地球科学进展 ›› 2024, Vol. 39 ›› Issue (1): 82 -95. doi: 10.11867/j.issn.1001-8166.2024.006

全新世:人类世的历史背景 上一篇    下一篇

四海龙湾沉积物多指标反映人类活动从 1850年开始显著增强
江鸿 1 , 3( ), 韩永明 1 , 2 , 3( ), 刘卫国 1 , 4, 曹蕴宁 1, 胡婧 1, 樊会敏 1, 刘博 1   
  1. 1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,陕西 西安 710061
    2.西安交通大学 人居环境与建筑工程学院,陕西 西安 710049
    3.陕西关中平原区域生态环境变化与综合治理 国家野外科学观测研究站,陕西 西安 710061
    4.中国科学院大学,北京 100049
  • 收稿日期:2023-08-25 修回日期:2023-10-31 出版日期:2024-01-10
  • 通讯作者: 韩永明 E-mail:jh1212521@163.com;yongming@ieecas.cn
  • 基金资助:
    国家自然科学基金重大项目(41991250);国家自然科学基金创新群体项目(42221003);中国科学院先导专项(XDB40000000)

Significant Increase in Human Activities Since 1850 According to Multiple Proxies of Sihailongwan Maar Lake Sediment

Hong JIANG 1 , 3( ), Yongming HAN 1 , 2 , 3( ), Weiguo LIU 1 , 4, Yunning CAO 1, Jing HU 1, Huimin FAN 1, Bo LIU 1   

  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
    2.School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    3.National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi’an 710061, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-08-25 Revised:2023-10-31 Online:2024-01-10 Published:2024-01-26
  • Contact: Yongming HAN E-mail:jh1212521@163.com;yongming@ieecas.cn
  • About author:JIANG Hong, Ph. D student, research areas include the relationship between global changes and human activites. E-mail: jh1212521@163.com
  • Supported by:
    the National Natural Science Foundation of China(41991250);Creative Research Groups of the National Natural Science Foundation of China(42221003);The Strategic Priority Research Program of Chinese Academy of Sciences(XDB40000000)

基于全球地质记录的比对,国际人类世工作组建议20世纪中期(约1950年)为人类世的起始时间,四海龙湾沉积物曾被列为“人类世界线层型剖面”的候选地质体之一。但在1950年以前,人类已较深刻地影响了四海龙湾周围地区的环境。通过重建四海龙湾沉积物900年以来的总有机碳、总有机碳和总氮的摩尔比(C/N)、稳定有机碳同位素(δ13Corg)和Ca/Ti,以及硅酸盐矿物主要元素Si、Al和K含量的历史序列,平均分辨率约为10年,以气候变化为背景,来探究该地区人类活动的历史。发现人类活动从1850年开始显著增强,在此之前的中世纪暖期和小冰期指标变化大体符合自然规律。1850—1950年指标的变化反映出快速增长的人口破坏了植被,导致风化加剧,地表环境的演变脱离了自然轨道,表明人类活动开始成为一种重要的地质营力,但这段时期的变化只是局地信号;1950年后,C/N持续减小及δ13Corg持续负移,反映出在新的社会制度和先进生产力的条件下,四海龙湾周围地区的环境状态再次发生改变,这与全球地质环境的加速变化同步,可以支持国际人类世工作组所提出的“20世纪中期是人类世的起始时间”。

Based on a global comparison of geological records, the International Anthropocene Working Group (AWG) determined that the onset of the Anthropocene was sometime in the mid-twentieth century (~1950 CE), and the Sihailongwan Maar Lake has been included as one of the candidate sites for the Global boundary Stratotype Section and Point (GSSP) of the Anthropocene. However, humans had a profound impact on the environment of the areas around Sihailongwan Maar Lake even before 1950 CE. Historical sequences of TOC contents, C/N ratios, δ13Corg values, Ca/Ti ratios, and concentrations of silicate major elements, such as Si, Al, and K, since 900 CE were reconstructed, with the average resolution being ~10 a, to explore the history of human activities in this region under the background of climate change. Human activities have significantly increased since 1850 CE, and changes in the measured proxies during the Medieval Warm Period and Little Ice Age before 1850 CE generally follow natural laws. The changes in the measured proxies during 1850-1950 CE indicate a rapid population growth, which damaged vegetation and resulted in intensified weathering and deviation of the surface environment evolution from the natural state. Hence, humans had started to be an important force for the geological environment; nevertheless, the changes during this period resulted in mostly local signals. After 1950 CE, the C/N ratios and δ13Corg values decreased continuously, indicating that the environmental status of the area around Sihailongwan Maar Lake changed once again under the new government and advanced productivity. This was in sync with the Great Acceleration of the global geological environment and supports the conclusion of the AWG that the onset of the Anthropocene was sometime in the mid-twentieth century.

中图分类号: 

图1 四海龙湾玛珥湖的地理位置与样品
(a)四海龙湾玛珥湖的地理位置;(b)采样点;(c)岩芯顶部外观
Fig. 1 The site of Sihailongwan Maar Lake and sampling
(a) Location of Sihailongwan Maar Lake; (b) Sampling site; (c) Image of the shallow core
图2 四海龙湾沉积物岩芯的定年结果
(a)用于本研究岩芯顶部17.5 cm相对定年的四海龙湾岩芯形貌及其已有的纹层定年结果 14 ;(b)SH19J的年代—深度曲线;(c)SH19J的沉积速率—深度曲线;AMS 14C年代控制点上的黑色线为AMS 14C定年误差范围
Fig. 2 Dating result of Sihailongwan Maar Lake core
(a) The core image and its previous lamination dating result 14 for relative dating of the top 17.5 cm of the studied core; (b) The age-depth curve of core SH19J; (c) The corresponding sedimentation rate-depth curve of core SH19J. The black bars on the AMS 14C age control points represent the error range of the AMS 14C dating
表1 SH19J植物残体 AMS 14C定年结果
Table 1 The AMS 14C dating results of plant residues from core SH19J
图3 四海龙湾玛珥湖沉积物多指标的历史记录及其与东北地区的气候变化和人口历史序列的对比
(A)公元900年以来四海龙湾(a)温度、(b)降水、(c)TOC含量、(d)C/N(摩尔比)、(e)δ 13C org(蓝色线)和南极Law Dome冰芯记录大气CO 2的δ 13C(棕色线,双重反褶积的结果) 24 、(f)Ca/Ti历史序列、(g)东北地区人口历史序列 18 - 21 。其中温度选用综合观测、树轮、泥炭重建的东北地区温度序列 16 (深红色线),降水选用四海龙湾孢粉模拟重建古降水量变化序列 8 (青色线)和树轮重建辽宁西北部1828年以来的降水序列 17 (绿色线);黄色/红色阴影区指示1850—1950年/1950年后的异常变化。(B)为(A)1750年后的放大
Fig. 3 Comparison historical sequences of multiple proxies of Sihailongwan Maar Lake sediments with climate change and population of Northeast China
A Sihailongwan maar Lake sediments: (a) temperature, (b) precipitation, (c) TOC contents, (d) C/N atomic ratios, (e) δ 13C org (blue line) and atmosphere δ 13C-CO 2 obtained from Law Dome ice core, Antarctica (brown line, results of the double deconvolution) 24 , (f) Ca/Ti ratios historical sequences; historical sequences of climate change, (g) population in Northeast China 18 - 21 . Among them, the temperature sequence of Northeast China was reconstructed using comprehensive observations, tree rings, and peat 16 , the precipitation sequence was reconstructed using the spore pollen simulation of Sihailongwan Maar Lake 8 (cyan line), and precipitation sequence since 1828 CE in northwest Liaoning Province was reconstructed using tree rings 17 (green line). The yellow/red area indicates abnormal changes during 1850-1950 CE/post-1950 CE. (B) is the enlargement of the post-1750 CE part of (A)
图4 公元900年以来四海龙湾玛珥湖沉积物部分地壳主要元素含量和岩石成因碎屑含量历史序列的对比
(a)Ca含量;(b)Ti含量;(c)Si含量;(d)Al含量;(e)K含量;(f)岩石成因碎屑含量 34 。蓝色区属于小冰期,黄色区指示1850—1950年的异常变化,红色区为AWG所建议的人类世时期。为便于观察1850年以后的变化趋势,将1750年以后的做了放大。“岩石成因碎屑”是沉积物经30%双氧水、10%盐酸和0.5 mol/L氢氧化钠加热处理后的残留物 34
Fig. 4 Comparison of the historical sequences of concentrations of partial Earth crust major elements and minerogenic clastic contents of Sihailongwan Maar Lake sediments
(a) Ca concentrations; (b) Ti concentrations, (c) Si concentrations, (d) Al concentrations, (e) K concentrations, (f) Minerogenic clastic contents 34 . The blue area belongs to the LIA; the yellow area indicates abnormal changes during 1850-1950 CE, the red area indicates the Anthropocene Epoch proposed by the AWG. For the convenience of observing the trend of changes after 1850 CE, the scale after 1750 CE is enlarged. “Minerogenic clastic” here refers to residue of sediment after heating with 30% hydrogen peroxide, 10% hydrochloric acid, and 0.5 mol/L sodium hydroxide 34
图5 中华人民共和国成立后东北地区主要粮食作物产量的变化(5年分辨率) 41
红色线为C 4作物(a),蓝色线为C 3作物(b)
Fig. 5 Changes in the yield of major grain crops of Northeast China after the founding of the People's Republic of Chinawith resolution of 5 years 41
The red (a)/blue (b) lines indicates C 4/C 3 crops
1 CRUTZEN P J, STOERMER E F. The Anthropocene[J]. IGB News Letter, 2000, 41(1): 17-18.
2 ZALASIEWICZ J, WATERS C N, SUMMERHAYES C P, et al. The working group on the Anthropocene: summary of evidence and interim recommendations[J]. Anthropocene, 2017, 19: 55-60.
3 WATERS C N, WILLIAMS M, ZALASIEWICZ J, et al. Epochs, events and episodes: marking the geological impact of humans[J]. Earth-Science Reviews, 2022, 234. DOI: 10.1016/j.earscirev.2022.104171 .
4 WATERS C N, TURNER S D. Defining the onset of the Anthropocene Twelve sites are considered for defining the Anthropocene geological epoch [J]. Science, 2022, 378(6 621): 706-708.
5 JIANG Tao. Modern population history of China[M]. Hangzhou: Zhejiang People’s Publishing House, 1993.
姜涛. 中国近代人口史[M]. 杭州: 浙江人民出版社, 1993.
6 SU Y L, CHU G Q, LIU Q S, et al. A 1400 year environmental magnetic record from varved sediments of Lake Xiaolongwan (Northeast China) reflecting natural and anthropogenic soil erosion[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3 053-3 060.
7 SHEN Ji, XUE Bin, WU Jinglu, et al. Lake sedimentation and environmental evolution[M]. Beijing: Science Press, 2010.
沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京: 科学出版社, 2010.
8 STEBICH M, REHFELD K, SCHLÜTZ F, et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake[J]. Quaternary Science Reviews, 2015, 124: 275-289.
9 LIU Qiang, LIU Jiaqi, CHEN Xiaoyu, et al. Stable carbon isotope record of bulk organic matter from the Sihailongwan Maar Lake, northeast China during the past 18.5ka[J]. Quaternary Sciences, 2005, 25(6): 711-721.
刘强, 刘嘉麒, 陈晓雨, 等. 18.5kaB.P.以来东北四海龙湾玛珥湖全岩有机碳同位素记录及其古气候环境意义[J]. 第四纪研究, 2005, 25(6): 711-721.
10 Baishan City Local Chronicles Compilation Committee. Baishan City chronicle 1986-2005 (Volume 1) [M]. Changchun: Jilin People’s Publishing House, 2005.
白山市地方志编纂委员会 编. 白山市志1986~2005(卷一)[M]. 长春: 吉林人民出版社, 2005.
11 BAI Fengnan, LI Dongxu. Introduction to North Korean economic history[M]. Yanji: Yanbian University Press, 1988.
白凤南, 李东旭. 朝鲜经济史概论[M]. 延吉: 延边大学出版社, 1988.
12 DAVIES S J, LAMB H F, ROBERTS S J. Micro-XRF core scanning in palaeolimnology: recent developments[M]// Micro-XRF studies of sediment cores. Dordrecht: Springer, 2015: 189-226.
13 CAO Yunning, LIU Weiguo. Problems and improvements of preparing organic carbon stable isotope samples by sealing tube method[J]. Journal of Earth Environment, 2016, 7(2): 200-208.
曹蕴宁, 刘卫国. 封管法制备有机碳稳定同位素样品存在的问题和改进[J]. 地球环境学报, 2016, 7(2): 200-208.
14 HAN Y M, AN Z S, LEI D W, et al. The Sihailongwan Maar Lake, northeastern China as a candidate Global boundary Stratotype Section and Point for the Anthropocene series[J]. The Anthropocene Review, 2023, 10(1): 177-200.
15 WANG Shaowu. Holocene climate change[M]. Beijing: China Meteorological Press, 2011.
王绍武. 全新世气候变化[M]. 北京: 气象出版社, 2011.
16 WANG Shaowu, WEN Xinyu, LUO Yong, et al. Establishment of temperature series in China in recent thousand years[J]. Chinese Science Bulletin, 2007, 52(8): 958-964.
王绍武, 闻新宇, 罗勇, 等. 近千年中国温度序列的建立[J]. 科学通报, 2007, 52(8): 958-964.
17 PENG J J, SUN Y, CHEN M, et al. Tree-ring based precipitation variability since AD 1828 in northwestern Liaoning, China[J]. Quaternary International, 2013, 283: 63-71.
18 CAO Shuji, GE Jianxiong. History of Chinese population (volume V) [M]. Shanghai: Fudan University Press, 2005.
曹树基, 葛剑雄. 中国人口史(第五卷)[M]. 上海: 复旦大学出版社, 2005.
19 HOU Yangfang, GE Jianxiong. History of chinese population (volume VI)[M]. Shanghai: Fudan University Press, 2005.
侯杨方, 葛剑雄. 中国人口史(第六卷)[M]. 上海: 复旦大学出版社, 2005.
20 LU Yu, TENG Zezhi. A study on the historical population of China province[M]. Beijing: China Social Sciences Press, 2016.
路遇, 滕泽之. 中国分省区历史人口考[M]. 北京: 中国社会科学出版社, 2016.
21 National Bureau of Statistics of China. China statistical abstract (2017)[M]. Beijing: China Statistics Press, 2017.
中华人民共和国国家统计局. 中国统计摘要(2017)[M]. 北京: 中国统计出版社, 2017.
22 WATERS C N, ZALASIEWICZ J, SUMMERHAYES C, et al. Global boundary Stratotype Section and Point (GSSP) for the Anthropocene Series: where and how to look for potential candidates[J]. Earth-Science Reviews, 2018, 178: 379-429.
23 JIANG H, HAN Y M, GUO M L, et al. Sedimentary records of human activities in China over the past two millennia and implications for the Anthropocene: a review[J]. Science of the Total Environment, 2022, 851. DOI: 10.1016/j.scitotenv.2022.158149 .
24 RUBINO M, ETHERIDGE D M, TRUDINGER C M, et al. A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8 482-8 499.
25 MEYERS P A, LALLIER-VERGÉS E. Lacustrine sedimentary organic matter records of late quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21(3): 345-372.
26 CHU G Q, SUN Q, WANG X H, et al. A 1600 year multiproxy record of paleoclimatic change from varved sediments in Lake Xiaolongwan, northeastern China[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D22): 1-10.
27 FANG Jidun, WU Fengchang, XIONG Yongqiang, et al. Composition and source identification of organic matter in surface sediments of Lake Sihailongwan, China[J]. Research of Environmental Sciences, 2015, 28(3): 333-339.
房吉敦, 吴丰昌, 熊永强. 等 . 四海龙湾表层沉积物中有机质的组成特征及其源解析[J]. 环境科学研究, 2015, 28(3): 333-339.
28 NIU Cuijuan, LOU Anru, SUN Ruyong,et al. Foundations in ecology[M]. 3rd ed. Beijing: Higher Education Press, 2015.
牛翠娟,娄安如,孙儒泳,等. 基础生态学[M]. 第3版. 北京: 高等教育出版社, 2015.
29 CHEN Huaiman. Environmental soil science[M]. 2nd ed. Beijing: Science Press, 2010.
陈怀满. 环境土壤学[M]. 第2版. 北京: 科学出版社, 2010.
30 LIU H X, YU X F, GAO C Y, et al. A 4000-yr multi-proxy record of Holocene hydrology and vegetation from a peatland in the Sanjiang Plain, northeast China[J]. Quaternary International, 2017, 436: 28-36.
31 WEI G J, LI X H, LIU Y, et al. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea[J]. Paleoceanography, 2006, 21(4): 1-11.
32 CHENG B, LIU J B, CHEN S Q, et al. Impact of abrupt late Holocene monsoon climate change on the status of an alpine lake in North China[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(4): 1-12.
33 YOU H T, LIU J Q. High-resolution climate evolution derived from the sediment records of Erlongwan Maar Lake since 14 ka BP[J]. Chinese Science Bulletin, 2012, 57(27): 3 610-3 616.
34 CHU G Q, SUN Q, GU Z Y, et al. Dust records from varved lacustrine sediments of two neighboring lakes in northeastern China over the last 1400 years[J]. Quaternary International, 2009, 194(1/2): 108-118.
35 YE Yu, FANG Xiuqi, REN Yuyu, et al. Changes in arable land cover in Northeast China over the past 300 years[J]. Science China Series D: Earth Sciences, 2009, 39(3): 340-350.
叶瑜, 方修琦, 任玉玉, 等. 东北地区过去300年耕地覆盖变化[J]. 中国科学D辑:地球科学, 2009, 39(3): 340-350.
36 MINGRAM J, ALLEN J R M, BRUCHMANN C, et al. Maar- and crater lakes of the Longgang Volcanic Field (N.E. China)—overview, laminated sediments, and vegetation history of the last 900 years[J]. Quaternary International, 2004, 123/124/125: 135-147.
37 SUN Q, XIE M M, SHI L M, et al. Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China[J]. Journal of Paleolimnology, 2013, 50(3): 331-344.
38 CHEN S Q, LIU J B, XIE C L, et al. Evolution of integrated lake status since the last deglaciation: a high-resolution sedimentary record from Lake Gonghai, Shanxi, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496: 175-182.
39 HUANG X Z, REN X X, CHEN X M, et al. Anthropogenic Mountain forest degradation and soil erosion recorded in the sediments of Mayinghai Lake in Northern China[J]. CATENA, 2021, 207. DOI: 10.1016/j.catena.2021.105597 .
40 TANG Qiyu. Historical manuscript of crop cultivation in China[M]. Beijing: Agriculture Press, 1986.
唐启宇. 中国作物栽培史稿[M]. 北京: 农业出版社, 1986.
41 Official website of National Bureau of Statistics[EB/OL].[2023-09-03]. .
国家统计局官网[EB/OL].[2023-09-03]. .
42 SCHETTLER G, LIU Q, MINGRAM J, et al. Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (northeast China, Jilin Province). Part 1: hydrological conditions and dust flux[J]. Journal of Paleolimnology, 2006, 35: 239-270.
43 SCHETTLER G, LIU Q, MINGGRAM J, et al. Palaeovariations in the East-Asian Monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (northeast China, Jilin province). Part 2: a 200-year record of atmospheric lead-210 flux variations and its palaeoclimatic implications[J]. Journal of Paleolimnology, 2006, 35: 271-288.
44 CUI S H, SHI Y L, GROFFMAN P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2 052-2 057.
45 OLDFIELD F, WAKE R, BOYLE J, et al. The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact[J]. The Holocene, 2003, 13(5): 677-690.
46 MCCONNELL J R, WILSON A I, STOHL A, et al. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22): 5 726-5 731.
47 ARMESTO J J, MANUSCHEVICH D, MORA A, et al. From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15, 000 years[J]. Land Use Policy, 2010, 27(2): 148-160.
48 MARX S K, MCGOWAN H A, KAMBER B S, et al. Unprecedented wind erosion and perturbation of surface geochemistry marks the Anthropocene in Australia[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(1): 45-61.
49 HILLMAN A L, ABBOTT M B, VALERO-GARCÉS B L, et al. Lead pollution resulting from Roman gold extraction in northwestern Spain[J]. The Holocene, 2017, 27(10): 1 465-1 474.
50 SIMCIK M F, EISENREICH S J, GOLDEN K A, et al. Atmospheric loading of polycyclic aromatic hydrocarbons to Lake Michigan as recorded in the sediments[J]. Environmental Science & Technology, 1996, 30(10): 3 039-3 046.
51 DOLOR M K, HELZ G R, MCDONOUGH W F. Cause of the chalcophile trace element enrichments marking the Holocene to Anthropocene transition in northern Chesapeake Bay sediments[J]. Geochimica et Cosmochimica Acta, 2012, 82: 79-91.
52 SARKAR S, AHMED T, SWAMI K, et al. History of atmospheric deposition of trace elements in lake sediments, ~1880 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(11): 5 658-5 669.
[1] 吴亚妮, 陈旸, 王野, 莫朋军, 高伟斌. 210Pb同位素在人类世沉积物定年中的应用[J]. 地球科学进展, 2024, 39(1): 71-81.
[2] 周卫健, 赵雪, 陈宁. 中国人类世科学研究新进展[J]. 地球科学进展, 2024, 39(1): 1-11.
[3] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.
[4] 韩增林, 尚颜颜, 郭建科, 王绍博. 东北地区港口内陆空间可达性综合测度[J]. 地球科学进展, 2017, 32(5): 502-512.
[5] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[6] 王亚平,黄 耀,张稳. 中国东北三省1960—2005年地表干燥度变化趋势[J]. 地球科学进展, 2008, 23(6): 619-627.
阅读次数
全文


摘要