene [J]. Science,2016, 351. DOI: 10.1126/science.aad2622 .
|
23 |
ZHANG Zhiqiang. The new word of the Anthropocene [J]. Advances in Earth Science, 2010, 25(9): 997-1 000.
|
|
张志强.新的地质时期———人类世[J].地球科学进展,2010, 25(9):997-1 000.
|
24 |
LEWIS S L, MASLIN M A. Defining the Anthropocene [J]. Nature, 2015, 519: 171-180.
|
25 |
ELLIS E C. Anthropogenic transformation of the terrestrial biosphere[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1 938): 1 010-1 035.
|
26 |
RUDDIMAN W F. The anthropogenic greenhouse era began thousands of years ago[J]. Climatic Change, 2003, 61(3): 261-293.
|
27 |
BROECHER W C, STOCKER T F. The Holocene CO2 rise: Anthropogenic or natural?[J]. Eos,Transactions American Geophysical Union, 2006, 87(3): 27. DOI:10.1029/2006EO030002 .
|
28 |
STOCKER B D, STRASSMANN K, JOOS F. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model[J]. Biogeosciences, 2011, 8(1): 69-88.
|
29 |
LIU Xue, ZHANG Zhiqiang, ZHENG Junwei, et al. Discussion on the anthropocene research[J]. Advances in Earth Science, 2014, 29(5): 640-649.
|
|
刘学, 张志强, 郑军卫, 等. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
|
30 |
IPBES. Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services [M]. Bonn: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2016.
|
31 |
FARNSWORTH A, EUNICE LO Y T, VALDES P J, et al. Climate extremes likely to drive land mammal extinction during next supercontinent assembly[J]. Nature Geoscience, 2023, 16(10): 901-908.
|
32 |
RUDDIMAN W F, THOMSON J S. The case for human causes of increased atmospheric CH4 over the last 5000 years[J]. Quaternary Science Reviews, 2001, 20(18): 1 769-1 777.
|
33 |
RUDDIMAN W F, GUO Z T, ZHOU X, et al. Early rice farming and anomalous methane trends[J]. Quaternary Science Reviews, 2008, 27(13/14): 1 291-1 295.
|
34 |
RUDDIMAN W F. The anthropocene[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 45-68.
|
35 |
ZALASIEWICZ J, WATERS C N, WILLIAMS M, et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal[J]. Quaternary International, 2015, 383: 196-203.
|
36 |
STEFFEN W, BROADGATE W, DEUTSCH L, et al. The trajectory of the Anthropocene: the great acceleration [J]. The Anthropocene Review, 2015, 2(1): 81-98.
|
37 |
MATSUGUMA Y, TAKADA H, KUMATA H, et al. Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(2): 230-239.
|
38 |
ZALASIEWICZ J, WATERS C N, IVAR DO SUL J A, et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene[J]. Anthropocene, 2016, 13: 4-17.
|
39 |
HOLTGRIEVE G W, SCHINDLER D E, HOBBS W O, et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere[J]. Science, 2011, 334(6 062): 1 545-1 548.
|
40 |
HASTINGS M G, JARVIS J C, STEIG E J. Anthropogenic impacts on nitrogen isotopes of ice-core nitrate[J]. Science, 2009, 324(5 932). DOI: 10.1126/science.1170510 .
|
41 |
WYNN P M, LOADER N J, FAIRCHILD I J. Interrogating trees for isotopic archives of atmospheric sulphur deposition and comparison to speleothem records[J]. Environmental Pollution, 2014, 187: 98-105.
|
42 |
WALKER M, JOHNSEN S, RASMUSSEN S O, et al. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records[J]. Journal of Quaternary Science, 2009, 24: 3-17.
|
43 |
SHAKUN J D, CLARK P U, HE F, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation[J]. Nature, 2012, 484: 49-54.
|
44 |
MARCOTT S A, SHAKUN J D, CLARK P U, et al. A reconstruction of regional and global temperature for the past 11,300 years[J]. Science, 2013, 339: 1 198-1 201.
|
45 |
MONNIN E, INDERMUHLE A, DALLENBACH A, et al. Atmospheric CO2 concentrations over the last glacial termination[J]. Science, 2001, 291: 112-114.
|
46 |
MACFARLING M C, ETHERIDGE D, TRUDINGER C, et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP[J]. Geophysical Research Letters, 2006, 33. DOI: 10.1029/2006GL026152 .
|
47 |
ETHERIDGE D M, STEELE L P, FRANCEY R J, et al. Atmospheric methane between 1000 AD and present: evidence of anthropogenic emissions and climatic variability[J]. Journal Geophysical Research, 1998, 103: 15 979-15 993.
|
48 |
ALEXANDER L V, ALLEN S, BINDOFF N L, et al. Climate change 2013: the physical science basis[M]// Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013.
|
49 |
LANGENFELDS R L, STEELE L P, LEIST M A, et al. Atmospheric methane, carbon dioxide, hydrogen, carbon monoxide, and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography, baseline 2007-2008[M]. Melbourne:Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, 2011: 62-66.
|
50 |
CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles[M]// STOCKER T F, QIN D, PLATTNER G K. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, New York: Cambridge University Press, 2013: 465-544.
|
51 |
BOPP L, RESPLANDY L, ORR J C, et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models[J]. Biogeosciences, 2013, 10: 6 225-6 245.
|
52 |
History Database of the Global Environment (2013) Netherlands Environmental Assessment Agency. HYDE[EB/OL].(2023-12-15)[2023-12-18]. .
|
53 |
SCHMIED H M, CACERES D, EISNER S, et al. The global water resources and use model Water GAP v2.2d: model description and evaluation[J]. Geoscientific Model Development, 2021, 14(2): 1 037-1 079.
|
54 |
WATERS C N, WILLIAMS M, ZALASIEWICZ J, et al. Epochs, events and episodes: marking the geological impact of humans[J]. Earth-Science Reviews, 2022, 234. DOI: 10.1016/j.earscirev.2022.104171 .
|
55 |
ROSOL C, SCHÄFER G N, TURNER S D, et al. Evidence and experiment: curating contexts of Anthropocene geology[J]. The Anthropocene Review, 2023, 10(1): 330-339.
|
56 |
LU Cairong, WANG Guangrong. What are the academicians paying attention to—the latest information from Chinese research frontier [J]. Policy & Management, 2004, 11(6): 26-28.
|
|
陆彩荣,王光荣.院士们在关注什么——来自中国科研前沿的最新信息[J].科学咨询(决策管理),2004, 11(6): 26-28.
|
57 |
LIU Dongsheng. Demand of Anthropocene study in the new stage of geoscience: in honor of late geologist Huang Jiqing for his innovative spirit[J]. Quaternary Sciences, 2004, 24(4): 369-378.
|
|
刘东生. 开展“人类世”环境研究,做新时代地学的开拓者——纪念黄汲清先生的地学创新精神[J]. 第四纪研究, 2004, 24(4): 369-378.
|
58 |
WANG Pinxian, TIAN Jun, HUANG Enqing, et al. Earth system and evolution[M]. Beijing: Science Press, 2018: 446-450.
|
|
汪品先,田军,黄恩清,等. 地球系统与演变[M]. 北京:科学出版社,2018: 446-450.
|
59 |
LIAO H Q, BU W T, ZHENG J, et al. Vertical distributions of radionuclides (239+240Pu, 240Pu/239Pu, and 137Cs) in sediment cores of Lake Bosten in northwestern China[J]. Environmental Science & Technology, 2014, 48(7): 3 840-3 846.
|
60 |
WU F C, ZHENG J, LIAO H Q, et al. Vertical distributions of plutonium and 137Cs in lacustrine sediments in northwestern China: quantifying sediment accumulation rates and source identifications[J]. Environmental Science & Technology, 2010, 44(8): 2 911-2 917.
|
61 |
ZHAO X, HOU X L, DU J Z, et al. Anthropogenic 129I in the sediment cores in the East China Sea: sources and transport pathways[J]. Environmental Pollution, 2019, 245: 443-452.
|
62 |
ZHAO X, HOU X L, ZHANG D L, et al. Records of iodine isotopes (129I, 127I) in the Barkol peat bog from northwest China and their sources, transport and preservation[J]. Chemosphere, 2021, 279. DOI: 10.1016/j.chemosphere.2021.130531 .
|
63 |
TONG X N, HU J F, XI D P, et al. Depositional environment of the Late Santonian lacustrine source rocks in the Songliao Basin (NE China): implications from organic geochemical analyses[J]. Organic Geochemistry, 2018, 124: 215-227.
|
64 |
HU J F, ZHOU H D, PENG P A, et al. Reconstruction of a paleotemperature record from 0.3-3.7 ka for subtropical South China using lacustrine branched GDGTs from Huguangyan Maar[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 167-176.
|
65 |
YAN M T, CHEN X F, CHU W, et al. Microplastic pollution and enrichment of distinct microbiota in sediment of mangrove in Zhujiang River Estuary, China[J]. Journal of Oceanology and Limnology, 2023, 41(1): 215-228.
|
66 |
WU Y H, WANG S M, XIA W L, et al. Dating recent lake sediments using Spheroidal Carbonaceous Particle (SCP)[J]. Chinese Science Bulletin, 2005, 50(10): 1 016-1 020.
|
67 |
DONG M T, CHEN W, CHEN X, et al. Geochemical markers of the Anthropocene: perspectives from temporal trends in pollutants [J]. Science of the Total Environment, 2021, 763. DOI:10.1016/j.scitotenv.2020.142987 .
|
68 |
ZHANG P Z, WANG X B, CHEN J F, et al. δ13C values and hydrogen index records in sediment organic matter of RH core of Zoig Basin,eastern Qing-Zang (Tibet) Plateau and their environmental significance [J]. Science China Chemistry, 1995, 8: 1 015-1 024.
|
69 |
LANG Yunchao, LIU Congqiang, ZHAO Zhiqi. A review of studies on sources and migration of various contaminants in surface and ground waters by using boron and its isotopes[J]. Earth Science Frontiers, 2002, 9(4): 409-415.
|
|
郎赟超, 刘丛强, 赵志琦. 硼及其同位素对水体污染物的示踪研究[J]. 地学前缘, 2002, 9(4): 409-415.
|
70 |
CHEN X, MCGOWAN S, ZENG L H, et al. Changes in carbon and nitrogen cycling in a floodplain lake over recent decades linked to littoral expansion, declining riverine influx, and eutrophication[J]. Hydrological Processes, 2017, 31(17): 3 110-3 121.
|
71 |
HAN Y M, WEI C, HUANG R J, et al. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years[J]. Scientific Reports, 2016, 6(1). DOI: 10.1038/srep19151 .
|
72 |
NI H Y, HAN Y M, CAO J J, et al. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China[J]. Atmospheric Environment, 2015, 123: 399-406.
|
73 |
HAN Y M, AN Z S, ARIMOTO R, et al. Sediment soot radiocarbon indicates that recent pollution controls slowed fossil fuel emissions in southeastern China[J]. Environmental Science & Technology, 2022, 56(3): 1 534-1 543.
|
74 |
LIU C C, YAN H, WANG G Z, et al. Species specific Sr/Ca-δ18O relationships for three Tridacnidae species from the northern South China Sea[J]. Chemical Geology, 2021, 584. DOI: 10.1016/j.chemgeo.2021.120519 .
|
75 |
YAN H, SHAO D, WANG Y H, et al. Sr/Ca profile of long-lived Tridacna gigas bivalves from South China Sea: a new high-resolution SST proxy[J]. Geochimica et Cosmochimica Acta, 2013, 112: 52-65.
|
76 |
CHENG Z J, WENG C Y, STEINKE S, et al. Anthropogenic modification of vegetated landscapes in Southern China from 6, 000 years ago[J]. Nature Geoscience, 2018, 11(12): 939-943.
|
77 |
HUANG X Z, ZHANG J, REN L L, et al. Intensification and driving forces of pastoralism in Northern China 5.7 ka ago [J]. Geophysical Research Letters, 2021, 48(7). DOI: 10.1029/2020GL092288 .
|
78 |
CHEN X, YANG X D, DONG X H, et al. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China)[J]. Hydrobiologia, 2011, 661: 223-234.
|
79 |
YANG X D, ANDERSON N J, DONG X H, et al. Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication[J]. Freshwater Biology, 2008, 53: 1 273-1 290.
|
80 |
ZHANG K, YANG X D, XU M, et al. Confronting challenges of managing degraded lake ecosystems in the Anthropocene, exemplified from the Yangtze River Basin in China[J]. Anthropocene, 2018, 24: 30-39.
|
81 |
HUO S L, ZHANG H X, MONCHAMP M E, et al. Century-long homogenization of algal communities is accelerated by nutrient enrichment and climate warming in lakes and reservoirs of the north temperate zone[J]. Environmental Science & Technology, 2022, 56(6): 3 780-3 790.
|
82 |
HAN Y M, AN Z S, LEI D W, et al. The Sihailongwan maar Lake, northeastern China as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series[J]. The Anthropocene Review, 2023, 10(1): 177-200.
|
83 |
FROEHLICH M B, CHAN W Y, TIMS S G, et al. Time-resolved record of 236U and 239,240Pu isotopes from a coral growing during the nuclear testing program at Enewetak Atoll (Marshall Islands)[J]. Journal of Environmental Radioactivity, 2016, 165: 197-205.
|
84 |
HAN Y M, MCNEILL J R, ROSE N L, et al. Combustion products as markers for the Anthropocene [M]. Berlin: HKW, 2022.
|
85 |
ZHAO Jianbo, Yi JIE. On several basic theoretical questions of geology of Anthropocene[J]. Journal of Central China Normal University (Natural Sciences), 2008, 42(4): 649-653.
|
|
赵剑波, 揭毅. 人类世地质学几个基本理论问题[J]. 华中师范大学学报(自然科学版), 2008, 42(4): 649-653.
|